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1 Motivation.

In [Bohm(1989)], after finding a formulation of Maxwell’s equations that he
likes, his next step is to assume the electric and magnetic fields can be ex-
pressed in a 3D Fourier series form, with periodicity in some repeated volume
of space, and then procedes to evaluate the energy of the field.

1.1 Notation.

A notational table 6 is included below for reference.
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2 Setup.

Let’s try this. Instead of using the sine and cosine fourier series which looks
more complex than it ought to be, use of a complex exponential ought to be
cleaner.

2.1 3D Fourier series in complex exponential form.

For a multivector function f (x, t), periodic in some rectangular spatial volume,
let’s assume that we have a 3D Fourier series representation.

Define the element of volume for our fundamental wavelengths to be the
region bounded by three intervals in the x1, x2, x3 directions respectively

I1 = [a1, a1 + λ1]

I2 = [a2, a2 + λ2]

I3 = [a3, a3 + λ3]

Our assumed Fourier representation is then

f (x, t) = ∑
k

f̂k(t) exp

(
−∑

j

2πik jxj

λj

)

Here f̂k = f̂{k1,k2,k3} is indexed over a triplet of integer values, and the
k1, k2, k3 indexes take on all integer values in the [−∞, ∞] range.

Note that we also wish to allow i to not just be a generic complex number,
but allow for the use of either the Euclidian or Minkowski pseudoscalar

i = γ0γ1γ2γ3 = σ1σ2σ3

Because of this we should not assume that we can commute i, or our expo-
nentials with the functions f (x, t), or f̂k(t).

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

f (x, t)e2πimjxj/λj dx1dx2dx3

= ∑
k

f̂k(t)
∫

x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

dx1dx2dx3e2πi(mj−kj)xj/λj dx1dx2dx3

But each of these integrals is just δk,mλ1λ2λ3, giving us

f̂k(t) =
1

λ1λ2λ3

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

f (x, t) exp

(
∑

j

2πik jxj

λj

)
dx1dx2dx3
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To tidy things up lets invent (or perhaps abuse) some notation to tidy things
up. As a subscript on our Fourier coefficients we’ve used k as an index. Let’s
also use it as a vector, and define

k ≡ 2π ∑
m

σmkm

λm
(1)

With our spatial vector x written

x = ∑
m

σmxm

We now have a k · x term in the exponential, and can remove when desir-
able the coordinate summation. If we write V = λ1λ2λ3 it leaves a nice tidy
notation for the 3D fourier series over the volume

f (x, t) = ∑
k

f̂k(t)e−ik·x (2)

f̂k(t) =
1
V

∫
f (x, t)eik·xd3x (3)

This allows us to procede without caring about the specifics of the lengths
of the sides of the rectangular prism that defines the periodicity of the signal in
question.

2.2 Vacuum equation.

Now that we have a desirable seeming Fourier series representation, we want
to apply this to Maxwell’s equation for the vacuum. We will use the STA for-
mulation of Maxwell’s equation, but use the unit convention of Bohm’s book.

In [Joot(f)] the STA equivalent to Bohm’s notation for Maxwell’s equations
was found to be

F = E + iH (4)
J = (ρ + j)γ0 (5)

∇F = 4π J (6)

This is the cgs form of Maxwell’s equation, but with the old style H for cB,
and E for E. In more recent texts E (as a non-vector) is reserved for electromo-
tive flux. In this set of notes I use Bohm’s notation, since the aim is to clarify
for myself aspects of his treatment.

For the vacuum equation, we make an explicit spacetime split by premulti-
plying with γ0
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γ0∇ = γ0(γ0∂0 + γk∂k)

= ∂0 − γkγ0∂k

= ∂0 + γkγ0∂k

= ∂0 + σk∂k

= ∂0 + ∇

So our vacuum equation is just

(∂0 + ∇)F = 0 (7)

3 First order vacuum solution with Fourier series.

3.1 Basic solution in terms of undetermined coefficients.

Now that a notation for the 3D Fourier series has been established, we can
assume a series solution for our field of the form

F(x, t) = ∑
k

F̂k(t)e−2πikjxj/λj (8)

can now apply this to the vacuum Maxwell equation 7. This gives us

∑
k

(
∂t F̂k(t)

)
e−2πikjxj/λj = −c ∑

k,m
σm F̂k(t)

∂

∂xm e−2πikjxj/λj

= −c ∑
k,m

σm F̂k(t)
(
−2π

km

λm

)
e−2πikjxj/λj

= 2πc ∑
k

∑
m

σmkm

λm
F̂k(t)ie−2πikjxj/λj

Note that i commutes with k and since F is also an STA bivector i commutes
with F. Putting all this together we have

∑
k

(
∂t F̂k(t)

)
e−ik·x = ic ∑

k
kF̂k(t)e−ik·x
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Term by term we now have a (big ass, triple infinite) set of very simple first
order differential equations, one for each k triplet of indexes. Specifically this
is

F̂′k = ickF̂k

With solutions

F̂0 = C0

F̂k = exp (ickt) Ck

Here Ck is an undetermined STA bivector. For now we keep this undeter-
mined coefficient on the right hand side of the exponential since no demon-
stration that it commutes with a factor of the form exp(ikφ). Substitution back
into our assumed solution sum we have a solution to Maxwell’s equation, in
terms of a set of as yet undetermined (bivector) coefficients

F(x, t) = C0 + ∑
k 6=0

exp (ickt) Ck exp(−ik · x)

The special case of k = 0 is now seen to be not so special and can be brought
into the sum.

F(x, t) = ∑
k

exp (ickt) Ck exp(−ik · x)

We can also take advantage of the bivector nature of Ck, which implies the
complex exponential can commute to the left, since the two fold commutation
with the pseudoscalar with change sign twice.

F(x, t) = ∑
k

exp (ikct) exp (−ik · x) Ck (9)

3.2 Solution as time evolution of initial field.

Now, observe the form of this sum for t = 0. This is

F(x, 0) = ∑
k

Ck exp(−ik · x)
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So, the Ck coefficients are precisely the Fourier coefficients of F(x, 0). This is
to be expected having repeatedly seen similar results in the Fourier transform
treatments of [Joot(c)], [Joot(b)], and [Joot(a)]. We then have an equation for the
complete time evolution of any spatially periodic electrodynamic field in terms
of the field value at all points in the region at some initial time. Summarizing
so far this is

F(x, t) = ∑
k

exp (ickt) Ck exp(−ik · x) (10)

Ck =
1
V

∫
F(x′, 0) exp

(
ik · x′

)
d3x′ (11)

Regrouping slightly we can write this as a convolution with a Fourier kernel
(a Green’s function). That is

F(x, t) =
1
V

∫
∑
k

exp (ikct) exp
(
ik · (x′ − x)

)
F(x′, 0)d3x′ (12)

Or

F(x, t) =
∫

G(x − x′, t)F(x′, 0)d3x′ (13)

G(x, t) =
1
V ∑

k
exp (ikct) exp (−ik · x) (14)

Okay, that’s cool. We’ve now got the basic periodicity result directly from
Maxwell’s equation in one shot. No need to drop down to potentials, or even
the separate electric or magnetic components of our field F = E + iH.

3.3 Prettying it up? Questions of commutation.

Now, it is tempting here to write 9 as a single exponential

F(x, t) = ∑
k

exp (ikct − ik · x) Ck VALID? (15)

This would probably allow for a prettier four vector form in terms of x =
xµγµ replacing the separate x and x0 = ct terms. However, such a grouping is
not allowable unless one first demonstrates that eiu, and eiα, for spatial vector
u and scalar α commute!

To demonstrate that this is in fact the case note that exponential of this dual
spatial vector can be written

exp(iu) = cos(u) + i sin(u)

6



This spatial vector cosine, cos(u), is a scalar (even powers only), and our
sine, sin(u) ∝ u, is a spatial vector in the direction of u (odd powers leaves a
vector times a scalar). Spatial vectors commute with i (toggles sign twice per-
colating its way through), therefore pseudoscalar exponentials also commute
with i.

This will simplify a lot, and it shows that 15 is in fact a valid representation.
Now, there’s one more question of commutation here. Namely, does a dual

spatial vector exponential commute with the field itself (or equivalently, one of
the Fourier cofficients).

Expanding such a product and attempting term by term commutation should
show

eiuF = (cos u + i sin u)(E + iH)
= i sin u(E + iH) + (E + iH) cos u
= i(sin u)E − (sin u)H + F cos u
= i(−E sin u + 2E · sin u) + (H sin u − 2H · sin u) + F cos u
= 2 sin u · (E −H) + F(cos u − i sin u)

That is

eiuF = 2 sin u · (E −H) + Fe−iu (16)

This exponential has one anticommuting term, but also has a scalar com-
ponent introduced by the portions of the electric and magnetic fields that are
colinear with the spatial vector u.

4 Field Energy and momentum.

Given that we have the same structure for our four vector potential solutions as
the complete bivector field, it doesn’t appear that there is much reason to work
in the second order quantities. Following Bohm we should now be prepared to
express the field energy density and momentum density in terms of the Fourier
coefficients, however unlike Bohm, let’s try this using the first order solutions
found above.

In cgs units (see [Joot(f)] for verification) these field energy and momentum
densities (Poynting vector P) are, respectively

E =
1

8π
(E2 + H2)

P =
1

4π
(E ×H)
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Given that we have a complete field equation without an explicit separation
of electric and magnetic components, perhaps this is easier to calculate from the
stress energy four vector for energy/momentum. In cgs units this must be

T(γ0) =
1

8π
Fγ0 F̃ (17)

An expansion of this to verify the cgs conversion seems worthwhile.

T(γ0) =
1

8π
Fγ0 F̃

=
−1
8π

(E + iH)γ0(E + iH)

=
1

8π
(E + iH)(E − iH)γ0

=
1

8π

(
E2 − (iH)2 + i(HE − EH)

)
γ0

=
1

8π

(
E2 + H2 + 2i2H× E

)
γ0

=
1

8π

(
E2 + H2

)
γ0 +

1
4π

(E ×H) γ0

Good, as expected we have

E = T(γ0) · γ0 (18)
P = T(γ0) ∧ γ0 (19)

FIXME: units here for P are off by a factor of c. This doesn’t matter so much
in four vector form T(γ0) where the units naturally take care of themselves.

Okay, let’s apply this to our field equation 12, and try to percolate the γ0
through all the terms of F̃(x, t)

γ0 F̃(x, t) = −γ0F(x, t)

= −γ0
1
V

∫
∑
k

exp (ikct) exp
(
ik · (x′ − x)

)
F(x′, 0)d3x′

Taking one factor at a time

γ0 exp (ikct) = γ0(cos (kct) + i sin (kct))
= cos (kct) γ0 − iγ0 sin (kct))
= cos (kct) γ0 − i sin (kct))γ0

= exp (−ikct) γ0
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Next, percolate γ0 through the pseudoscalar exponential.

γ0eiφ = γ0(cos φ + i sin φ)
= cos φγ0 − iγ0 sin φ

= e−iφγ0

Again, the percolation produces a conjugate effect. Lastly, as noted previ-
ously F commutes with i. We have therefore

F̃(x, t)γ0F(x, t)γ0 =
1

V2

∫
∑
k,m

F(a, 0)eik·(a−x)eikcte−imcte−im·(b−x)F(b, 0)d3ad3b

=
1

V2

∫
∑
k,m

F(a, 0)eik·a−im·b+i(k−m)ct−i(k−m)·xF(b, 0)d3ad3b

=
1

V2

∫
∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

+
1

V2

∫
∑

k 6=m
F(a, 0)eik·a−im·b+i(k−m)ct−i(k−m)·xF(b, 0)d3ad3b

=
1

V2

∫
∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

+
1

V2

∫
∑

m,k 6=0
F(a, 0)eim·(a−b)+ik·(a−x)+ikctF(b, 0)d3ad3b

Hmm. Messy. The scalar bits of the above are our energy. We have a F2

like term in the first integral (like the Lagrangian density), but it is at different
points, and we have to integrate those with a sort of vector convolution. Given
the reciprocal relationships between convolution and multiplication moving
between the frequency and time domains in Fourier transforms I’d expect that
this first integral can somehow be turned into the sum of the squares of all the
Fourier coefficients

∑
k

(Ck)2

which is very much like a discrete version of the Rayleigh energy theorem
as derived in [Joot(e)], and is in this case a constant (not a function of time
or space) and is dependent on only the initial field. That would mean that
the remainder is the Poynting vector, which looks reasonable since it has the
appearance of being somewhat antisymmetric.

Hmm, having mostly figured it out without doing the math in this case, the
answer pops out. This first integral can be separated cleanly since the pseu-
doscalar exponentials commute with the bivector field. We then have

9



1
V2

∫
∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

=
1
V

∫
∑
k

F(a, 0)eik·ad3a
∫

F(b, 0)e−ik·bd3b

= ∑
k

F̂−k F̂k

A side note on subtle notational sneakiness here. In the assumed series
solution of 8 F̂k(t) was the k Fourier coefficient of F(x, t), whereas here the use
of F̂k has been used to denote the k Fourier coefficient of F(x, 0). An alternative
considered and rejected was something messier like ̂F(t = 0)k, or the use of the
original, less physically significant, Ck coefficients.

The second term could also use a simplification, and it looks like we can
separate these a and b integrals too

1
V2

∫
∑

m,k 6=0
F(a, 0)eim·(a−b)+ik·(a−x)+ikctF(b, 0)d3ad3b

=
1
V

∫
∑

m,k 6=0
F(a, 0)ei(m+k)·ad3aeikct−ik·x 1

V

∫
F(b, 0)e−im·bd3b

= ∑
m

∑
k 6=0

F̂−m−keikct−ik·x F̂m

Making an informed guess that the first integral is a scalar, and the sec-
ond is a spatial vector, our energy and momentum densities (Poynting vector)
respectively are

U ?=
1

8π ∑
k

F̂−k F̂k (20)

P ?=
1

8π ∑
m

∑
k 6=0

F̂−m−keikct−ik·x F̂m (21)

Now that much of the math is taken care of, more consideration about the
physics implications is required. In particular, relating these abstract quantities
to the freqencies and the harmonic oscillator model as Bohm did is desirable
(that was the whole point of the exersize).

On the validity of 20, it isn’t unreasonable to expect that ∂U/∂t = 0, and ∇ ·
P = 0 separately in these current free conditions from the energy momentum
conservation relation
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∂

∂t
1

8π

(
E2 + H2

)
+

1
4π

∇ · (E ×H) = −E · j (22)

Note that an SI derivation of this relation can be found in [Joot(d)]. So it
therefore makes some sense that all the time dependence ends up in what has
been labelled as the Poynting vector. A proof that the spatial divergence of this
quantity is zero would help validate the guess made (or perhaps invalidate it).

Hmm. Again on the validity of identifing the first sum with the energy. It
doesn’t appear to work for the k = 0 case, since that gives you

1
8πV2

∫
F(a, 0)F(b, 0)d3ad3b

That is only a scalar if the somehow all the non-scalar parts of that product
somehow magically cancel out. Perhaps it’s true that the second sum has no
scalar part, and if that is the case one would have

U ?=
1

8π ∑
k

〈
F̂−k F̂k

〉

An explicit calculation of T(γ0) · γ0 is probably justified to discarding all
other grades, and get just the energy.

So, instead of optimistically hoping that the scalar and spatial vector terms
will automatically fall out, it appears that we have to explicitly calculate the
dot and wedge products, as in

U = − 1
16π

(Fγ0Fγ0 + γ0Fγ0F) (23)

P = − 1
16π

(Fγ0Fγ0 − γ0Fγ0F) (24)

and then substitute our Fourier series solution for F to get the desired result.
This appears to be getting more complex instead of less so unfortunately, but
hopefully following this to a logical conclusion will show in retrospect a faster
way to the desired result. A first attempt to do so shows that we have to return
to our assumed Fourier solution and revisit some of the assumptions made.

5 Return to the assumed solutions to Maxwell’s equa-
tion.

An initial attempt to expand 20 properly given the Fourier specification of the
Maxwell solution gets into trouble. Consideration of some special cases for
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specific values of k shows that there is a problem with the grades of the solu-
tion.

Let’s reexamine the assumed solution of 12 with respect to grade

F(x, t) =
1
V

∫
∑
k

exp (ikct) exp
(
ik · (x′ − x)

)
F(x′, 0)d3x′

For scalar Fourier approximations we are used to the ability to select a sub-
set of the Fourier terms to approximate the field, but except for the k = 0 term
it appears that a term by term approximation actually introduces noise in the
form of non-bivector grades.

Consider first the k = 0 term. This gives us a first order approximation of
the field which is

F(x, t) ≈ 1
V

∫
F(x′, 0)d3x′

As summation is grade preserving this spatial average of the initial field
conditions does have the required grade as desired. Next consider a non-zero
fourier term such as k = {1, 0, 0}. For this single term approximation of the
field let’s write out the field term as

Fk(x, t) =
1
V

∫
eik̂|k|ct+ik·(x′−x)(E(x′, 0) + iH(x′, 0))d3x′

Now, let’s expand the exponential. This was shorthand for the product of
the exponentials, which seemed to be a reasonable shorthand since we showed
they commute. Expanded out this is

exp(ik̂|k|ct + ik · (x′ − x))

= (cos(kct) + ik̂ sin(|k|ct))(cos(k · (x′ − x)) + i sin(k · (x′ − x)))

For ease of manipulation write k · (x′ − x) = k∆x, and kct = ωt, we have

exp(iωt + ik∆x) = cos(ωt) cos(k∆x) + i cos(ωt) sin(k∆x)
+ i sin(ωt) cos(k∆x)− sin(ωt) sin(k∆x)

Note that cos(ωt) is a scalar, whereas sin(ωt) is a (spatial) vector in the di-
rection of k. Multiplying this out with the initial time field F(x′, 0) = E(x′, 0) +
iH(x′, 0) = E ′ + iH′ we can separate into grades.
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exp(iωt + ik∆x)(E ′ + iH′)

= cos(ωt)(E ′ cos(k∆x)−H′ sin(k∆x)) + sin(ωt)× (H′ sin(k∆x)− E ′ cos(k∆x))

+ i cos(ωt)(E ′ sin(k∆x) + H′ cos(k∆x))− i sin(ωt)× (E ′ sin(k∆x) + H′ cos(k∆x))

− sin(ωt) · (E ′ sin(k∆x) + H′ cos(k∆x))

+ i(sin(ωt) · (E ′ cos(k∆x)−H′ sin(k∆x))

The first two lines, once integrated, produce the electric and magnetic fields,
but the last two are rogue scalar and pseudoscalar terms. These are allowed in
so far as they are still solutions to the differential equation, but do not have the
desired physical meaning.

If one explicitly sums over pairs of {k,−k} of index triplets then some can-
cellation occurs. The cosine cosine products and sine sine products double and
the sine cosine terms cancel. We therefore have

1
2

exp(iωt + ik∆x)(E ′ + iH′)

= cos(ωt)E ′ cos(k∆x) + sin(ωt)×H′ sin(k∆x)

+ i cos(ωt)H′ cos(k∆x)− i sin(ωt)× E ′ sin(k∆x)

− sin(ωt) · E ′ sin(k∆x)

− i sin(ωt) ·H′ sin(k∆x)

= (E ′ + iH′) cos(ωt) cos(k∆x)− i sin(ωt)× (E ′ + iH′) sin(k∆x)

− sin(ωt) · (E ′ + iH) sin(k∆x)

Here for grouping purposes i is treated as a scalar, which should be justi-
fyable in this specific case. A final grouping produces

1
2

exp(iωt + ik∆x)(E ′ + iH′) = (E ′ + iH′) cos(ωt) cos(k∆x)

− ik̂ × (E ′ + iH′) sin(|ω|t) sin(k∆x)

− sin(ωt) · (E ′ + iH′) sin(k∆x)

Observe that despite the grouping of the summation over the pairs of com-
plementary sign index triplets we still have a pure scalar and pure pseudoscalar
term above. Allowable by the math since the differential equation had no way
of encoding the grade of the desired solution. That only came from the initial
time specification of F(x′, 0), but that isn’t enough.
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Now, from above, we can see that one way to reconsile this grade require-
ment is to require both k̂ · E ′ = 0, and k̂ ·H′ = 0. How can such a requirement
make sense given that k ranges over all directions in space, and that both E ′

and H′ could concievably range over many different directions in the volume
of periodicity.

With no other way out, it seems that we have to impose two requirements,
one on the allowable wavenumber vector directions (which in turn means we
can only pick specific orientations of the Fourier volume), and another on the
field directions themselves. The electric and magnetic fields must therefore be
directed only perpendicular to the wave number vector direction. Wow, that’s
a pretty severe implication following strictly from a grade requirement!

Thinking back to equation 16, it appears that an implication of this is that
we have

eiωtF(x′, 0) = F(x′, 0)e−iωt

Knowing this is a required condition should considerably simplify the en-
ergy and momentum questions.

6 Appendix. Summary of Notation used.

Here is a summary of the notation, following largely the conventions from [Do-
ran and Lasenby(2003)], but modified here for cgs units as used in [Bohm(1989)]
Greek letters range over all indexes and english indexes range over 1, 2, 3. Bold
vectors are spatial enties and non-bold is used for four vectors and scalars.
Summation convention is in effect unless otherwise noted, with implied sum-
mation over all sets of matched upper and lower indexes.
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γµ γµ · γν = ±δµ
ν Four vector basis vector

(γ0)
2(γk)

2 = −1 Minkowski metric
σk = σk = γk ∧ γ0 Spatial basis bivector. (σk · σj = δkj)

= γkγ0
i = γ0 ∧ γ1 ∧ γ2 ∧ γ3 Four-vector pseudoscalar

= γ0γ1γ2γ3
γµ · γν = δµ

ν Reciprocal basis vectors
xµ = x · γµ Vector coordinate
xµ = x · γµ Coordinate for reciprocal basis
x = γµxµ Four vector in terms of coordinates

= γµxµ

E = Ekσk Electric field spatial vector
H = Hkσk Magnetic field spatial vector
J = γµ Jµ Current density four vector.

= γµ Jµ

F = E + iH Faraday bivector
= Fµνγµ ∧ γν in terms of Faraday tensor

x0 = x · γ0 Time coordinate (length dim.)
= ct

x = x ∧ γ0 Spatial vector
= xkσk

J0 = J · γ0 Charge density.
= ρ (current density dimensions.)

j = J ∧ γ0 Current density spatial vector
= Jkσk

∂µ = ∂/∂xµ Index up partial.
∂µ = ∂/∂xµ Index down partial.
∂µν = ∂/∂xµ∂/∂xν Index up partial.
∇ = ∑ γµ∂/∂xµ Spacetime gradient

= γµ∂µ

= ∑ γµ∂/∂xµ

= γµ∂µ

∇ = σk∂k Spatial gradient
Âk = Âk1,k2,k3 Fourier coefficient, integer indexes.
∇2 A = (∇ · ∇)A Four Laplacian.

= (∂00 −∑k ∂kk)A
x2 = x · x Four vector square.

= xµxµ

x2 = x · x Spatial vector square.
= ∑3

k=1(xk)2

= |x|2
d3x = dx1dx2dx3 Spatial volume element.∫

∂I =
∫ b

a Integration range I = [a, b]
STA Space Time Algebra
(xyz)̃ = x̃yz = zyx Reverse of a vector product.
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While many things could be formulated in a metric signature indepen-
dent fashion, no effort to do so here has been made. Assume a time positive
(+,−,−,−) metric signature. Specifically, that is (γ0)2 = 1, and (γk)2 = −1.
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