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1 Motivation.

In [McMahon(2005)] the Fourier transform pairs are written in a somewhat
non-orthogox seeming way.

φ(p) =
1√
2πh̄

∫ ∞

−∞
ψ(x)e−ipx/h̄dx

ψ(x) =
1√
2πh̄

∫ ∞

−∞
φ(p)eipx/h̄dp

The aim here is to do verify this form and do a couple associated calcula-
tions (like the Rayleigh energy theorem).

2 Verify transform pair.

As an exersize to verify, in a not particularily rigorous fashion, that we get
back our original function applying the forward and reverse transformations
in sequence. Specifically, let’s compute
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F−1(F (ψ(x))) = PV
1√
2πh̄

∫ ∞

−∞

(
1√
2πh̄

∫ ∞

−∞
ψ(u)e−ipu/h̄du

)
eipx/h̄dp

Here PV is the principle value of the integral, which is the specifically sym-
metric integration

PV
∫ ∞

−∞
= lim

R→∞

∫ R

−R

We have for the integration

F−1(F (ψ(x))) = PV
1

2πh̄

∫
duψ(u)

∫
eip(x−u)/h̄dp

Now, let v = (x− u)/h̄, or u = x− vh̄ for

1
2π

∫
dvψ(x− vh̄)

∫ R

−R
eipvdp =

1
2π

∫
dvψ(x− vh̄)

1
iv

eipv
∣∣∣∣R

p=−R

=
∫

dvψ(x− vh̄)
sin(Rv)

πv

In a hand-waving (aka. Engineering) fashion, one can identify the limit of
sin(Rv)/πv as the dirac delta function and then declare that this does in fact
recover the value of ψ(x) by a Dirac delta filtering around the point v = 0.

This does in fact work out, but as a strict integration exersize one ought
to be able to do better. Observe that the integral performed here wasn’t really
valid for v = 0 in which case the exponential takes the value of one, so it would
be better to treat the neighbourhood of v = 0 more carefully. Doing so

1
2π

∫
dvψ(x− vh̄)

∫ R

−R
eipvdp =

∫ −ε

v=−∞
dvψ(x− vh̄)

sin(Rv)
πv

+
∫ ∞

v=ε
dvψ(x− vh̄)

sin(Rv)
πv

+
1

2π

∫ ε

v=−ε
dvψ(x− vh̄)

∫ R

−R
eipvdp

=
∫ ∞

v=ε
dv (ψ(x− vh̄) + ψ(x + vh̄))

sin(Rv)
πv

+
1

2π

∫ ε

v=−ε
dvψ(x− vh̄)

∫ R

−R
eipvdp
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Now, evaluating this with ε allowing to tend to zero and R tending to in-
finity simultaneously is troublesome seeming. I seem to recall that one can do
something to the effect of setting ε = 1/R, and then carefully take the limit,
but it isn’t obvious to me how exactly to do this without pulling out an old
text. While some kind of ad-hoc limit process can likely be done and justified
in some fashion, one can see why the hard core mathematicians had to invent
an alternate stricter mathematics to deal with this stuff rigourously.

That said, from an intuitive point of view, it is fairly clear that the filtering
involved here will recover the average of ψ(x) in the neighbourhood assuming
that it is piecewise continuous:

F−1(F (ψ(x))) =
1
2

(ψ(x− ε) + ψ(x + ε))

After digging through my old texts I found a treatment of the Fourier inte-
gral very similar to what I’ve done above in [Le Page and LePage(1980)], but
the important details aren’t omitted (like integrability conditions). I’d read that
and some of my treatment is obviously was based on that. That text treats this
still with Reimann (and not Lebesque) integration, but very carefully.

3 Parseval’s theorem.

In [McMahon(2005)] he notes that Parseval’s theorem tells us

∫ ∞

−∞
f (x)g(x)dx =

∫ ∞

−∞
F(k)G∗(k)dk∫ ∞

−∞
| f (x)|2dx =

∫ ∞

−∞
|F(k)|2dk

The last of these in [Haykin(1994)] is called Rayleigh’s energy theorem. As a
refresher in Fourier manipulation, and to translate to the QM fourier transform
notation, let’s go through the arguments required to prove these.

3.1 Convolution.

We’ll need convolution in the QM notation as a first step to express the trans-
form of a product.

Suppose we have two functions φi(x) , and their transform pairs φ̃i(x) =
F (φi), then the transform of the product is

Φ̃12(p) = F (φ1(x)φ2(x)) =
1√
2πh̄

∫ ∞

−∞
φ1(x)φ2(x)e−ipx/h̄dx

Now write φ2(x) in terms of its inverse transform
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φ2(x)) =
1√
2πh̄

∫ ∞

−∞
φ̃2(u)eiux/h̄du

The product transform is now

Φ̃12(p) =
1√
2πh̄

∫ ∞

−∞
φ1(x)

1√
2πh̄

∫ ∞

−∞
φ̃2(u)eiux/h̄due−ipx/h̄dx

=
1√
2πh̄

∫ ∞

−∞
duφ̃2(u)

1√
2πh̄

∫ ∞

−∞
φ1(x)e−ix(p−u)/h̄dx

=
1√
2πh̄

∫ ∞

−∞
duφ̃2(u)φ̃1(p− u)

=
1√
2πh̄

∫ ∞

−∞
dvφ̃1(v)φ̃2(p− v)

So we have product transform expressed by the convolution integral, but
have an extra 1/

√
2πh̄ factor in this form

φ1(x)φ2(x) ⇔ 1√
2πh̄

∫ ∞

−∞
dvφ̃1(v)φ̃2(p− v) (1)

(2)

3.2 Conguagation.

Next we need to see how the congugate transforms. This is pretty straight
forward

φ∗(x) ⇔ 1√
2πh̄

∫ ∞

−∞
φ∗(x)e−ipx/h̄dx

=
(

1√
2πh̄

∫ ∞

−∞
φ(x)eipx/h̄dx

)∗

So we have

φ∗(x) ⇔ (φ̃(−p))∗

3.3 Rayleigh’s Energy Theorem.

Now, we should be set to prove the energy theorem. Let’s start with the mo-
mentum domain integral and translate back to position basis
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∫ ∞

−∞
dpφ̃(p)φ̃∗(p) =

∫ ∞

−∞
dp

1√
2πh̄

∫ ∞

−∞
dxφ(x)e−ipx/h̄φ̃∗(p)

=
∫ ∞

−∞
dxφ(x)

1√
2πh̄

∫ ∞

−∞
dpφ̃∗(p)e−ipx/h̄

=
∫ ∞

−∞
dxφ(x)

1√
2πh̄

∫ ∞

−∞
dpφ̃∗(−p)eipx/h̄

=
∫ ∞

−∞
dxφ(x)F−1(φ̃∗(−p))

This is exactly our desired result∫ ∞

−∞
dpφ̃(p)φ̃∗(p) =

∫ ∞

−∞
dxφ(x)φ∗(x)

Hmm. Didn’t even need the convolution as the systems book did. Will
have to look over how they did this more closely. Regardless, this method was
nicely direct.
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