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1 Motivation.

In [Joot()] solutions of Maxwell’s equation via Fourier transformation of the
four potential forced wave equations were explored.

Here a first order solution is attempted, by directly Fourier transforming
the Maxwell’s equation in bivector form.

2 Setup.

Again using a 3D spatial fourier transform, we want to put Maxwell’s equation
into an explicit time dependent form, and can do so by premultiplying by our
observer’s time basis vector γ0

γ0∇F = γ0
J

ε0c
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On the left hand side we have

γ0∇ = γ0

(
γ0∂0 + γk∂k

)
= ∂0 − γkγ0∂k

= ∂0 + σk∂k

= ∂0 + ∇

and on the right hand side we have

γ0
J

ε0c
= γ0

cργ0 + Jkγk
ε0c

=
cρ− Jkσk

ε0c

=
ρ

ε0
− j

ε0c

Both the spacetime gradient and the current density four vector have been
put in a quaternionic form with scalar and bivector grades in the STA basis.
This leaves us with the time centric formulation of Maxwell’s equation

(∂0 + ∇) F =
ρ

ε0
− j

ε0c
(1)

Except for the fact that we have objects of various grades here, and that this
is a first instead of second order equation, these equations have the same form
as in the previous Fourier transform attacks. Those were Fourier transform
application for the homogeneous and inhomogeneous wave equations, and
the heat and Schrödinger equation.

3 Fourier transforming a mixed grade object.

Now, here we make the assumption that we can apply 3D Fourier transform
pairs to mixed grade objects, as in

ψ̂(k, t) =
1

(
√

2π)3

∫ ∞

−∞
ψ(x, t) exp (−ik · x) d3x (2)

ψ(x, t) = PV
1

(
√

2π)3

∫ ∞

−∞
ψ̂(k, t) exp (ik · x) d3k (3)

Now, because of linearity, is it clear enough that this will work, provided
this is a valid transform pair for any specific grade. We do however want to

2



be careful of the order of the factors since we want the flexibility to use any
particular convienient representation of i, in particular i = γ0γ1γ2γ3 = σ1σ2σ3.

Let’s repeat our an ad-hoc verification that this transform pair works as
desired, being careful with the order of products and specifically allowing for
ψ to be a non-scalar function. Writing k = kmσm, r = σmrm, x = σmxm, that is
an expansion of

PV
1

(
√

2π)3

∫ ( 1
(
√

2π)3

∫
ψ(r, t) exp (−ik · r) d3r

)
exp (ik · x) d3k

=
∫

ψ(r, t)d3r PV
1

(2π)3

∫
exp (ik · (x− r)) d3k

=
∫

ψ(r, t)d3rΠ3
m=1 PV

1
2π

∫
exp (ikm(xm − rm)) dkm

=
∫

ψ(r, t)d3rΠ3
m=1 lim

R→∞

sin (R(xm − rm))
π(xm − rm)

∼
∫

ψ(r, t)δ(x1 − r1)δ(x2 − r2)δ(x3 − r3)d3r

= ψ(x, t)

In the second last step above we make the ad-hoc identification of that sinc
limit with the dirac delta function, and recover our original function as desired
(the Rigor police are on holiday again).

3.1 Rotor form of the Fourier transform?

Although the formulation picked above appears to work, it isn’t the only choice
to potentially make for the Fourier transform of multivector. Would it be more
natural to pick an explicit Rotor formulation? This perhaps makes more sense
since it is then automatically grade preserving.

ψ̂(k, t) =
1

(
√

2π)n

∫ ∞

−∞
exp

(
1
2

ik · x
)

ψ(x, t) exp
(
−1

2
ik · x

)
dnx (4)

ψ(x, t) = PV
1

(
√

2π)n

∫ ∞

−∞
exp

(
−1

2
ik · x

)
ψ̂(k, t) exp

(
1
2

ik · x
)

dnk (5)

This isn’t a moot question since I later tried to make an assumption that
the grade of a transformed object equals the original grade. That doesn’t work
with the Fourier transform definition that has been picked in equation 2. It
may be neccessary to revamp the complete treatment, but for now at least an
observation that the grades of transform pairs do not neccessarily match is
required.

Does the transform pair work? For the n = 1 case this is
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F ( f ) = f̂ (k) =
1√
2π

∫ ∞

−∞
exp

(
1
2

ikx
)

f (x) exp
(
−1

2
ikx
)

dx

F−1( f̂ ) = f (x) = PV
1√
2π

∫ ∞

−∞
exp

(
−1

2
ikx
)

f̂ (k) exp
(

1
2

ikx
)

dk

Will the computation of F−1(F ( f (x))) produce f (x)? Let’s try

F−1(F ( f (x))) =

PV
1

2π

∫ ∞

−∞
exp

(
−1

2
ikx
)(∫ ∞

−∞
exp

(
1
2

iku
)

f (u) exp
(
−1

2
iku
)

du
)

exp
(

1
2

ikx
)

dk

= PV
1

2π

∫ ∞

−∞
exp

(
−1

2
ik(x − u)

)
f (u) exp

(
1
2

ik(x − u)
)

dudk

Now, this expression can’t obviously be identified with the delta function
as in the single sided transformation. Suppose we decompose f into grades
that commute and anticommute with i. That is

f = f‖ + f⊥
f‖i = i f‖
f⊥i = −i f⊥

This is also sufficient to determine how these components of f behave with
respect to the exponentials. We have

eiθ = ∑
m

(iθ)m

m!

= cos(θ) + i sin(θ)

So we also have

f‖eiθ = eiθ f‖
f⊥eiθ = e−iθ f⊥

This gives us

F−1(F ( f (x))) = PV
1

2π

∫ ∞

−∞
f‖(u)dudk + PV

1
2π

∫ ∞

−∞
f⊥(u) exp (ik(x − u)) dudk

=
1

2π

∫ ∞

−∞
dk
∫ ∞

−∞
f‖(u)du +

∫ ∞

−∞
f⊥(u)δ(x − u)du
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So, we see two things. First is that any f‖ 6= 0 produces an unpleasant
infinite result. One could, in a vague sense, allow for odd valued f‖, however, if
we were to apply this inversion transformation pair to a function time varying
multivector function f (x, t), this would then require that the function is odd
for all times. Such a function must be zero valued.

The second thing that we see is that if f entirely anticommutes with i, we
do recover it with this transform pair, obtaining f⊥(x).

With respect to Maxwell’s equation this immediately means that this dou-
ble sided transform pair is of no use, since our pseudoscalar i = γ0γ1γ2γ3
commutes with our grade two field bivector F.

4 Fourier transforming the spacetime split gradient
equation.

Now, suppose we have a Maxwell like equation of the form

(∂0 + ∇) ψ = g (6)

Let’s take the Fourier transform of this equation. This gives us

∂0ψ̂ + σmF (∂mψ) = ĝ

Now, we need to look at the middle term in a bit more detail. For the wave,
and heat equations this was evaluated with just an integration by parts. Was
there any commutation assumption in that previous treatment? Let’s write this
out in full to make sure we are cool.

F (∂mψ) =
1

(
√

2π)3

∫
(∂mψ(x, t)) exp (−ik · x) d3x

Let’s also expand the integral completely, employing a permutation of in-
dexes π(1, 2, 3) = (m, n, p).

F (∂mψ) =
1

(
√

2π)3

∫
∂xp

dxp
∫

∂xn
dxn

∫
∂xm

dxm (∂mψ(x, t)) exp (−ik · x)

Okay, now we are ready for the integration by parts. We want a derivative
substitution, based on

∂m (ψ(x, t) exp (−ik · x))
= (∂mψ(x, t)) exp (−ik · x) + ψ(x, t)∂m exp (−ik · x)
= (∂mψ(x, t)) exp (−ik · x) + ψ(x, t)(−ikm) exp (−ik · x)
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Observe that we do not wish to assume that the pseudoscalar i commutes
with anything except the exponential term, so we have to leave it sandwiched
or on the far right. We also must take care to not neccessarily commute the
exponential itself with ψ or its derivative. Having noted this we can rearrange
as desired for the integration by parts

(∂mψ(x, t)) exp (−ik · x) = ∂m (ψ(x, t) exp (−ik · x))− ψ(x, t)(−ikm) exp (−ik · x)

and substitute back into the integral

σmF (∂mψ) =
1

(
√

2π)3

∫
∂xp

dxp
∫

∂xn
dxn (σmψ(x, t) exp (−ik · x))|∂xm

− 1
(
√

2π)3

∫
∂xp

dxp
∫

∂xn
dxn

∫
∂xm

dxmσmψ(x, t)(−ikm) exp (−ik · x)

So, we find that the Fourier transform of our spatial gradient is

F (∇ψ) = kψ̂i

This has the specific ordering of the vector products for our possiblility of
non-communative factors.

From this, without making any assumptions about grade, we have the wave
number domain equivalent for the spacetime split of the gradient equation 6

∂0ψ̂ + kψ̂i = ĝ (7)

5 Back to specifics. Maxwell’s equation in wave
number domain.

For Maxwell’s equation our field variable F is grade two in the STA basis, and
our specific transform pair is:

(∂0 + ∇) F = γ0 J/ε0c (8)

∂0 F̂ + kF̂i = γ0 Ĵ/ε0c (9)

Now, exp(iθ) and i commute, and i also commutes with both F and k. This
is true since our field F as well as the spatial vector k are grade two in the STA
basis. Two sign interchanges occur as we commute with each vector factor of
these bivectors.
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This allows us to write our transformed equation in the slightly tider form

∂0 F̂ + (ik)F̂ = γ0 Ĵ/ε0c (10)

We want to find a solution to this equation. If the objects in question were
all scalars this would be simple enough, and is a problem of the form

B′ + AB = Q (11)

For our electromagnetic field our transform is a summation of the following
form

(E + icB)(cos θ + i sin θ) = (E cos θ − cB sin θ) + i(E sin θ + cB cos θ)

The summation of the integral itself will not change the grades, so F̂ is also
a grade two multivector. The dual of our spatial wave number vector ik is
also grade two with basis bivectors γmγn very much like the magnetic field
portions of our field vector icB.

Having figured out the grades of all the terms in 10, what does a grade split
of this equation yield? For the equation to be true do we not need it to be true
for all grades? Our grade zero, four, and two terms respectively are

(ik) · F̂ = ρ̂/ε0

(ik) ∧ F̂ = 0

∂0 F̂ + (ik)× F̂ = −ĵ/ε0c

Here the (antisymmetric) commutator product 〈ab〉2 = a× b = (ab− ba)/2
has been used in the last equation for this bivector product.

It is kind of interesting that an unmoving charge density contributes noth-
ing to the time variation of the field in the wave number domain, instead only
the current density (spatial) vectors contribute to our differential equation.

5.1 Solving this first order inhomogeneous problem.

We want to solve the inhomogeneous scalar equation 11 but do so in a fashion
that is also valid for the grades for the Maxwell equation problem.

Application of variation of parameters produces the desired result. Let’s
write this equation in operator form

L(B) = B′ + AB

and start with the solution of the homogeneous problem
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L(B) = 0

This is

B′ = −AB

so we expect exponential solutions will do the trick, but have to get the
ordering right due to the possibility of non-commutative factors. How about
one of

B = Ce−At

B = e−AtC

Where C is constant, but not neccesarily a scalar, and doesn’t have to com-
mute with A. Taking derivatives of the first we have

B′ = C(−A)e−At

This doesn’t have the desired form unless C and A commute. How about
the second possibility? That one has the derivative

B′ = (−A)e−AtC
= −AB

which is what we want. Now, for the inhomogeneous problem we want to
use a test solution replacing C with an function to be determined. That is

B = e−AtU

For this we have

L(B) = (−A)e−AtU + e−AtU′ + AB

= e−AtU′

Our inhomogeneous problem L(B) = Q is therefore reduced to

e−AtU′ = Q

Or

U =
∫

eAtQ(t)dt
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As an indefinite integral this gives us

B(t) = e−At
∫

eAtQ(t)dt

And finally in definite integral form, if all has gone well, we have a specific
solution to the forced problem

B(t) =
∫ t

t0

e−A(t−τ)Q(τ)dτ (12)

5.1.1 Verify.

With differentiation under the integral sign we have

dB
dt

= e−A(t−τ)Q(τ)
∣∣∣
τ=t

+
∫ t

t0

−Ae−A(t−τ)Q(τ)dτ

= Q(t)− AB

Great!

5.2 Back to Maxwell’s

Switching to explicit time derivatives we have

∂t F̂ + (ick)F̂ = γ0 Ĵ/ε0

By 12, this has, respectively, homogeneous and inhomogenous solutions

F̂(k, t) = e−icktC(k) (13)

F̂(k, t) =
1
ε0

∫ t

t0(k)
e−(ick)(t−τ)γ0 Ĵ(k, τ)dτ (14)

For the homogeneous term at t = 0 we have

F̂(k, 0) = C(k)

So, C(k) is just the Fourier transform of an initial wave packet. Reassem-
bling all the bits in terms of fully specified Fourier and inverse Fourier trans-
forms we have
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F(x, t) =
1

(
√

2π)3

∫ ( 1
(
√

2π)3

∫
e−icktF(u, 0)e−ik·ud3u

)
eik·xd3k

=
1

(2π)3

∫
e−icktF(u, 0)eik·(x−u)d3ud3k

We have something like a double sided Green’s function, with which we do
a spatial convolution over all space with to produce a function of wave num-
ber. One more integration over all wave numbers gives us our inverse Fourier
transform. The final result is a beautiful closed form solution for the time evo-
lution of an arbitrary wave packet for the field specified at some specific initial
time.

Now, how about that forced term? We want to inverse Fourier transform
our Ĵ based equation in 13. Picking our t0 = −∞ this is

F(x, t) =
1

(
√

2π)3

∫ ( 1
ε0

∫ t

τ=−∞
e−(ick)(t−τ)γ0 Ĵ(k, τ)dτ

)
eik·xd3k

=
1

ε0(2π)3

∫ ∫ t

τ=−∞
e−(ick)(t−τ)γ0 J(u, τ)eik·(x−u)dτd3ud3k

Again we have a double sided Green’s function. We require a convolution
summing the four vector current density contributions over all space and for
all times less than t.

Now we can combine the vacuum and charge present solutions for a com-
plete solution to Maxwell’s equation. This is

F(x, t) =
1

(2π)3

∫
e−ickt

(
F(u, 0) +

1
ε0

∫ t

τ=−∞
eickτγ0 J(u, τ)dτ

)
eik·(x−u)d3ud3k

(15)

Now, this may not be any good for actually computing with, but it sure is
pretty!

There’s a lot of verification required to see if all this math actually works
out, and also a fair amount of followup required to play with this and see what
other goodies fall out if this is used. I’d expect that this result ought to be
usable to show familiar results like the Biot-Savart law.

How do our energy density and Poynting energy momentum density con-
servation relations, and the stress energy tensor terms, look given a closed form
expression for F?

It’s also kind of interesting to see the time phase term coupled to the cur-
rent density here in the forcing term. That looks awfully similar to some QM
expressions, although it could be coincidental.
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