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1 Motivation.

In [Joot()] four vector solutions to the mechanical wave equations were ex-
plored. What was obviously missing from that was consideration of the special
case for v2 = c2.

Here solutions to the electrodynamic wave equation will be examined. Con-
sideration of such solutions in more detail will is expected to be helpful as
background for the more complex study of quantum (matter) wave equations.
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2 Electromagnetic wave equation solutions.

For electrodynamics our equation to solve is

∇F = J/ε0c (1)

For the unforced (vacuum) solutions, with F = ∇ ∧ A, and the Coulomb
gauge ∇ · A = 0 this reduces to

0 =
(
(γµ)2∂µµ

)
A

=
(

1
c2 ∂tt − ∂jj

)
A

These equations have the same form as the mechanical wave equation where
the wave velocity v2 = c2 is the speed of light

(
1
v2 ∂tt −

3

∑
j=1

∂jj

)
ψ = 0 (2)

2.1 Separation of variables solution of potential equations.

Let’s solve this using separation of variables, and write Aν = XYZT = ΠµXµ

From this we have

∑
µ

(γµ)2 (Xµ)′′

Xµ = 0

and can procede with the normal procedure of assuming that a solution
can be found by separately equating each term to a constant. Writing those
constants explicitly as (mµ)2, which we allow to be potentially complex we
have (no sum)

Xµ = exp
(
±
√

(γµ)2mµxµ

)
Now, let kµ = ±

√
(γµ)2mµ, folding any sign variation and complex factors

into these constants. Our complete solution is thus

ΠµXµ = exp
(
∑ kµxµ

)
However, for this to be a solution, the wave equation imposes the constraint
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∑
µ

(γµ)2(kµ)2 = 0

Or

(k0)2 −∑
j
(k j)2 = 0

Summarizing each potential term has a solution expressable in terms of null
”wave-number” vectors Kν

Aν = exp (Kν · x) (3)
|Kν| = 0 (4)

2.2 Faraday bivector and tensor from the potential solutions.

From the components of the potentials 3 we can compute the curl for the com-
plete field. That is

F = ∇∧ A
A = γν exp (Kν · x)

This is

F = (γµ ∧ γν) ∂µ exp (Kν · x)

= (γµ ∧ γν) ∂µ exp (γαKνα · γσxσ)

= (γµ ∧ γν) ∂µ exp (Kνσxσ)

= (γµ ∧ γν) Kνµ exp (Kνσxσ)

= (γµ ∧ γν) Kνµ exp (Kν · x)

= (γµ ∧ γν)
1
2
(
Kνµ exp (Kν · x)− Kµν exp

(
Kµ · x

))

Writing our field in explicit tensor form

F = Fµνγµ ∧ γν

our vacuum solution is therefore
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Fµν =
1
2
(
Kνµ exp (Kν · x)− Kµν exp

(
Kµ · x

))
(5)

but subject to the null wave number and Lorentz guage constraints

∣∣Kµ

∣∣ = 0 (6)

∇ ·
(
γµ exp

(
Kµ · x

))
= 0 (7)

2.3 Examine the Lorentz gauge constraint.

That Lorentz gauge constraint on the potential is a curious looking beastie.
Let’s expand that out in full to examine it closer

∇ ·
(
γµ exp

(
Kµ · x

))
= γα∂α ·

(
γµ exp

(
Kµ · x

))
= ∑

µ

(γµ)2∂µ exp
(
Kµ · x

)
= ∑

µ

(γµ)2∂µ exp
(
∑ γνKµν · γαxα

)
= ∑

µ

(γµ)2∂µ exp
(
∑ Kµαxα

)
= ∑

µ

(γµ)2Kµµ exp
(
Kµ · x

)
If this must be zero for any x it must also be zero for x = 0, so the Lorentz

gauge imposes an additional restriction on the wave number four vectors Kµ

∑
µ

(γµ)2Kµµ = 0

Expanding in time and spatial coordinates this is

K00 −∑
j

Kjj = 0

One obvious way to satisfy this is to require that the tensor Kµν be diago-
nal, but since we also have the null vector requirement on each of the Kµ four
vectors it isn’t clear that this is an acceptable choice.

2.4 Summarizing so far.

We have found that our field solution has the form
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Fµν =
1
2
(
Kνµ exp (Kν · x)− Kµν exp

(
Kµ · x

))
(8)

Where the vectors Kµ have coordinates

Kµ = γνKµν (9)

This last allows us to write the field tensor completely in tensor formalism

Fµν =
1
2
(
Kνµ exp (Kνσxσ)− Kµν exp

(
Kµσxσ

))
Note that we also require the constraints

0 = ∑
µ

(γµ)2Kµµ (10)

0 = ∑
µ

(γµ)2(Kνµ)2 (11)

Alternately, calling out the explict space time split of the constraint, we can
remove the explicit γµ factors

0 = K00 −∑
j

Kjj = (K00)2 −∑
j
(Kjj)2

3 Looking for more general solutions.

3.1 Using mechanical wave solutions as a guide.

In the mechanical wave equation, we had exponential solutions of the form

f (x, t) = exp (k · x + ωt)

which were solutions to 2 provided that

1
v2 ω2 − k2 = 0.

This meant that

ω = ±|v||k|

and our function takes the (hyperbolic) form, or (sinusoidal) form respec-
tively
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f (x, t) = exp
(
|k|
(

k̂ · x ± |v|t
))

f (x, t) = exp
(

i|k|
(

k̂ · x ± |v|t
))

Fourier series superposition of the latter solutions can be used to express
any spatially periodic function, while fourier transforms can be used to express
the non-periodic cases.

These superpositions, subject to boundary value conditions, allow for writ-
ing solutions to the wave equation in the form

f (x, t) = g
(

k̂ · x ± |v|t
)

(12)

Showing this logically follows from the original separation of variables ap-
proach has not been done. However, despite this, it is simple enough to con-
firm that, this more general function does satisify the unforced wave equation
2.

TODO: as followup here would like to go through the exersize of showing
that the solution of 12 follows from a Fourier transform superposition. Intu-
ition says this is possible, and I’ve said so without backing up the statement.

3.2 Back to the electrodynamic case.

Using the above generalization argument as a guide we should be able to do
something similar for the electrodynamic wave solution.

We want to solve for F the following gradient equation for the field in free
space

∇F = 0 (13)

Let’s suppose that the following is a solution and find the required con-
straints

F = γµ ∧ γν
(
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
(14)

We have two different grade equations built into Maxwell’s equation 13,
one of which is the vector equation, and the other trivector. Those are respec-
tively

∇ · F = 0
∇∧ F = 0
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3.2.1 zero wedge

For the grade three term we have we can substitute equation 14 and see what
comes out

∇∧ F = (γα ∧ γµ ∧ γν) ∂α

(
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
For the partial we will want the following

∂µ(x · Kβ) = ∂µ(xνγν · Kβσγσ)

= ∂µ(xσKβσ

= Kβµ

and application of this with the chain rule we have

∇∧ F = (γα ∧ γµ ∧ γν)
(
KµνKµα f ′(x · Kµ)− KνµKνα f ′(x · Kν)

)
= 2 (γα ∧ γµ ∧ γν) KµνKµα f ′(x · Kµ)

So, finally for this to be zero uniformly for all f , we require

KµνKµα = 0

3.2.2 zero divergence

Now for the divergence term, corresponding to the current four vector condi-
tion J = 0, we have

∇ · F = γα · (γµ ∧ γν) ∂α

(
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
= (γα)2 (γνδα

µ − γµδα
ν) ∂α

(
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
=
(
(γµ)2γν∂µ − (γν)2γµ∂ν

) (
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
= (γµ)2γν∂µ

(
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
− (γµ)2γν∂µ

(
Kνµ f (x · Kν)− Kµν f (x · Kµ)

)
= 2(γµ)2γν∂µ

(
Kµν f (x · Kµ)− Kνµ f (x · Kν)

)
Application of the chain rule, and ∂µ(x · Kβ) = Kβµ, gives us

∇ · F = 2(γµ)2γν
(
KµνKµµ f ′(x · Kµ)− KνµKνµ f ′(x · Kν)

)
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For µ = ν this is zero, which is expected since that should follow from the
wedge product itself, but for the µ 6= ν case it isn’t clear cut.

Damn. On paper I missed some terms and it all cancelled out nicely giving
only a condition on Kµν from the wedge term. The only conclusion possible is
that we require x · Kν = x · Kµ for this form of solution, and therefore need to
restrict the test solution to a fixed spacetime direction.

4 Take II. A bogus attempt at a less general plane
wave like solution.

Let’s try instead

F = γµ ∧ γν Aµν f (x · k) (15)

and see if we can find conditions on the vector k, and the tensor A that make
this a solution to the unforced Maxwell equation 13.

4.1 curl term.

Taking the curl is straightforward

∇∧ F = γα ∧ γµ ∧ γν∂α Aµν f (x · k) (16)

= γα ∧ γµ ∧ γν Aµν∂α f (xσkσ) (17)

= γα ∧ γµ ∧ γν Aµνkα f ′(x · k) (18)

=
1
2

γα ∧ γµ ∧ γν(Aµν − Aνµ)kα f ′(x · k) (19)

(20)

Curiously, the only condition that this yeilds is that we have

Aµν − Aνµ = 0

which is a symmetry requirement for the tensor

Aµν = Aνµ

4.2 divergence term.

Now for the divergence

8



∇ · F = γα · (γµ ∧ γν)∂α Aµν f (xσkσ)

= (δα
µγν − δα

νγµ) kα Aµν f ′(x · k)

= γνkµ Aµν f ′(x · k)− γµkν Aµν f ′(x · k)

= γνkµ(Aµν − Aνµ) f ′(x · k)

So, again, as in the divergence part of Maxwell’s equation for the vacuum
(∇F = 0), we require, and it is sufficient that

Aµν − Aνµ = 0,

for equation 15 to be a solution. This is somewhat suprising since I wouldn’t
have expected a symmetric tensor to fall out of the analysis.

Actually, this is more than suprising and amounts to a requirement that the
field solution is zero. Going back to the proposed solution we have

F = γµ ∧ γν Aµν f (x · k)

= γµ ∧ γν 1
2
(Aµν − Aνµ) f (x · k)

So, any symmetric components of the tensor A automatically cancel out.

5 Summary.

A few dead ends have been chased and I am left with the original attempt
summarized by 8, 9, and 10.

It appears that the TODO noted above to attempt the Fourier transform
treatment will likely be required to put these exponentials into a more general
form. I’d also intended to try to cover phase and group velocities for myself
here but took too much time chasing the dead ends. Will have to leave that to
another day.

References

[Joot()] Peeter Joot. Expressing wave equation exponential solutions using
four vectors. ”http://sites.google.com/site/peeterjoot/math/wave
eqn.pdf”.

9

http://sites.google.com/site/peeterjoot/math/wave_eqn.pdf
http://sites.google.com/site/peeterjoot/math/wave_eqn.pdf

	 Motivation. 
	 Electromagnetic wave equation solutions. 
	 Separation of variables solution of potential equations. 
	 Faraday bivector and tensor from the potential solutions. 
	 Examine the Lorentz gauge constraint. 
	 Summarizing so far. 

	 Looking for more general solutions. 
	 Using mechanical wave solutions as a guide. 
	 Back to the electrodynamic case. 
	 zero wedge 
	 zero divergence 


	 Take II. A bogus attempt at a less general plane wave like solution. 
	 curl term. 
	 divergence term. 

	 Summary. 

