
peeter joot peeter .joot@gmail .com

E X P L O R I N G P H Y S I C S W I T H G E O M E T R I C A L G E B R A





E X P L O R I N G P H Y S I C S W I T H G E O M E T R I C A L G E B R A

peeter joot peeter .joot@gmail .com

May 2014 – version v.12



Peeter Joot peeter.joot@gmail.com: Exploring physics with Geometric Algebra, , c© May
2014



C O P Y R I G H T

Copyright c©2014 Peeter Joot All Rights Reserved
This book may be reproduced and distributed in whole or in part, without fee, subject to the

following conditions:

• The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

• Any translation or derived work must be approved by the author in writing before distri-
bution.

• If you distribute this work in part, instructions for obtaining the complete version of this
document must be included, and a means for obtaining a complete version provided.

• Small portions may be reproduced as illustrations for reviews or quotes in other works
without this permission notice if proper citation is given.

Exceptions to these rules may be granted for academic purposes: Write to the author and ask.

Disclaimer: I confess to violating somebody’s copyright when I copied this copyright state-
ment.

v





D O C U M E N T V E R S I O N

Sources for this notes compilation can be found in the github repository
https://github.com/peeterjoot/physicsplay
The last commit (May/18/2014), associated with this pdf was
a82c74d4f3b3ba11f2877b152a863b9928c8beac

vii

https://github.com/peeterjoot/physicsplay




Dedicated to Aurora and Lance, my awesome kids.





P R E FAC E

This is a somewhat hodge podge, and very exploratory, compilation of Geometric (or Clifford)
Algebra related notes on mathematics and Physics.

Most of what appear here as chapters were originally disjoint standalone notes. I eventually
accumulated enough of these individual notes that assembling them into a bookish form made
some sense, even if only for personal organizational purposes. Since my original notes were
disconnected, this assembled form is not necessarily in a logical sequence, so in some cases
reading in a chronological sequence (H) may be helpful.

Because of the journaling nature of many of these notes, a reader will find that I do not always
know where I am going or what the final result will be ahead of time. This is much different
than what you will find in a polished textbook where the author knows the subject like the back
of his hand. I sometimes hit dead ends, mistakes, or unproductive paths. You will find repetition
and rework of topics that were not initially covered satisfactorily, and unlike a carefully crafted
text, these false starts have not all been purged.

The use of this algebra in Physics could be said to be still in its infancy. There is a fair amount
Geometric Algebra in advanced treatments like the work of the Cambridge group [10]. There
is much less that is easily accessible to someone with undergrad level education. Even a text
like Hestenes’s New Foundations [19], which has a more elementary target audience is fairly
difficult to read. These notes attempt to bridge some of that gap.

I can not promise that I have explained things in a way that is good for anybody else. My
audience was essentially myself as I existed at the time of writing, so the prerequisites, both for
the mathematics and the Physics, have evolved continually.

Peeter Joot peeter.joot@gmail.com
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Part I

BA S I C S A N D G E O M E T RY





1
I N T RO D U C T O RY C O N C E P T S

1.1 motivation

As an exercise work out axiomatically some of the key vector identities of Geometric Algebra.
Want to at least derive the vector bivector dot product distribution identity

a · (b∧ c) = (a · b)c − (a · c)b (1.1)

At the same time attempt here to provide a naturally sequenced introduction to the algebra.

1.2 the axioms

Two basic axioms are required, contraction and associative multiplication respectively

a2 = scalar

a(bc) = (ab)c = abc
(1.2)

Linearity and scalar multiplication should probably also be included for completeness, but
even with those this is a surprisingly small set of rules. The choice to impose these as the rules
for vector multiplication will be seen to have a rich set of consequences once explored. It will
take a fair amount of work to extract all the consequences of this decision, and some of that will
be done here.

1.3 contraction and the metric

Defining a2 itself requires introduction of a metric, the specification of the multiplication rules
for a particular basis for the vector space. For Euclidean spaces, a requirement that

a2 = |a|2 (1.3)

is sufficient to implicitly define this metric. However, for the Minkowski spaces of special
relativity one wants the squares of time and spatial basis vectors to be opposing in sign. Defer-
ring the discussion of metric temporarily one can work with the axioms above to discover their

3



4 introductory concepts

implications, and in particular how these relate to the coordinate vector space constructions that
are so familiar.

1.4 symmetric sum of vector products

Squaring a vector sum provides the first interesting feature of the general vector product

(a + b)2 = a2 + b2 + ab + ba (1.4)

Observe that the LHS is a scalar by the contraction identity, and on the RHS we have scalars
a2 and b2 by the same. This implies that the symmetric sum of products

ab + ba (1.5)

is also a scalar, independent of any choice of metric. Symmetric sums of this form have a
place in physics over the space of operators, often instantiated in matrix form. There one writes
this as the commutator and denotes it as

{a, b} ≡ ab + ba (1.6)

In an Euclidean space one can observe that equation 1.4 has the same structure as the law of
cosines so it should not be surprising that this symmetric sum is also related to the dot product.
For a Euclidean space where one the notion of perpendicularity can be expressed as

|a + b|2 = |a|2 + |b|2 (1.7)

we can then see that an implication of the vector product is the fact that perpendicular vectors
have the property

ab + ba = 0 (1.8)

or

ba = −ab (1.9)

This notion of perpendicularity will also be seen to make sense for non-Euclidean spaces.
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Although it retracts from a purist Geometric Algebra approach where things can be done
in a coordinate free fashion, the connection between the symmetric product and the standard
vector dot product can be most easily shown by considering an expansion with respect to an
orthonormal basis.

Lets write two vectors in an orthonormal basis as

a =
∑
µ

aµeµ

b =
∑
µ

bµeµ
(1.10)

Here the choice to utilize raised indices rather than lower for the coordinates is taken from
physics where summation is typically implied when upper and lower indices are matched as
above.

Forming the symmetric product we have

ab + ba =
∑
µ,ν

aµeµbνeν + bµeµaνeν

=
∑
µ,ν

aµbν (eµeν + eνeµ)

= 2
∑
µ

aµbµeµ2 +
∑
µ,ν

aµbν (eµeν + eνeµ)

(1.11)

For an Euclidean space we have eµ2 = 1, and eνeµ = −eµeν, so we are left with

∑
µ

aµbµ =
1
2

(ab + ba) (1.12)

This shows that we can make an identification between the symmetric product, and the anti-
commutator of physics with the dot product, and then define

a · b ≡
1
2
{a, b} =

1
2

(ab + ba) (1.13)
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1.5 antisymmetric product of two vectors (wedge product)

Having identified or defined the symmetric product with the dot product we are now prepared
to examine a general product of two vectors. Employing a symmetric + antisymmetric decom-
position we can write such a general product as

ab =
1
2

(ab + ba)

a · b

+
1
2

(ab − ba)

a something b
(1.14)

What is this remaining vector operation between the two vectors

a something b =
1
2

(ab − ba) (1.15)

One can continue the comparison with the quantum mechanics, and like the anticommutator
operator that expressed our symmetric sum in equation eq. (1.6) one can introduce a commutator
operator

[a, b] ≡ ab − ba (1.16)

The commutator however, does not naturally extend to more than two vectors, so as with
the scalar part of the vector product (the dot product part), it is desirable to make a different
identification for this part of the vector product.

One observation that we can make is that this vector operation changes sign when the opera-
tions are reversed. We have

b something a =
1
2

(ba − ab) = −a something b (1.17)

Similarly, if a and b are colinear, say b = αa, this product is zero

a something(αa) =
1
2

(a(αa) − (αa)a)

= 0
(1.18)

This complete antisymmetry, aside from a potential difference in sign, are precisely the prop-
erties of the wedge product used in the mathematics of differential forms. In this differential
geometry the wedge product of m one-forms (vectors in this context) can be defined as

a1 ∧ a2 · · · ∧ am =
1

m!

∑
ai1ai2 · · · aim sgn(π(i1i2 · · · im)) (1.19)
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Here sgn(π(· · ·)) is the sign of the permutation of the indices. While we have not gotten yet to
products of more than two vectors it is helpful to know that the wedge product will have a place
in such a general product. An equation like eq. (1.19) makes a lot more sense after writing it
out in full for a few specific cases. For two vectors a1 and a2 this is

a1 ∧ a2 =
1
2
(a1a2(1) + a2a1(−1)) (1.20)

and for three vectors this is

a1 ∧ a2 ∧ a3 =
1
6

(a1a2a3(1) + a1a3a2(−1)

+a2a1a3(−1) + a3a1a2(1)

+a2a3a1(1) + a3a2a1(−1))

(1.21)

We will see later that this completely antisymmetrized sum, the wedge product of differential
forms will have an important place in this algebra, but like the dot product it is a specific
construction of the more general vector product. The choice to identify the antisymmetric sum
with the wedge product is an action that amounts to a definition of the wedge product. Explicitly,
and complementing the dot product definition of eq. (1.13) for the dot product of two vectors,
we say

a∧ b ≡
1
2
[a, b] =

1
2

(ab − ba) (1.22)

Having made this definition, the symmetric and antisymmetric decomposition of two vectors
leaves us with a peculiar looking hybrid construction:

ab = a · b + a∧ b (1.23)

We had already seen that part of this vector product was not a vector, but was in fact a scalar.
We now see that the remainder is also not a vector but is instead something that resides in a
different space. In differential geometry this object is called a two form, or a simple element in∧2. Various labels are available for this object are available in Geometric (or Clifford) algebra,
one of which is a 2-blade. 2-vector or bivector is also used in some circumstances, but in di-
mensions greater than three there are reasons to reserve these labels for a slightly more general
construction.

The definition of eq. (1.23) is often used as the starting point in Geometric Algebra intro-
ductions. While there is value to this approach I have personally found that the non-axiomatic
approach becomes confusing if one attempts to sort out which of the many identities in the
algebra are the fundamental ones. That is why my preference is to treat this as a consequence
rather than the starting point.
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1.6 expansion of the wedge product of two vectors

Many introductory geometric algebra treatments try very hard to avoid explicit coordinate treat-
ment. It is true that GA provides infrastructure for coordinate free treatment, however, this
avoidance perhaps contributes to making the subject less accessible. Since we are so used to
coordinate geometry in vector and tensor algebra, let us take advantage of this comfort, and
express the wedge product explicitly in coordinate form to help get some comfort for it.

Employing the definition of eq. (1.22), and an orthonormal basis expansion in coordinates for
two vectors a, and b, we have

2(a∧ b) = (ab − ba)

=
∑
µ,ν

aµbνeµeν −
∑
α,β

aαbβeαeβ

=
∑
µ

aµbµ −
∑
α

aαbα

= 0

+
∑
µ,ν

aµbνeµeν −
∑
α,β

aαbβeαeβ

=
∑
µ<ν

(aµbνeµeν + aνbµeνeµ) −
∑
α<β

(aαbβeαeβ + aβbαeβeα)

= 2
∑
µ<ν

(aµbν − aνbµ)eµeν

(1.24)

So we have

a∧ b =
∑
µ<ν

∣∣∣∣∣∣∣aµ aν

bµ bν

∣∣∣∣∣∣∣ eµeν (1.25)

The similarity to the R3 vector cross product is not accidental. This similarity can be made
explicit by observing the following

e1e2 = e1e2(e3e3) = (e1e2e3)e3

e2e3 = e2e3(e1e1) = (e1e2e3)e1

e1e3 = e1e3(e2e2) = −(e1e2e3)e2

(1.26)
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This common factor, a product of three normal vectors, or grade three blade, is called the
pseudoscalar for R3. We write i = e1e2e3, and can then express the R3 wedge product in terms
of the cross product

a∧ b =

∣∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣∣ e2e3 +

∣∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣∣ e1e3 +

∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣∣ e1e2

= (e1e2e3)


∣∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣∣ e1 −

∣∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣∣ e2 +

∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣∣ e3


(1.27)

This is

a∧ b = i(a × b) (1.28)

With this identification we now also have a curious integrated relation where the dot and
cross products are united into a single structure

ab = a · b + i(a × b) (1.29)

1.7 vector product in exponential form

One naturally expects there is an inherent connection between the dot and cross products, espe-
cially when expressed in terms of the angle between the vectors, as in

a · b = |a||b| cos θa,b

a × b = |a||b| sin θa,bn̂a,b
(1.30)

However, without the structure of the geometric product the specifics of what connection is
is not obvious. In particular the use of eq. (1.29) and the angle relations, one can easily blunder
upon the natural complex structure of the geometric product

ab = a · b + i(a × b)

= |a||b| (cos θa,b + in̂a,b sin θa,b)
(1.31)

As we have seen pseudoscalar multiplication in R3 provides a mapping between a grade 2
blade and a vector, so this in̂ product is a 2-blade.
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In R3 we also have in̂ = n̂i (exercise for reader) and also i2 = −1 (again for the reader), so
this 2-blade in̂ has all the properties of the i of complex arithmetic. We can, in fact, write

ab = a · b + i(a × b)

= |a||b| exp(in̂a,bθa,b)
(1.32)

In particular, for unit vectors a, b one is able to quaternion exponentials of this form to rotate
from one vector to the other

b = a exp(in̂a,bθa,b) (1.33)

This natural GA use of multivector exponentials to implement rotations is not restricted to
R3 or even Euclidean space, and is one of the most powerful features of the algebra.

1.8 pseudoscalar

In general the pseudoscalar for RN is a product of N normal vectors and multiplication by such
an object maps m-blades to (N-m) blades.

For R2 the unit pseudoscalar has a negative square

(e1e2)(e1e2) = −(e2e1)(e1e2)

= −e2(e1e1)e2

= −e2e2

= −1

(1.34)

and we have seen an example of such a planar pseudoscalar in the subspace of the span of
two vectors above (where n̂i was a pseudoscalar for that subspace). In general the sign of the
square of the pseudoscalar depends on both the dimension and the metric of the space, so the
“complex” exponentials that rotate one vector into another may represent hyperbolic rotations.

For example we have for a four dimensional space the pseudoscalar square is

i2 = (e0e1e2e3)(e0e1e2e3)

= −e0e0e1e2e3e1e2e3

= −e0e0e1e2e3e1e2e3

= −e0e0e1e1e2e3e2e3

= e0e0e1e1e2e2e3e3

(1.35)
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For a Euclidean space where each of the ek
2 = 1, we have i2 = 1, but for a Minkowski space

where one would have for k , 0, e0
2ek

2 = −1, we have i2 = −1
Such a mixed signature metric will allow for implementation of Lorentz transformations as

exponentials (hyperbolic) rotations in a fashion very much like the quaternionic spatial rotations
for Euclidean spaces.

It is also worth pointing out that the pseudoscalar multiplication naturally provides a mapping
operator into a dual space, as we have seen in the cross product example, mapping vectors to
bivectors, or bivectors to vectors. Pseudoscalar multiplication in fact provides an implementa-
tion of the Hodge duality operation of differential geometry.

In higher than three dimensions, such as four, this duality operation can in fact map 2-blades
to orthogonal 2-blades (orthogonal in the sense of having no common factors). Take for example
the typical example of a non-simple element from differential geometry

ω = e1 ∧ e2 + e3 ∧ e4 (1.36)

The two blades that compose this sum have no common factors and thus cannot be formed
as the wedge product of two vectors. These two blades are orthogonal in a sense that can be
made more exact later. As this time we just wish to make the observation that the pseudoscalar
provides a natural duality operation between these two subspaces of

∧2. Take for example

ie1 ∧ e2 = e1e2e3e4e1e2

= −e1e1e2e3e4e2

= −e1e1e2e2e3e4

∝ e3e4

(1.37)

1.9 higher order products
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G E O M E T R I C A L G E B R A . T H E V E RY Q U I C K E S T I N T RO D U C T I O N

2.1 motivation

An attempt to make a relatively concise introduction to Geometric (or Clifford) Algebra. Much
more complete introductions to the subject can be found in [11], [10], and [19].

2.2 axioms

We have a couple basic principles upon which the algebra is based

• Vectors can be multiplied.

• The square of a vector is the (squared) length of that vector (with appropriate generaliza-
tions for non-Euclidean metrics).

• Vector products are associative (but not necessarily commutative).

That is really all there is to it, and the rest, paraphrasing Feynman, can be figured out by
anybody sufficiently clever.

2.3 by example . the 2d case

Consider a 2D Euclidean space, and the product of two vectors a and b in that space. Utilizing
a standard orthonormal basis {e1, e2} we can write

a = e1x1 + e2x2

b = e1y1 + e2y2,
(2.1)

and let us write out the product of these two vectors ab, not yet knowing what we will end
up with. That is

ab = (e1x1 + e2x2)(e1y1 + e2y2)

= e2
1x1y1 + e2

2x2y2 + e1e2x1y2 + e2e1x2y1
(2.2)

13
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From axiom 2 we have e2
1 = e2

2 = 1, so we have

ab = x1y1 + x2y2 + e1e2x1y2 + e2e1x2y1. (2.3)

We have multiplied two vectors and ended up with a scalar component (and recognize that
this part of the vector product is the dot product), and a component that is a “something else”.
We will call this something else a bivector, and see that it is characterized by a product of non-
colinear vectors. These products e1e2 and e2e1 are in fact related, and we can see that by looking
at the case of b = a. For that we have

a2 = x1x1 + x2x2 + e1e2x1x2 + e2e1x2x1

= |a|2 + x1x2(e1e2 + e2e1)
(2.4)

Since axiom (2) requires our vectors square to equal its (squared) length, we must then have

e1e2 + e2e1 = 0, (2.5)

or

e2e1 = −e1e2. (2.6)

We see that Euclidean orthonormal vectors anticommute. What we can see with some addi-
tional study is that any colinear vectors commute, and in Euclidean spaces (of any dimension)
vectors that are normal to each other anticommute (this can also be taken as a definition of
normal).

We can now return to our product of two vectors eq. (2.3) and simplify it slightly

ab = x1y1 + x2y2 + e1e2(x1y2 − x2y1). (2.7)

The product of two vectors in 2D is seen here to have one scalar component, and one bivector
component (an irreducible product of two normal vectors). Observe the symmetric and antisym-
metric split of the scalar and bivector components above. This symmetry and antisymmetry can
be made explicit, introducing dot and wedge product notation respectively

a · b =
1
2

(ab + ba) = x1y1 + x2y2

a∧ b =
1
2

(ab − ba) = e1e2(x1yy − x2y1).
(2.8)
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so that the vector product can be written as

ab = a · b + a∧ b. (2.9)

2.4 pseudoscalar

In many contexts it is useful to introduce an ordered product of all the unit vectors for the space
is called the pseudoscalar. In our 2D case this is

i = e1e2, (2.10)

a quantity that we find behaves like the complex imaginary. That can be shown by considering
its square

(e1e2)2 = (e1e2)(e1e2)

= e1(e2e1)e2

= −e1(e1e2)e2

= −(e1e1)(e2e2)

= −12

= −1

(2.11)

Here the anticommutation of normal vectors property has been used, as well as (for the first
time) the associative multiplication axiom.

In a 3D context, you will see the pseudoscalar in many places (expressing the normals to
planes for example). It also shows up in a number of fundamental relationships. For example, if
one writes

I = e1e2e3 (2.12)

for the 3D pseudoscalar, then it is also possible to show

ab = a · b + I(a × b) (2.13)

something that will be familiar to the student of QM, where we see this in the context of Pauli
matrices. The Pauli matrices also encode a Clifford algebraic structure, but we do not need an
explicit matrix representation to do so.
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2.5 rotations

Very much like complex numbers we can utilize exponentials to perform rotations. Rotating in
a sense from e1 to e2, can be expressed as

aeiθ = (e1x1 + e2x2)(cos θ + e1e2 sin θ)

= e1(x1 cos θ − x2 sin θ) + e2(x2 cos θ + x1 sin θ)
(2.14)

More generally, even in N dimensional Euclidean spaces, if a is a vector in a plane, and û
and v̂ are perpendicular unit vectors in that plane, then the rotation through angle θ is given by

a→ aeûv̂θ. (2.15)

This is illustrated in fig. 2.1

û

v̂

a

aeûv̂θ

θ

Figure 2.1: Plane rotation

Notice that we have expressed the rotation here without utilizing a normal direction for the
plane. The sense of the rotation is encoded by the bivector ûv̂ that describes the plane and
the orientation of the rotation (or by duality the direction of the normal in a 3D space). By
avoiding a requirement to encode the rotation using a normal to the plane we have an method
of expressing the rotation that works not only in 3D spaces, but also in 2D and greater than 3D
spaces, something that is not possible when we restrict ourselves to traditional vector algebra
(where quantities like the cross product can not be defined in a 2D or 4D space, despite the fact
that things they may represent, like torque are planar phenomena that do not have any intrinsic
requirement for a normal that falls out of the plane.).

When a does not lie in the plane spanned by the vectors û and v̂ , as in fig. 2.2, we must
express the rotations differently. A rotation then takes the form

a→ e−ûv̂θ/2aeûv̂θ/2. (2.16)



2.5 rotations 17

û

v̂

aa′

θ

Figure 2.2: 3D rotation

In the 2D case, and when the vector lies in the plane this reduces to the one sided complex
exponential operator used above. We see these types of paired half angle rotations in QM, and
they are also used extensively in computer graphics under the guise of quaternions.





3
A N ( E A R L I E R ) AT T E M P T T O I N T U I T I V E LY I N T RO D U C E T H E D OT,
W E D G E , C RO S S , A N D G E O M E T R I C P RO D U C T S

3.1 motivation

Both the NFCM and GAFP books have axiomatic introductions of the generalized (vector,
blade) dot and wedge products, but there are elements of both that I was unsatisfied with. Per-
haps the biggest issue with both is that they are not presented in a dumb enough fashion.

NFCM presents but does not prove the generalized dot and wedge product operations in terms
of symmetric and antisymmetric sums, but it is really the grade operation that is fundamental.
You need that to define the dot product of two bivectors for example.

GAFP axiomatic presentation is much clearer, but the definition of generalized wedge product
as the totally antisymmetric sum is a bit strange when all the differential forms book give such
a different definition.

Here I collect some of my notes on how one starts with the geometric product action on
colinear and perpendicular vectors and gets the familiar results for two and three vector products.
I may not try to generalize this, but just want to see things presented in a fashion that makes
sense to me.

3.2 introduction

The aim of this document is to introduce a “new” powerful vector multiplication operation, the
geometric product, to a student with some traditional vector algebra background.

The geometric product, also called the Clifford product 1, has remained a relatively obscure
mathematical subject. This operation actually makes a great deal of vector manipulation simpler
than possible with the traditional methods, and provides a way to naturally expresses many geo-
metric concepts. There is a great deal of information available on the subject, however most of
it is targeted for those with a university graduate school background in physics or mathematics.
That level of mathematical sophistication should not required to understand the subject.

It is the author’s opinion that this could be dumbed down even further, so that it would be
palatable for somebody without any traditional vector algebra background.

1 After William Clifford (1845-1879).

19
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3.3 what is multiplication?

The operations of vector addition, subtraction and numeric multiplication have the usual defi-
nitions (addition defined in terms of addition of coordinates, and numeric multiplication as a
scaling of the vector retaining its direction). Multiplication and division of vectors is often de-
scribed as “undefined”. It is possible however, to define a multiplication, or division operation
for vectors, in a natural geometric fashion.

What meaning should be given to multiplication or division of vectors?

3.3.1 Rules for multiplication of numbers

Assuming no prior knowledge of how to multiply two vectors (such as the dot, cross, or wedge
products to be introduced later) consider instead the rules for multiplication of numbers.

1. Product of two positive numbers is positive. Any consideration of countable sets of ob-
jects justifies this rule.

2. Product of a positive and negative number is negative. Example: multiplying a debt (neg-
ative number) increases the amount of the debt.

3. Product of a negative and negative number is positive.

4. Multiplication is distributive. Product of a sum is the sum of the products. 2

a(b + c) = ab + ac (3.1)

(a + b)c = ac + bc (3.2)

5. Multiplication is associative. Changing the order that multiplication is grouped by does
not change the result.

(ab)c = a(bc) (3.3)

2 The name of this property is not important and no student should ever be tested on it. It is a word like dividand
which countless countless school kids are forced to memorize. Like dividand it is perfectly acceptable to forget it
after the test because nobody has to know it to perform division. Since most useful sorts of multiplications have this
property this is the least important of the named multiplication properties. This word exists mostly so that authors
of math books can impress themselves writing phrases like “a mathematical entity that behaves this way is left and
right distributive with respect to addition”.
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6. Multiplication is commutative. Switching the order of multiplication does not change the
result.

ab = ba (3.4)

Unless the reader had an exceptionally gifted grade three teacher it is likely that rule three was
presented without any sort of justification or analogy. This can be considered as a special case
of the previous rule. Geometrically, a multiplication by -1 results in an inversion on the number
line. If one considers the number line to be a line in space, then this is a 180 degree rotation.
Two negative multiplications results in a 360 degree rotation, and thus takes the number back
to its original positive or negative segment on its “number line”.

3.3.2 Rules for multiplication of vectors with the same direction

Having identified the rules for multiplication of numbers, one can use these to define multipli-
cation rules for a simple case, one dimensional vectors. Conceptually a one dimensional vector
space can be thought of like a number line, or the set of all numbers as the set of all scalar
multiples of a unit vector of a particular direction in space.

It is reasonable to expect the rules for multiplication of two vectors with the same direction to
have some of the same characteristics as multiplication of numbers. Lets state this algebraically
writing the directed distance from the origin to the points a and b in a vector notation

a = ae
b = be

(3.5)

where e is the unit vector alone the line in question.
The product of these two vectors is

ab = abee (3.6)

Although no specific meaning has yet been given to the ee term yet, one can make a few
observations about a product of this form.

1. It is commutative, since ab = ba = abee.

2. It is distributive since numeric multiplication is.

3. The product of three such vectors is distributive (no matter the grouping of the multipli-
cations there will be a numeric factor and a eee factor.
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These properties are consistent with half the properties of numeric multiplication. If the other
half of the numeric multiplication rules are assumed to also apply we have

1. Product of two vectors in the same direction is positive (rules 1 and 3 above).

2. Product of two vectors pointing in opposite directions is negative (rule 2 above).

This can only be possible by giving the following meaning to the square of a unit vector

ee = 1 (3.7)

Alternately, one can state that the square of a vector is that vectors squared length.

aa = a2 (3.8)

This property, as well as the associative and distributive properties are the defining properties
of the geometric product.

It will be shown shortly that in order to retain this squared vector length property for vectors
with components in different directions it will be required to drop the commutative property of
numeric multiplication:

ab , ba (3.9)

This is a choice that will later be observed to have important consequences. There are many
types of multiplications that do not have the commutative property. Matrix multiplication is not
even necessarily defined when the order is switched. Other multiplication operations (wedge
and cross products) change sign when the order is switched.

Another important choice has been made to require the product of two vectors not be a vector
itself. This also breaks from the number line analogy since the product of two numbers is still
a number. However, it is notable that in order to take roots of a negative number one has to
introduce a second number line (the i, or imaginary axis), and so even for numbers, products
can be “different” than their factors. Interestingly enough, it will later be possible to show that
the choice to not require a vector product to be a vector allow complex numbers to be defined
directly in terms of the geometric product of two vectors in a plane.

3.4 axioms

The previous discussion attempts to justify the choice of the following set of axioms for multi-
plication of vectors
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1. linearity

2. associativity

3. contraction

Square of a vector is its squared length.

This last property is weakened in some circumstances (for example, an alternate definition of
vector length is desirable for relativistic calculations.)

3.5 dot product

One can express the dot product in terms of these axioms. This follows by calculating the
length of a sum or difference of vectors, starting with the requirement that the vector square is
the squared length of that vector.

Given two vectors a and b, their sum c = a + b has squared length:

c2 = (a + b)(a + b) = a2 + ba + ab + b2. (3.10)

We do not have any specific meaning for the product of vectors, but eq. (3.10) shows that the
symmetric sum of such a product:

ba + ab = scalar (3.11)

since the RHS is also a scalar.
Additionally, if a and b are perpendicular, then we must also have:

a2 + b2 = a2 + b2. (3.12)

This implies a rule for vector multiplication of perpendicular vectors

ba + ab = 0 (3.13)

Or,

ba = −ab. (3.14)
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Note that eq. (3.14) does not assign any meaning to this product of vectors when they per-
pendicular. Whatever that meaning is, the entity such a perpendicular vector product produces
changes sign with commutation.

Performing the same length calculation using standard vector algebra shows that we can
identify the symmetric sum of vector products with the dot product:

‖c‖2 = (a + b) · (a + b) = ‖a‖2 + 2a · b + ‖b‖2. (3.15)

Thus we can make the identity:

a · b =
1
2

(ab + ba) (3.16)

3.6 coordinate expansion of the geometric product

A powerful feature of geometric algebra is that it allows for coordinate free results, and the
avoidance of basis selection that coordinates require. While this is true, explicit coordinate
expansion, especially initially while making the transition from coordinate based vector algebra,
is believed to add clarity to the subject.

Writing a pair of vectors in coordinate vector notation:

a =
∑

i

aiei (3.17)

b =
∑

j

b je j (3.18)

Despite not yet knowing what meaning to give to the geometric product of two general (non-
colinear) vectors, given the axioms above and their consequences we actually have enough
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information to completely expand the geometric product of two vectors in terms of these coor-
dinates:

ab =
∑

i j

aib jeie j

=
∑
i= j

aib jeie j +
∑
i, j

aib jeie j

=
∑

i

aibieiei +
∑
i< j

aib jeie j +
∑
j<i

aib jeie j

=
∑

i

aibi +
∑
i< j

aib jeie j + a jbie jei

=
∑

i

aibi +
∑
i< j

(aib j − bia j)eie j

(3.19)

This can be summarized nicely in terms of determinants:

ab =
∑

i

aibi +
∑
i< j

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ eie j (3.20)

This shows, without requiring the “triangle law” expansion of eq. (3.15), that the geometric
product has a scalar component that we recognize as the Euclidean vector dot product. It also
shows that the remaining bit is a “something else” component. This “something else” is called
a bivector. We do not yet know what this bivector is or what to do with it, but will come back to
that.

Observe that an interchange of a and b leaves the scalar part of equation eq. (3.20) unaltered
(ie: it is symmetric), whereas an interchange inverts the bivector (ie: it is the antisymmetric
part).

3.7 some specific examples to get a feel for things

Moving from the abstract, consider a few specific geometric product example.

• Product of two non-colinear non-orthogonal vectors.

(e1 + 2e2)(e1 − e2) = e1e1 − 2e2e2 + 2e2e1 − e1e2 = −1 + 3e2e1 (3.21)

Such a product produces both scalar and bivector parts.
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• Squaring a bivector

(e1e2)2 = (e1e2)(−e2e1) = −e1(e2e2)e1 = −e1e1 = −1 (3.22)

This particular bivector squares to minus one very much like the imaginary number i.

• Product of two perpendicular vectors.

(e1 + e2)(e1 − e2) = 2e2e1 (3.23)

Such a product generates just a bivector term.

• Product of a bivector and a vector in the plane.

(xe1 + ye2)e1e2 = xe2 − ye1 (3.24)

This rotates the vector counterclockwise by 90 degrees.

• General R3 geometric product of two vectors.

xy = (x1e1 + x2e2 + x3e3)(y1e1 + y2e2 + y3e3) (3.25)

= x · y +

∣∣∣∣∣∣∣x2 x3

y2 y3

∣∣∣∣∣∣∣ e2e3 +

∣∣∣∣∣∣∣x1 x3

y1 y3

∣∣∣∣∣∣∣ e1e3 +

∣∣∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣∣∣ e1e2 (3.26)

Or,

xy = x · y +

∣∣∣∣∣∣∣∣∣∣∣
e2e3 e3e1 e1e2

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣∣ (3.27)

Observe that if one identifies e2e3, e3e1, and e1e2 with vectors e1, e2, and e3 respectively,
this second term is the cross product. A precise way to perform this identification will be
described later.

The key thing to observe here is that the structure of the cross product is naturally asso-
ciated with the geometric product. One can think of the geometric product as a complete
product including elements of both the dot and cross product. Unlike the cross product
the geometric product is also well defined in two dimensions and greater than three.

These examples are all somewhat random, but give a couple hints of results to come.
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3.8 antisymmetric part of the geometric product

Having identified the symmetric sum of vector products with the dot product we can write the
geometric product of two arbitrary vectors in terms of this and its difference

ab =
1
2

(ab + ba) +
1
2

(ab − ba)

= a · b + f (a,b)
(3.28)

Let us examine this second term, the bivector, a mapping of a pair of vectors into a different
sort of object of yet unknown properties.

f (a, ka) =
1
2

(aka − kaa) = 0 (3.29)

Property: Zero when the vectors are colinear.

f (a, ka + b) =
1
2

(a(ka + b) − (ka + mb)a) = f (a,b) (3.30)

Property: colinear contributions are rejected.

f (αa, βb) =
1
2

(αaβb − βbαa) = αβ f (a,b) (3.31)

Property: bilinearity.

f (b, a) =
1
2

(ba − ab) = −
1
2

(ab − ba) = − f (a,b) (3.32)

Property: Interchange inverts.
Operationally, these are in fact the properties of what in the calculus of differential forms is

called the wedge product (uncoincidentally, these are also all properties of the cross product as
well.)

Because the properties are identical the notation from differential forms is stolen, and we
write

a∧ b =
1
2

(ab − ba) (3.33)

And as mentioned, the object that this wedge product produces from two vectors is called a
bivector.
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Strictly speaking the wedge product of differential calculus is defined as an alternating, asso-
ciative, multilinear form. We have here bilinear, not multilinear and associativity is not mean-
ingful until more than two factors are introduced, however when we get to the product of more
than three vectors, we will find that the geometric vector product produces an entity with all of
these properties.

Returning to the product of two vectors we can now write

ab = a · b + a∧ b (3.34)

This is often used as the initial definition of the geometric product.

3.9 yes , but what is that wedge product thing

Combination of the symmetric and antisymmetric decomposition in eq. (3.34) shows that the
product of two vectors according to the axioms has a scalar part and a bivector part. What is
this bivector part geometrically?

One can show that the equation of a plane can be written in terms of bivectors. One can also
show that the area of the parallelogram spanned by two vectors can be expressed in terms of the
“magnitude” of a bivector. Both of these show that a bivector characterizes a plane and can be
thought of loosely as a “plane vector”.

Neither the plane equation or the area result are hard to show, but we will get to those later.
A more direct way to get an intuitive feel for the geometric properties of the bivector can be
obtained by first examining the square of a bivector.

By subtracting the projection of one vector a from another b, one can form the rejection of a
from b:

b′ = b − (b · â)â (3.35)

With respect to the dot product, this vector is orthogonal to a. Since a∧ â = 0, this allows us
to write the wedge product of vectors a and b as the direct product of two orthogonal vectors

a∧ b = a∧ (b − (b · â)â))

= a∧ b′

= ab′

= −b′a

(3.36)
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The square of the bivector can then be written

(a∧ b)2 = (ab′)(−b′a)

= −a2(b′)2.
(3.37)

Thus the square of a bivector is negative. It is natural to define a bivector norm:

|a∧ b| =
√
−(a∧ b)2 =

√
(a∧ b)(b∧ a) (3.38)

Dividing by this norm we have an entity that acts precisely like the imaginary number i.
Looking back to eq. (3.34) one can now assign additional meaning to the two parts. The first,

the dot product, is a scalar (ie: a real number), and a second part, the wedge product, is a pure
imaginary term. Provided a ∧ b , 0, we can write i = a∧b

|a∧b| and express the geometric product
in complex number form:

ab = a · b + i|a∧ b| (3.39)

The complex number system is the algebra of the plane, and the geometric product of two
vectors can be used to completely characterize the algebra of an arbitrarily oriented plane in a
higher order vector space.

It actually will be very natural to define complex numbers in terms of the geometric product,
and we will see later that the geometric product allows for the ad-hoc definition of “complex
number” systems according to convenience in many ways.

We will also see that generalizations of complex numbers such as quaternion algebras also
find their natural place as specific instances of geometric products.

Concepts familiar from complex numbers such as conjugation, inversion, exponentials as
rotations, and even things like the residue theory of complex contour integration, will all have a
natural geometric algebra analogue.

We will return to this, but first some more detailed initial examination of the wedge product
properties is in order, as is a look at the product of greater than two vectors.





4
C O M PA R I S O N O F M A N Y T R A D I T I O NA L V E C T O R A N D G A
I D E N T I T I E S

4.1 three dimensional vector relationships vs n dimensional equivalents

Here are some comparisons between standard R3 vector relations and their corresponding
wedge and geometric product equivalents. All the wedge and geometric product equivalents
here are good for more than three dimensions, and some also for two. In two dimensions the
cross product is undefined even if what it describes (like torque) is a perfectly well defined in a
plane without introducing an arbitrary normal vector outside of the space.

Many of these relationships only require the introduction of the wedge product to generalize,
but since that may not be familiar to somebody with only a traditional background in vector
algebra and calculus, some examples are given.

4.1.1 wedge and cross products are antisymmetric

v × u = −(u × v) (4.1)

v∧ u = −(u∧ v) (4.2)

4.1.2 wedge and cross products are zero when identical

u × u = 0 (4.3)

u∧ u = 0 (4.4)

4.1.3 wedge and cross products are linear

These are both linear in the first variable

(v + w) ×w = u ×w + v ×w (4.5)

31
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(v + w)∧w = u∧w + v∧w (4.6)

and are linear in the second variable

u × (v + w) = u × v + u ×w (4.7)

u∧ (v + w) = u∧ v + u∧w (4.8)

4.1.4 In general, cross product is not associative, but the wedge product is

(u × v) ×w , u × (v ×w) (4.9)

(u∧ v)∧w = u∧ (v∧w) (4.10)

4.1.5 Wedge and cross product relationship to a plane

u × v is perpendicular to plane containing u and v. u ∧ v is an oriented representation of the
plane containing u and v.

4.1.6 norm of a vector

The norm (length) of a vector is defined in terms of the dot product

‖u‖2 = u · u (4.11)

Using the geometric product this is also true, but this can be also be expressed more com-
pactly as

‖u‖2 = u2 (4.12)

This follows from the definition of the geometric product and the fact that a vector wedge
product with itself is zero

u u = u · u + u∧ u = u · u (4.13)
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4.1.7 Lagrange identity

In three dimensions the product of two vector lengths can be expressed in terms of the dot and
cross products

‖u‖2‖v‖2 = (u · v)2 + ‖u × v‖2 (4.14)

The corresponding generalization expressed using the geometric product is

‖u‖2‖v‖2 = (u · v)2 − (u∧ v)2 (4.15)

This follows from by expanding the geometric product of a pair of vectors with its reverse

(uv)(vu) = (u · v + u∧ v)(u · v − u∧ v) (4.16)

4.1.8 determinant expansion of cross and wedge products

u × v =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ ei × e j (4.17)

u∧ v =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ ei ∧ e j (4.18)

Without justification or historical context, traditional linear algebra texts will often define the
determinant as the first step of an elaborate sequence of definitions and theorems leading up to
the solution of linear systems, Cramer’s rule and matrix inversion.

An alternative treatment is to axiomatically introduce the wedge product, and then demon-
strate that this can be used directly to solve linear systems. This is shown below, and does not
require sophisticated math skills to understand.

It is then possible to define determinants as nothing more than the coefficients of the wedge
product in terms of "unit k-vectors" (ei ∧ e j terms) expansions as above.

A one by one determinant is the coefficient of e1 for an R1 1-vector.
A two-by-two determinant is the coefficient of e1 ∧ e2 for an R2 bivector
A three-by-three determinant is the coefficient of e1 ∧ e2 ∧ e3 for an R3 trivector
When linear system solution is introduced via the wedge product, Cramer’s rule follows

as a side effect, and there is no need to lead up to the end results with definitions of minors,
matrices, matrix invertablity, adjoints, cofactors, Laplace expansions, theorems on determinant
multiplication and row column exchanges, and so forth.
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4.1.9 Equation of a plane

For the plane of all points r through the plane passing through three independent points r0, r1,
and r2, the normal form of the equation is

((r2 − r0) × (r1 − r0)) · (r − r0) = 0 (4.19)

The equivalent wedge product equation is

(r2 − r0)∧ (r1 − r0)∧ (r − r0) = 0 (4.20)

4.1.10 Projective and rejective components of a vector

For three dimensions the projective and rejective components of a vector with respect to an
arbitrary non-zero unit vector, can be expressed in terms of the dot and cross product

v = (v · û)û + û × (v × û) (4.21)

For the general case the same result can be written in terms of the dot and wedge product and
the geometric product of that and the unit vector

v = (v · û)û + (v∧ û)û (4.22)

It is also worthwhile to point out that this result can also be expressed using right or left
vector division as defined by the geometric product

v = (v · u)
1
u

+ (v∧ u)
1
u

(4.23)

v =
1
u

(u · v) +
1
u

(u∧ v) (4.24)

4.1.11 Area (squared) of a parallelogram is norm of cross product

A2 = ‖u × v‖2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.25)
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and is the negated square of a wedge product

A2 = −(u∧ v)2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.26)

Note that this squared bivector is a geometric product.

4.1.12 Angle between two vectors

(sin θ)2 =
‖u × v‖2

‖u‖2‖v‖2
(4.27)

(sin θ)2 = −
(u∧ v)2

u2v2
(4.28)

4.1.13 Volume of the parallelepiped formed by three vectors

V2 = ‖(u × v) ·w‖2 =

∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣
2

(4.29)

V2 = −(u∧ v∧w)2 = −


∑

i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣ êi ∧ ê j ∧ êk


2

=
∑

i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
2

(4.30)

4.2 some properties and examples

Some fundamental geometric algebra manipulations will be provided below, showing how this
vector product can be used in calculation of projections, area, and rotations. How some of
these tie together and correlate concepts from other branches of mathematics, such as complex
numbers, will also be shown.

In some cases these examples provide details used above in the cross product and geometric
product comparisons.
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4.2.1 Inversion of a vector

One of the powerful properties of the Geometric product is that it provides the capability to
express the inverse of a non-zero vector. This is expressed by:

a−1 =
a
aa

=
a
‖a‖2

. (4.31)

4.2.2 dot and wedge products defined in terms of the geometric product

Given a definition of the geometric product in terms of the dot and wedge products, adding and
subtracting ab and ba demonstrates that the dot and wedge product of two vectors can also be
defined in terms of the geometric product

4.2.3 The dot product

a · b =
1
2

(ab + ba) (4.32)

This is the symmetric component of the geometric product. When two vectors are colinear
the geometric and dot products of those vectors are equal.

As a motivation for the dot product it is normal to show that this quantity occurs in the
solution of the length of a general triangle where the third side is the vector sum of the first and
second sides c = a + b.

‖c‖2 =
∑

i

(ai + bi)2 = ‖a‖2 + ‖b‖2 + 2
∑

i

aibi (4.33)

The last sum is then given the name the dot product and other properties of this quantity are
then shown (projection, angle between vectors, ...).

This can also be expressed using the geometric product

c2 = (a + b)(a + b) = a2 + b2 + (ab + ba) (4.34)

By comparison, the following equality exists

∑
i

aibi =
1
2

(ab + ba) (4.35)
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Without requiring expansion by components one can define the dot product exclusively in
terms of the geometric product due to its properties of contraction, distribution and associativity.
This is arguably a more natural way to define the geometric product. Addition of two similar
terms is not immediately required, especially since one of those terms is the wedge product
which may also be unfamiliar.

4.2.4 The wedge product

a∧ b =
1
2

(ab − ba) (4.36)

This is the antisymmetric component of the geometric product. When two vectors are orthog-
onal the geometric and wedge products of those vectors are equal.

Switching the order of the vectors negates this antisymmetric geometric product component,
and contraction property shows that this is zero if the vectors are equal. These are the defining
properties of the wedge product.

4.2.5 Note on symmetric and antisymmetric dot and wedge product formulas

A generalization of the dot product that allows computation of the component of a vector "in the
direction" of a plane (bivector), or other k-vectors can be found below. Since the signs change
depending on the grades of the terms being multiplied, care is required with the formulas above
to ensure that they are only used for a pair of vectors.

4.2.6 Reversing multiplication order. Dot and wedge products compared to the real and imag-
inary parts of a complex number

Reversing the order of multiplication of two vectors, has the effect of the inverting the sign of
just the wedge product term of the product.

It is not a coincidence that this is a similar operation to the conjugate operation of complex
numbers.

The reverse of a product is written in the following fashion

ba = (ab)† (4.37)

cba = (abc)† (4.38)
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Expressed this way the dot and wedge products are

a · b =
1
2

(ab + (ab)†) (4.39)

This is the symmetric component of the geometric product. When two vectors are colinear
the geometric and dot products of those vectors are equal.

a∧ b =
1
2

(ab − (ab)†) (4.40)

These symmetric and antisymmetric pairs, the dot and wedge products extract the scalar
and bivector components of a geometric product in the same fashion as the real and imagi-
nary components of a complex number are also extracted by its symmetric and antisymmetric
components

Re(z) =
1
2

(z + z) (4.41)

Im(z) =
1
2

(z − z) (4.42)

This extraction of components also applies to higher order geometric product terms. For
example

a∧ b∧ c =
1
2

(abc − (abc)†) =
1
2

(bca − (bca)†) =
1
2

(cab − (cab)†) (4.43)

4.2.7 Orthogonal decomposition of a vector

Using the Gram-Schmidt process a single vector can be decomposed into two components with
respect to a reference vector, namely the projection onto a unit vector in a reference direction,
and the difference between the vector and that projection.

With, û = u/‖u‖, the projection of v onto û is

Projû v = û(û · v) (4.44)

Orthogonal to that vector is the difference, designated the rejection,

v − û(û · v) =
1

‖u‖2
(‖u‖2v − u(u · v)) (4.45)
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The rejection can be expressed as a single geometric algebraic product in a few different ways

u
u2 (uv − u · v) =

1
u

(u∧ v) = û(û∧ v) = (v∧ û)û (4.46)

The similarity in form between between the projection and the rejection is notable. The sum
of these recovers the original vector

v = û(û · v) + û(û∧ v) (4.47)

Here the projection is in its customary vector form. An alternate formulation is possible that
puts the projection in a form that differs from the usual vector formulation

v =
1
u

(u · v) +
1
u

(u∧ v) = (v · u)
1
u

+ (v∧ u)
1
u

(4.48)

4.2.8 A quicker way to the end result

Working backwards from the end result, it can be observed that this orthogonal decomposition
result can in fact follow more directly from the definition of the geometric product itself.

v = ûûv = û(û · v + û∧ v) (4.49)

With this approach, the original geometrical consideration is not necessarily obvious, but it
is a much quicker way to get at the same algebraic result.

However, the hint that one can work backwards, coupled with the knowledge that the wedge
product can be used to solve sets of linear equations, 1 the problem of orthogonal decomposition
can be posed directly,

Let v = au + x, where u · x = 0. To discard the portions of v that are colinear with u, take the
wedge product

u∧ v = u∧ (au + x) = u∧ x (4.50)

Here the geometric product can be employed

u∧ v = u∧ x = ux − u · x = ux (4.51)

1 http://www.grassmannalgebra.info/grassmannalgebra/book/bookpdf/TheExteriorProduct.pdf
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Because the geometric product is invertible, this can be solved for x

x =
1
u

(u∧ v) (4.52)

The same techniques can be applied to similar problems, such as calculation of the component
of a vector in a plane and perpendicular to the plane.

4.2.9 Area of parallelogram spanned by two vectors

Figure 4.1: parallelogramArea

As depicted in fig. 4.1, one can see that the area of a parallelogram spanned by two vectors
is computed from the base times height. In the figure u was picked as the base, with length
‖u‖. Designating the second vector v, we want the component of v perpendicular to û for the
height. An orthogonal decomposition of v into directions parallel and perpendicular to û can be
performed in two ways.

v = vûû = (v · û)û + (v∧ û)û
= ûûv = û(û · v) + û(û∧ v)

(4.53)

The height is the length of the perpendicular component expressed using the wedge as either
û(û∧ v) or (v∧ û)û.
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Multiplying base times height we have the parallelogram area

A(u, v) = ‖u‖‖û(û∧ v)‖

= ‖û(u∧ v)‖
(4.54)

Since the squared length of an Euclidean vector is the geometric square of that vector, we can
compute the squared area of this parallogram by squaring this single scaled vector

A2 = (û(u∧ v))2 (4.55)

Utilizing both encodings of the perpendicular to û component of v computed above we have
for the squared area

A2 = (û(u∧ v))2

= ((v∧ u)û)(û(u∧ v))

= (v∧ u)(u∧ v)

(4.56)

Since u∧ v = −v∧ u, we have finally

A2 = −(u∧ v)2 (4.57)

There are a few things of note here. One is that the parallelogram area can easily be expressed
in terms of the square of a bivector. Another is that the square of a bivector has the same property
as a purely imaginary number, a negative square.

It can also be noted that a vector lying completely within a plane anticommutes with the
bivector for that plane. More generally components of vectors that lie within a plane commute
with the bivector for that plane while the perpendicular components of that vector commute.
These commutation or anticommutation properties depend both on the vector and the grade of
the object that one attempts to commute it with (these properties lie behind the generalized
definitions of the dot and wedge product to be seen later).

4.2.10 Expansion of a bivector and a vector rejection in terms of the standard basis

If a vector is factored directly into projective and rejective terms using the geometric product
v = 1

u (u · v + u∧ v), then it is not necessarily obvious that the rejection term, a product of vector
and bivector is even a vector. Expansion of the vector bivector product in terms of the standard
basis vectors has the following form
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Let

r =
1
u

(u∧ v) =
u
u2 (u∧ v) =

1

‖u‖2
u(u∧ v) (4.58)

It can be shown that

r =
1

‖u‖2
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣ (4.59)

(a result that can be shown more easily straight from r = v − û(û · v)).

The rejective term is perpendicular to u, since

∣∣∣∣∣∣∣ui u j

ui u j

∣∣∣∣∣∣∣ = 0 implies r · u = 0.

The magnitude of r, is

‖r‖2 = r · v =
1

‖u‖2
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.60)

.
So, the quantity

‖r‖2‖u‖2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(4.61)

is the squared area of the parallelogram formed by u and v.
It is also noteworthy that the bivector can be expressed as

u∧ v =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ ei ∧ e j (4.62)

.
Thus is it natural, if one considers each term ei ∧ e j as a basis vector of the bivector space, to

define the (squared) "length" of that bivector as the (squared) area.
Going back to the geometric product expression for the length of the rejection 1

u (u ∧ v) we
see that the length of the quotient, a vector, is in this case is the "length" of the bivector divided
by the length of the divisor.

This may not be a general result for the length of the product of two k-vectors, however it
is a result that may help build some intuition about the significance of the algebraic operations.
Namely,

When a vector is divided out of the plane (parallelogram span) formed from it and another
vector, what remains is the perpendicular component of the remaining vector, and its length is
the planar area divided by the length of the vector that was divided out.
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4.2.11 Projection and rejection of a vector onto and perpendicular to a plane

Like vector projection and rejection, higher dimensional analogs of that calculation are also
possible using the geometric product.

As an example, one can calculate the component of a vector perpendicular to a plane and the
projection of that vector onto the plane.

Let w = au + bv + x, where u · x = v · x = 0. As above, to discard the portions of w that are
colinear with u or u, take the wedge product

w∧ u∧ v = (au + bv + x)∧ u∧ v = x∧ u∧ v (4.63)

Having done this calculation with a vector projection, one can guess that this quantity equals
x(u∧ v). One can also guess there is a vector and bivector dot product like quantity such that the
allows the calculation of the component of a vector that is in the "direction of a plane". Both of
these guesses are correct, and the validating these facts is worthwhile. However, skipping ahead
slightly, this to be proved fact allows for a nice closed form solution of the vector component
outside of the plane:

x = (w∧ u∧ v)
1

u∧ v
=

1
u∧ v

(u∧ v∧w) (4.64)

Notice the similarities between this planar rejection result a the vector rejection result. To
calculation the component of a vector outside of a plane we take the volume spanned by three
vectors (trivector) and "divide out" the plane.

Independent of any use of the geometric product it can be shown that this rejection in terms
of the standard basis is

x =
1

(Au,v)2

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

ei e j ek

∣∣∣∣∣∣∣∣∣∣∣ (4.65)

Where

(Au,v)2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ = −(u∧ v)2 (4.66)

is the squared area of the parallelogram formed by u, and v.
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The (squared) magnitude of x is

‖x‖2 = x ·w =
1

(Au,v)2

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣
2

(4.67)

Thus, the (squared) volume of the parallelepiped (base area times perpendicular height) is

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣
2

(4.68)

Note the similarity in form to the w,u,v trivector itself

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣ei ∧ e j ∧ ek (4.69)

which, if you take the set of ei ∧ e j ∧ ek as a basis for the trivector space, suggests this is
the natural way to define the length of a trivector. Loosely speaking the length of a vector is a
length, length of a bivector is area, and the length of a trivector is volume.

4.2.12 Product of a vector and bivector. Defining the "dot product" of a plane and a vector

In order to justify the normal to a plane result above, a general examination of the product of a
vector and bivector is required. Namely,

w(u∧ v) =
∑
i, j<k

wiei

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣e j ∧ ek (4.70)

This has two parts, the vector part where i = j or i = k, and the trivector parts where no
indices equal. After some index summation trickery, and grouping terms and so forth, this is

w(u∧ v) =
∑
i< j

(wie j −w jei)

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣ + ∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
wi w j wk

ui u j uk

vi v j vk

∣∣∣∣∣∣∣∣∣∣∣ei ∧ e j ∧ ek (4.71)
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The trivector term is w ∧ u ∧ v. Expansion of (u ∧ v)w yields the same trivector term. This
is the completely symmetric part, and the vector term is negated. Like the geometric product
of two vectors, this geometric product can be grouped into symmetric and antisymmetric parts,
one of which is a pure k-vector. In analogy the antisymmetric part of this product can be called
a generalized dot product, and is roughly speaking the dot product of a "plane" (bivector), and
a vector.

The properties of this generalized dot product remain to be explored, but first here is a sum-
mary of the notation

w(u∧ v) = w · (u∧ v) + w∧ u∧ v (4.72)

(u∧ v)w = −w · (u∧ v) + w∧ u∧ v (4.73)

w∧ u∧ v =
1
2

(w(u∧ v) + (u∧ v)w) (4.74)

w · (u∧ v) =
1
2

(w(u∧ v) − (u∧ v)w) (4.75)

Let w = x + y, where x = au + bv, and y · u = y · v = 0. Expressing w and the u∧ v, products
in terms of these components is

w(u∧ v) = x(u∧ v) + y(u∧ v) = x · (u∧ v) + y · (u∧ v) + y∧ u∧ v (4.76)

With the conditions and definitions above, and some manipulation, it can be shown that the
term y · (u∧ v) = 0, which then justifies the previous solution of the normal to a plane problem.
Since the vector term of the vector bivector product the name dot product is zero when the
vector is perpendicular to the plane (bivector), and this vector, bivector "dot product" selects
only the components that are in the plane, so in analogy to the vector-vector dot product this
name itself is justified by more than the fact this is the non-wedge product term of the geometric
vector-bivector product.

4.2.13 Complex numbers

There is a one to one correspondence between the geometric product of two R2 vectors and the
field of complex numbers.
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Writing, a vector in terms of its components, and left multiplying by the unit vector e1 yields

Z = e1P = e1(xe1 + ye2) = x(1) + y(e1e2) = x(1) + y(e1 ∧ e2) (4.77)

The unit scalar and unit bivector pair 1, e1 ∧ e2 can be considered an alternate basis for a
two dimensional vector space. This alternate vector representation is closed with respect to the
geometric product

Z1Z2 = e1(x1e1 + y1e2)e1(x2e1 + y2e2)

= (x1 + y1e1e2)(x2 + y2e1e2)

= x1x2 + y1y2(e1e2)e1e2)

+(x1y2 + x2y1)e1e2

(4.78)

This closure can be observed after calculation of the square of the unit bivector above, a
quantity

(e1 ∧ e2)2 = e1e2e1e2 = −e1e1e2e2 = −1 (4.79)

that has the characteristics of the complex number i2 = −1.
This fact allows the simplification of the product above to

Z1Z2 = (x1x2 − y1y2) + (x1y2 + x2y1)(e1 ∧ e2) (4.80)

Thus what is traditionally the defining, and arguably arbitrary seeming, rule of complex num-
ber multiplication, is found to follow naturally from the higher order structure of the geometric
product, once that is applied to a two dimensional vector space.

It is also informative to examine how the length of a vector can be represented in terms of a
complex number. Taking the square of the length

P · P = (xe1 + ye2) · (xe1 + ye2)

= (e1Z)e1Z

= ((x − ye1e2)e1)e1Z

= (x − y(e1 ∧ e2))Z

(4.81)

This right multiplication of a vector with e1, is named the conjugate

Z = x − y(e1 ∧ e2) (4.82)
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And with that definition, the length of the original vector can be expressed as

P · P = ZZ (4.83)

This is also a natural definition of the length of a complex number, given the fact that the
complex numbers can be considered an isomorphism with the two dimensional Euclidean vector
space.

4.2.14 Rotation in an arbitrarily oriented plane

A point P, of radius r, located at an angle θ from the vector û in the direction from u to v, can
be expressed as

P = r(û cos θ +
û(û∧ v)
‖û(û∧ v)‖

sin θ) = rû(cos θ +
(u∧ v)
‖û(u∧ v)‖

sin θ) (4.84)

Writing Iu,v = u∧v
‖û(u∧v)‖ , the square of this bivector has the property Iu,v

2 = −1 of the imaginary
unit complex number.

This allows the point to be specified as a complex exponential

= ûr(cos θ + Iu,v sin θ) = ûr exp(Iu,vθ) (4.85)

Complex numbers could be expressed in terms of the R2unit bivector e1 ∧ e2. However this
isomorphism really only requires a pair of linearly independent vectors in a plane (of arbitrary
dimension).

4.2.15 Quaternions

Similar to complex numbers the geometric product of two R3 vectors can be used to define
quaternions. Pre and Post multiplication with e1e2e3 can be used to express a vector in terms of
the quaternion unit numbers i, j, k, as well as describe all the properties of those numbers.

4.2.16 Cross product as outer product

Cross product can be written as a scaled outer product

a × b = −i(a∧ b) (4.86)
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i2 = (e1e2e3)2

= e1e2e3e1e2e3

= −e1e2e1e3e2e3

= e1e1e2e3e2e3

= −e3e2e2e3

= −1

(4.87)

The equivalence of the R3 cross product and the wedge product expression above can be
confirmed by direct multiplication of −i = −e1e2e3 with a determinant expansion of the wedge
product

u∧ v =
∑

1<=i< j<=3

(uiv j − viu j)ei ∧ e j =
∑

1<=i< j<=3

(uiv j − viu j)eie j (4.88)
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C R A M E R ’ S RU L E

5.1 cramer’s rule , determinants , and matrix inversion can be naturally ex-
pressed in terms of the wedge product

The use of the wedge product in the solution of linear equations can be quite useful.
This does not require any notion of geometric algebra, only an exterior product and the con-

cept of similar elements, and a nice example of such a treatment can be found in Solution of
Linear equations section of [4].

Traditionally, instead of using the wedge product, Cramer’s rule is usually presented as a
generic algorithm that can be used to solve linear equations of the form Ax = b (or equivalently
to invert a matrix). Namely

x =
1
|A|

adj(A) (5.1)

This is a useful theoretic result. For numerical problems row reduction with pivots and other
methods are more stable and efficient.

When the wedge product is coupled with the Clifford product and put into a natural geometric
context, the fact that the determinants are used in the expression of RN parallelogram area and
parallelepiped volumes (and higher dimensional generalizations of these) also comes as a nice
side effect.

As is also shown below, results such as Cramer’s rule also follow directly from the property
of the wedge product that it selects non identical elements. The end result is then simple enough
that it could be derived easily if required instead of having to remember or look up a rule.

5.1.1 Two variables example

[
a b

] x

y

 = ax + by = c (5.2)

Pre and post multiplying by a and b.

(ax + by)∧ b = (a∧ b)x = c∧ b (5.3)
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a∧ (ax + by) = (a∧ b)y = a∧ c (5.4)

Provided a∧ b , 0 the solution is

x

y

 =
1

a∧ b

c∧ b
a∧ c

 (5.5)

For a,b ∈ R2, this is Cramer’s rule since the e1 ∧ e2 factors of the wedge products

u∧ v =

∣∣∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣∣∣ e1 ∧ e2 (5.6)

divide out.
Similarly, for three, or N variables, the same ideas hold

[
a b c

] 
x

y

z

 = d (5.7)


x

y

z

 =
1

a∧ b∧ c


d∧ b∧ c
a∧ d∧ c
a∧ b∧ d

 (5.8)

Again, for the three variable three equation case this is Cramer’s rule since the e1 ∧ e2 ∧ e3

factors of all the wedge products divide out, leaving the familiar determinants.

5.1.2 A numeric example

When there are more equations than variables case, if the equations have a solution, each of the
k-vector quotients will be scalars

To illustrate here is the solution of a simple example with three equations and two unknowns.


1

1

0

 x +


1

1

1

 y =


1

1

2

 (5.9)
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The right wedge product with (1, 1, 1) solves for x


1

1

0

∧

1

1

1

 x =


1

1

2

∧

1

1

1

 (5.10)

and a left wedge product with (1, 1, 0) solves for y


1

1

0

∧

1

1

1

 y =


1

1

0

∧

1

1

2

 (5.11)

Observe that both of these equations have the same factor, so one can compute this only once
(if this was zero it would indicate the system of equations has no solution).

Collection of results for x and y yields a Cramer’s rule like form (writing ei ∧ e j = ei j):

x

y

 =
1

(1, 1, 0)∧ (1, 1, 1)

(1, 1, 2)∧ (1, 1, 1)

(1, 1, 0)∧ (1, 1, 2)

 =
1

e13 + e23

−e13 − e23

2e13 + 2e23

 =

−1

2

 (5.12)





6
T O R Q U E

Torque is generally defined as the magnitude of the perpendicular force component times dis-
tance, or work per unit angle.

Suppose a circular path in an arbitrary plane containing orthonormal vectors û and v̂ is
parametrized by angle.

r = r(û cos θ + v̂ sin θ) = rû(cos θ + ûv̂ sin θ) (6.1)

By designating the unit bivector of this plane as the imaginary number

i = ûv̂ = û∧ v̂ (6.2)

i2 = −1 (6.3)

this path vector can be conveniently written in complex exponential form

r = rûeiθ (6.4)

and the derivative with respect to angle is

dr
dθ

= rûieiθ = ri (6.5)

So the torque, the rate of change of work W, due to a force F, is

τ =
dW
dθ

= F ·
dr
dθ

= F · (ri) (6.6)

Unlike the cross product description of torque, τ = r × F no vector in a normal direction
had to be introduced, a normal that does not exist in two dimensions or in greater than three
dimensions. The unit bivector describes the plane and the orientation of the rotation, and the
sense of the rotation is relative to the angle between the vectors û and v̂.
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6.1 expanding the result in terms of components

At a glance this does not appear much like the familiar torque as a determinant or cross product,
but this can be expanded to demonstrate its equivalence. Note that the cross product is hiding
there in the bivector i = û∧ v̂. Expanding the position vector in terms of the planar unit vectors

ri = (ruû + rvv̂) ûv̂ = ruv̂ − rvû (6.7)

and expanding the force by components in the same direction plus the possible perpendicular
remainder term

F = Fuû + Fvv̂ + F⊥û,v̂ (6.8)

and then taking dot products yields is the torque

τ = F · (ri) = ruFv − rvFu (6.9)

This determinant may be familiar from derivations with û = e1, and v̂ = e2 (See the Feynman
lectures Volume I for example).

6.2 geometrical description

When the magnitude of the "rotational arm" is factored out, the torque can be written as

τ = F · (ri) = |r|(F · (r̂i)) (6.10)

The vector r̂i is the unit vector perpendicular to the r. Thus the torque can also be described
as the product of the magnitude of the rotational arm times the component of the force that is
in the direction of the rotation (ie: the work done rotating something depends on length of the
lever, and the size of the useful part of the force pushing on it).

6.3 slight generalization . application of the force to a lever not in the plane

If the rotational arm that the force is applied to is not in the plane of rotation then only the
components of the lever arm direction and the component of the force that are in the plane will
contribute to the work done. The calculation above was general with respect to the direction
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of the force, so to generalize it for an arbitrarily oriented lever arm, the quantity r needs to be
replaced by the projection of r onto the plane of rotation.

That component in the plane (bivector) i can be described with the geometric product nicely

ri = (r · i)
1
i

= −(r · i)i (6.11)

Thus, the vector with this magnitude that is perpendicular to this in the plane of the rotation
is

rii = −(r · i)i2 = (r · i) (6.12)

So, the most general for torque for rotation constrained to the plane i is:

τ = F · (r · i) (6.13)

This makes sense when once considers that only the dot product part of ri = r · i + r ∧ i
contributes to the component of r in the plane, and when the lever is in the rotational plane this
wedge product component of ri is zero.

6.4 expressing torque as a bivector

The general expression for torque for a rotation constrained to a plane has been found to be:

τ = F · (r · i) (6.14)

We have an expectation that torque should have a form similar to the traditional vector torque

τ = r × F = −i3(r∧ F) (6.15)

Note that here i3 = e1e2e3 is the unit pseudoscalar for R3, not the unit bivector for the
rotational plane. We should be able to express torque in a form related to r∧ F, but modified in
a fashion that results in a scalar value.

When the rotation is not constrained to a specific plane the motion will be in

i =
r̂∧ r′

‖r̂∧ r′‖
(6.16)
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The lever arm component in this plane is

r · i =
1
2

(ri − ir)

=
1

2‖r̂∧ r′‖
(r(r̂∧ r′) − (r̂∧ r′)r)

=
1

‖r̂∧ r′‖
r(r̂∧ r′)

(6.17)

So the torque in this natural plane of rotation is

τ = F · (r · i)

=
1

‖r̂∧ r′‖
F · (r(r̂∧ r′))

=
1

2‖r̂∧ r′‖
(Fr(r̂∧ r′) + (r′ ∧ r̂)rF)

=
1
2

(Fri + (Fri)†) =
1
2

(irF + (irF)†)

= 〈irF〉0

(6.18)

The torque is the scalar part of i(rF).

τ = 〈i(r · F + r∧ F)〉0 (6.19)

Since the bivector scalar product i(r · F) here contributes only a bivector part the scalar part
comes only from the i(r ∧ F) component, and one can write the torque in a fashion that is very
similar to the vector cross product torque. Here is both for comparison

τ = 〈i(r∧ F)〉0
τ = −i3(r∧ F)

(6.20)

Note again that i here is the unit bivector for the plane of rotation and not the unit 3D pseu-
doscalar i3.

6.5 plane common to force and vector

Physical intuition provides one further way to express this. Namely, the unit bivector for the
rotational plane should also be in the plane common to F and r

i =
F∧ r√
−(F∧ r)2

(6.21)
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So the torque is

τ =
1√

−(F∧ r)2
〈(F∧ r)(r∧ F)〉0

=
1√

−(F∧ r)2
(F∧ r)(r∧ F)

=
−(r∧ F)2√
−(r∧ F)2

=
√
−(r∧ F)2

= ‖r∧ F‖

(6.22)

Above the 〈· · ·〉0 could be dropped because the quantity has only a scalar part. The fact that
the sign of the square root can be either plus or minus follows from the fact that the orientation
of the unit bivector in the r, F plane has two possibilities. The positive root selection here is due
to the orientation picked for i.

For comparison, this can also be expressed with the cross product:

τ =
√
−(r∧ F)2

=
√
−(r∧ F)(r∧ F)

=
√
−((r × F)i3)(i3(r × F))

=
√

(r × F)2

= ‖r × F‖
= ‖τ‖

(6.23)

6.6 torque as a bivector

It is natural to drop the magnitude in the torque expression and name the bivector quantity

r∧ F (6.24)

This defines both the plane of rotation (when that rotation is unconstrained) and the orienta-
tion of the rotation, since inverting either the force or the arm position will invert the rotational
direction.

When examining the general equations for motion of a particle of fixed mass we will see this
quantity again related to the non-radial component of that particles acceleration. Thus we define
a torque bivector

τ = r∧ F (6.25)
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The magnitude of this bivector is our scalar torque, the rate of change of work on the object
with respect to the angle of rotation.



7
D E R I VAT I V E S O F A U N I T V E C T O R

7.1 first derivative of a unit vector

7.1.1 Expressed with the cross product

It can be shown that a unit vector derivative can be expressed using the cross product. Two cross
product operations are required to get the result back into the plane of the rotation, since a unit
vector is constrained to circular (really perpendicular to itself) motion.

d
dt

(
r
‖r‖

)
=

1

‖r‖3

(
r ×

dr
dt

)
× r =

(
r̂ ×

1
‖r‖

dr
dt

)
× r̂ (7.1)

This derivative is the rejective component of dr
dt with respect to r̂, but is scaled by 1/‖r‖.

How to calculate this result can be found in other places, such as [38].

7.2 equivalent result utilizing the geometric product

The equivalent geometric product result can be obtained by calculating the derivative of a vector
r = rr̂.

dr
dt

= r
dr̂
dt

+ r̂
dr
dt

(7.2)

7.2.1 Taking dot products

One trick is required first (as was also the case in the Salus and Hille derivation), which is
expressing dr

dt via the dot product.

d(r2)
dt

= 2r
dr
dt

d(r · r)
dt

= 2r ·
dr
dt

(7.3)
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Thus,

dr
dt

= r̂ ·
dr
dt

(7.4)

Taking dot products of the derivative above yields

r̂ ·
dr
dt

= r̂ · r
dr̂
dt

+ r̂ · r̂
dr
dt

= r ·
dr̂
dt

+
dr
dt

= r ·
dr̂
dt

+ r̂ ·
dr
dt

(7.5)

=⇒ r ·
dr̂
dt

= 0 (7.6)

One could alternatively prove this with a diagram.

7.2.2 Taking wedge products

As in linear equation solution, the r̂ component can be eliminated by taking a wedge product

r̂∧
dr
dt

= r̂∧ r
dr̂
dt

+ r̂∧ r̂
dr
dt

= rr̂∧
dr̂
dt

= r∧
dr̂
dt

= r∧
dr̂
dt

+ r ·
dr̂
dt

= r
dr̂
dt

(7.7)

This allows expression of dr̂
dt in terms of dr

dt in various ways (compare to the cross product
results above)

dr̂
dt

=
1
r

(
r̂∧

dr
dt

)
=

1
‖r‖

r̂
(
r̂∧

dr
dt

)
=

1
‖r‖

(
dr
dt
− r̂(r̂ ·

dr
dt

)
) (7.8)
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Thus this derivative is the component of 1
‖r‖

dr
dt in the direction perpendicular to r.

7.2.3 Another view

When the objective is not comparing to the cross product, it is also notable that this unit vector
derivative can be written

r
dr̂
dt

= r̂∧
dr
dt

(7.9)
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R A D I A L C O M P O N E N T S O F V E C T O R D E R I VAT I V E S

8.1 first derivative of a radially expressed vector

Having calculated the derivative of a unit vector, the total derivative of a radially expressed
vector can be calculated

(rr̂)′ = r′r̂ + rr̂′

= r′r̂ + r̂(r̂∧ r′)
(8.1)

There are two components. One is in the r̂ direction (linear component) and the other perpen-
dicular to that (a rotational component) in the direction of the rejection of r̂ from r′.

8.2 second derivative of a vector

Taking second derivatives of a radially expressed vector, we have

(rr̂)′′ = (r′r̂ + rr̂′)′

= r′′r̂ + r′r̂′ + (rr̂′)′

= r′′r̂ + (r′/r)r̂(r̂∧ r′) + (rr̂′)′
(8.2)

Expanding the last term takes a bit more work

(rr̂′)′ = (r̂(r̂∧ r′))′

= r̂′(r̂∧ r′) + r̂(r̂′ ∧ r′) + r̂(r̂∧ r′′)
= (1/r)(r̂(r̂∧ r′))(r̂∧ r′) + r̂(r̂′ ∧ r′) + r̂(r̂∧ r′′)
= (1/r)r̂(r̂∧ r′)2 + r̂(r̂′ ∧ r′) + r̂(r̂∧ r′′)

(8.3)
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There are three terms to this. One a scalar (negative) multiple of r̂, and another, the rejection
of r̂ from r′′. The middle term here remains to be expanded. In particular,

r̂′ ∧ r′ = r̂′ ∧ (rr̂′ + r′r̂)

= r′r̂′ ∧ r̂
= r′/2(r̂′r̂ − r̂r̂′)
= r′/2r((r′ ∧ r̂)r̂r̂ − r̂r̂(r̂∧ r′))
= r′/2r(r′ ∧ r̂ − r̂∧ r′)
= −(r′/r)r̂∧ r′

(8.4)

=⇒ (rr̂′)′ = (1/r)r̂(r̂∧ r′)2 − (r′/r)r̂(r̂∧ r′) + r̂(r̂∧ r′′) (8.5)

=⇒ (rr̂)′′ = r′′r̂ + (r′/r)r̂(r̂∧ r′) + (1/r)r̂(r̂∧ r′)2 − (r′/r)r̂(r̂∧ r′) + r̂(r̂∧ r′′)
= r′′r̂ + (1/r)r̂(r̂∧ r′)2 + r̂(r̂∧ r′′)

= r̂
(
r′′ + (1/r)(r̂∧ r′)2

)
+ r̂(r̂∧ r′′)

(8.6)

There are two terms here that are in the r̂ direction (the bivector square is a negative scalar),
and one rejective term in the direction of the component perpendicular to r̂ relative to r′′.



9
ROTAT I O NA L DY NA M I C S

9.1 ga introduction of angular velocity

By taking the first derivative of a radially expressed vector we have the velocity

v = r′r̂ + r̂(r̂∧ r′) = r̂(vr + r̂∧ v) (9.1)

Or,

r̂v = vr + r̂∧ v (9.2)

r̂v = vr + (1/r)r∧ v (9.3)

Put this way, the earlier calculus exercise to derive this seems a bit silly, since it is probably
clear that vr = r̂ · v.

Anyways, let us work with velocity expressed this way in a few ways.

9.1.1 Speed in terms of linear and rotational components

|v|2 = v2
r + (r̂(r̂∧ v))2 (9.4)

And,

(r̂(r̂∧ v))2 = (v∧ r̂)r̂r̂(r̂∧ v)

= (v∧ r̂)(r̂∧ v)

= −(r̂∧ v)2

= |r̂∧ v|2

(9.5)

=⇒ |v|2 = v2
r + |r̂∧ v|2

= v2
r + |r̂∧ v|2

(9.6)
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So, we can assign a physical significance to the bivector.

|r̂∧ v| = |v⊥| (9.7)

The bivector |r̂∧ v| has the magnitude of the non-radial component of the velocity. This
equals the magnitude of the component of the velocity perpendicular to its radial component
(ie: the angular component of the velocity).

9.1.2 angular velocity. Prep

Because |r̂∧ v| is the non-radial velocity component, for small angles v⊥/r will equal the angle
between the vector and its displacement.

This allows for the calculation of the rate of change of that angle with time, what it called the
scalar angular velocity (dimensions are 1/t not x/t). This can be done by taking the sin as the
ratio of the length of the non-radial component of the delta to the length of the displaced vector.

sin dθ =
|r̂(r̂∧ dr)|
|r + dr|

(9.8)

With dr = dr
dt dt = vdt, the angular velocity is

sin dθ =
1

|r + vdt|
|r̂(r̂∧ v)dt|

=
1

|r + vdt|
|(r̂∧ v)dt|

sin dθ
|dt|

=
1

|r + vdt|
|r̂∧ v|

=
1

|r||r + vdt|
|r∧ v|

(9.9)

In the limit, taking dt > 0, this is

ω =
dθ
dt

=
1
r2 |r∧ v| (9.10)
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9.1.3 angular velocity. Summarizing

Here is a summary of calculations so far involving the r∧ v bivector

v = r̂vr +
r̂
|r|

(r∧ v)

dr̂
dt

=
r̂
r2 (r∧ v)

|v⊥| =
1
|r|
|r∧ v|

ω =
dθ
dt

=
1
r2 |r∧ v|

(9.11)

It makes sense to give the bivector a name. Given its magnitude the angular velocity bivector
ω is designated

ω =
r∧ v

r2 (9.12)

So the linear and rotational components of the velocity can thus be expressed in terms of this,
as can our unit vector derivative, scalar angular velocity, and perpendicular velocity magnitude:

ω =
dθ
dt

= |ω|

v = r̂vr + rω
= r̂(vr + rω)

dr̂
dt

= r̂ω

|v⊥| = r|ω|

(9.13)

This is similar to the vector angular velocity (ω = (r× v)/r2), but instead of lying perpendic-
ular to the plane of rotation, it defines the plane of rotation (for a vector a, a ∧ω is zero if the
vector is in the plane and non-zero if the vector has a component outside of the plane).

9.1.4 Explicit perpendicular unit vector

If one introduces a unit vector θ̂ in the direction of rejection of r from dr, the total velocity takes
the symmetrical form

v = vrr̂ + rωθ̂

=
dr
dt

r̂ + r
dθ
dt
θ̂

(9.14)
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9.1.5 acceleration in terms of angular velocity bivector

Taking derivatives of velocity, one can with a bit of work, express acceleration in terms of radial
and non-radial components

a = (r̂vr + rω)′

= r̂′vr + r̂v′r + r′ω + rω′

= r̂ωvr + r̂v′r + r′ω + rω′

= r̂ωvr + r̂ar + vω + rω′

(9.15)

But,

ω′ = ((1/r2)(r∧ v))′

= (−2/r3)r′(r∧ v) + (1/r2)(v∧ v + r∧ a)

= −(2/r)vrω + (1/r2)(r∧ a)

(9.16)

So,

a = r̂ar − r̂ωvr + vω + r̂(r̂∧ a)

= r̂ar − (v − rω)ω + vω + r̂(r̂∧ a)

= r̂ar + rω2 + r̂(r̂∧ a)

= r̂(ar + rω2) + r̂(r̂∧ a)

(9.17)

Note that ω2 is a negative scalar, so as normal writing ‖ω‖2 = −ω2, we have acceleration in
a fashion similar to the traditional cross product form:

a = r̂(ar − r‖ω‖2) + r̂(r̂∧ a)

= r̂(ar − r‖ω‖2 + r̂∧ a)
(9.18)

In the traditional representation, this last term, the non-radial acceleration component, is often
expressed as a derivative.

In terms of the wedge product, this can be done by noting that

(r∧ v)′ = v∧ v + r∧ a = r∧ a (9.19)
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a = r̂(ar − r‖ω‖2) +
r
r2 (r∧ v)′)

= r̂(ar − r‖ω‖2) +
1
r

d(r2ω)
dt

(9.20)

Expressed in terms of force (for constant mass) this is

F = ma

= r̂(mar) + (mr)ω2 +
1
r

d(mr2ω)
dt

= Fr + (mr)ω2 +
1
r

d(mr2ω)
dt

(9.21)

Alternately, the non-radial term can be expressed in terms of torque

r̂(r̂∧ a) = r̂(r̂∧ma)

=
r
r2 (r∧ F)

=
1
r

(r∧ F)

=
1
r
τ

(9.22)

Thus the torque bivector, which in magnitude was the angular derivative of the work done by
the force ‖τ‖ = τ = dW

dθ = F · dr
dθ is also expressible as a time derivative

τ =
d(mr2ω)

dt

=
d(mr∧ v)

dt

=
d(r∧mv)

dt

=
d(r∧ p)

dt

(9.23)

This bivector mr2ω = r∧ p is called the angular momentum, designated J. It is related to the
total momentum as follows

p = r̂(r̂ · p) +
1
r

J (9.24)
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So the total force is

F = Fr + mrω2 +
1
r

dJ
dt

(9.25)

Observe that for a purely radial (ie: central) force, we must have dJ
dt = 0 so, the angular

momentum must be constant.

9.1.6 Kepler’s laws example

This follows the [38] treatment, modified for the GA notation.
Consider the gravitational force

ma = −G
mM
r2 r̂

a = −GM
r̂
r2 = −ρ

r̂
r2

(9.26)

Or,

r̂
r2 = −

1
ρ

dv
dt

(9.27)

The unit vector derivative is

dr̂
dt

=
r̂
r

(r̂∧ v)

=
r̂
r2

J
m

= −
1

mρ
dv
dt

J

=
d(− 1

mρvJ)

dt

(9.28)

The last because J, m, and ρ are all constant.
Before continuing, let us examine this funny vector bivector product term. In general a vector

bivector product will have vector and trivector parts, but the differential equation implies that
this is a vector. Let us confirm this

vJ = v(r∧mv)

= (mv2)v̂(r∧ v̂)

= −(mv2)v̂(v̂∧ r)

(9.29)
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So, this is in fact a vector, it is the rejective component of r from the direction of v̂ scaled by
−mv2. We can also calculate the product Jv from this:

vJ = −(mv2)v̂(v̂∧ r)

= −(mv2)(r∧ v̂)v̂
= −(r∧mv)v
= −Jv

(9.30)

This antisymetrical result vJ = −Jv is actually the defining property of the vector bivector
“dot product” (unlike the vector dot product which is the symmetrical parts). This vector bivector
dot product selects the vector component, leaving the trivector part. Since v lies completely in
the plane of the angular velocity bivector v∧ J = 0 in this case.

Anyways, back to the problem, integrating with respect to time, and introducing a vector
integration constant e we have

r̂ +
1

mρ
vJ = e (9.31)

Multiplying by r

r +
1

mρ
rvJ = re

r +
1

m2ρ
(r · p + J)J = r · e + r∧ e

(9.32)

This results in three equations, one for each of the scalar, vector, and bivector parts

r +
J2

m2ρ
= r · e

1
mρ

(r · v)J = 0

r∧ e = 0

(9.33)

The first of these equations is the result from Salas and Hille (integration constant differs in
sign though).

r −
J2

m2ρ
= r · e (9.34)
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9.1.7 Circular motion

For circular motion vr = ar = 0, so:

v = rω (9.35)

a = r̂
(
−

v2

r
+ r̂∧ a

)
(9.36)

For constant circular motion:

a = vω + rω′

= vω + r(0)

= r(ω)2

= −r|ω|2

(9.37)

ie: the r̂(r̂∧ a) term is zero... all acceleration is inwards.
Can also expand this in terms of r and v:

a = r (ω)2

= r
(
1
r

v
)2

= −r
(
v

1
r

1
r

v
)

= −r
(
v2

r2

)
= −

1
r

v2

(9.38)
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B I V E C T O R G E O M E T RY

10.1 motivation

Consider the derivative of a vector parametrized bivector square such as

d
dλ

(x∧ k)2 =

(
dx
dλ
∧ k

)
(x∧ k) + (x∧ k)

(
dx
dλ
∧ k

)
(10.1)

where k is constant. In this case, the left hand side is a scalar so the right hand side, this
symmetric product of bivectors must also be a scalar. In the more general case, do we have any
reason to assume a symmetric bivector product is a scalar as is the case for the symmetric vector
product?

Here this question is considered, and examination of products of intersecting bivectors is
examined. We take intersecting bivectors to mean that there a common vector (k above) can
be factored from both of the two bivectors, leaving a vector remainder. Since all non copla-
nar bivectors in R3 intersect this examination will cover the important special case of three
dimensional plane geometry.

A result of this examination is that many of the concepts familiar from vector geometry such
as orthogonality, projection, and rejection will have direct bivector equivalents.

General bivector geometry, in spaces where non-coplanar bivectors do not necessarily inter-
sect (such as in R4) is also considered. Some of the results require plane intersection, or become
simpler in such circumstances. This will be pointed out when appropriate.

10.2 components of grade two multivector product

The geometric product of two bivectors can be written:

AB = 〈AB〉0 + 〈AB〉2 + 〈AB〉4 = A ·B + 〈AB〉2 + A∧B (10.2)

BA = 〈BA〉0 + 〈BA〉2 + 〈BA〉4 = B ·A + 〈BA〉2 + B∧A (10.3)

Because we have three terms involved, unlike the vector dot and wedge product we cannot
generally separate these terms by symmetric and antisymmetric parts. However forming those

73
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sums will still worthwhile, especially for the case of intersecting bivectors since the last term
will be zero in that case.

10.2.1 Sign change of each grade term with commutation

Starting with the last term we can first observe that

A∧B = B∧A (10.4)

To show this let A = a∧ b, and B = c∧ d. When
A∧B , 0, one can write:

A∧B = a∧ b∧ c∧ d
= −b∧ c∧ d∧ a
= c∧ d∧ a∧ b
= B∧A

(10.5)

To see how the signs of the remaining two terms vary with commutation form:

(A + B)2 = (A + B)(A + B)

= A2 + B2 + AB + BA
(10.6)

When A and B intersect we can write A = a∧ x, and B = b∧ x, thus the sum is a bivector

(A + B) = (a + b)∧ x (10.7)

And so, the square of the two is a scalar. When A and B have only non intersecting compo-
nents, such as the grade two R4 multivector e12 + e34, the square of this sum will have both
grade four and scalar parts.

Since the LHS = RHS, and the grades of the two also must be the same. This implies that the
quantity

AB + BA = A ·B + B ·A + 〈AB〉2 + 〈BA〉2 + A∧B + B∧A (10.8)

is a scalar ⇐⇒ A + B is a bivector, and in general has scalar and grade four terms. Because
this symmetric sum has no grade two terms, regardless of whether A, and B intersect, we have:

〈AB〉2 + 〈BA〉2 = 0 (10.9)
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=⇒ 〈AB〉2 = −〈BA〉2 (10.10)

One would intuitively expect A · B = B ·A. This can be demonstrated by forming the com-
plete symmetric sum

AB + BA = A ·B + B ·A + 〈AB〉2 + 〈BA〉2 + A∧B + B∧A
= A ·B + B ·A + 〈AB〉2 − 〈AB〉2 + A∧B + A∧B
= A ·B + B ·A + 2A∧B

(10.11)

The LHS commutes with interchange of A and B, as does A∧B. So for the RHS to also
commute, the remaining grade 0 term must also:

A ·B = B ·A (10.12)

10.2.2 Dot, wedge and grade two terms of bivector product

Collecting the results of the previous section and substituting back into eq. (10.2) we have:

A ·B =

〈
AB + BA

2

〉
0

(10.13)

〈AB〉2 =
AB −BA

2
(10.14)

A∧B =

〈
AB + BA

2

〉
4

(10.15)

When these intersect in a line the wedge term is zero, so for that special case we can write:

A ·B =
AB + BA

2

〈AB〉2 =
AB −BA

2

A∧B = 0

(note that this is always the case for R3).
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10.3 intersection of planes

Starting with two planes specified parametrically, each in terms of two direction vectors and a
point on the plane:

x = p + αu + βv
y = q + aw + bz

(10.16)

If these intersect then all points on the line must satisfy x = y, so the solution requires:

p + αu + βv = q + aw + bz (10.17)

=⇒ (p + αu + βv)∧w∧ z = (q + aw + bz)∧w∧ z = q∧w∧ z (10.18)

Rearranging for β, and writing B = w∧ z:

β =
q∧B − (p + αu)∧B

v∧B
(10.19)

Note that when the solution exists the left vs right order of the division by v ∧ B should not
matter since the numerator will be proportional to this bivector (or else the β would not be a
scalar).

Substitution of β back into x = p +αu +βv (all points in the first plane) gives you a parametric
equation for a line:

x = p +
(q − p)∧B

v∧B
v + α

1
v∧B

((v∧B)u − (u∧B)v) (10.20)

Where a point on the line is:

p +
(q − p)∧B

v∧B
v (10.21)

And a direction vector for the line is:

1
v∧B

((v∧B)u − (u∧B)v) (10.22)
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∝ (v∧B)2u − (v∧B)(u∧B)v (10.23)

Now, this result is only valid if v∧B , 0 (ie: line of intersection is not directed along v), but
if that is the case the second form will be zero. Thus we can add the results (or any non-zero
linear combination of) allowing for either of u, or v to be directed along the line of intersection:

a
(
(v∧B)2u − (v∧B)(u∧B)v

)
+ b

(
(u∧B)2v − (u∧B)(v∧B)u

)
(10.24)

Alternately, one could formulate this in terms of A = u ∧ v, w, and z. Is there a more sym-
metrical form for this direction vector?

10.3.1 Vector along line of intersection in R3

For R3 one can solve the intersection problem using the normals to the planes. For simplicity
put the origin on the line of intersection (and all planes through a common point in R3 have at
least a line of intersection). In this case, for bivectors A and B, normals to those planes are iA,
and iB respectively. The plane through both of those normals is:

(iA)∧ (iB) =
(iA)(iB) − (iB)(iA)

2
=

BA −AB
2

= 〈BA〉2 (10.25)

The normal to this plane

i〈BA〉2 (10.26)

is directed along the line of intersection. This result is more appealing than the general RN

result of eq. (10.24), not just because it is simpler, but also because it is a function of only the
bivectors for the planes, without a requirement to find or calculate two specific independent
direction vectors in one of the planes.

10.3.2 Applying this result to RN

If you reject the component of A from B for two intersecting bivectors:

RejA(B) =
1
A
〈AB〉2 (10.27)
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the line of intersection remains the same ... that operation rotates B so that the two are mu-
tually perpendicular. This essentially reduces the problem to that of the three dimensional case,
so the solution has to be of the same form... you just need to calculate a “pseudoscalar” (what
you are calling the join), for the subspace spanned by the two bivectors.

That can be computed by taking any direction vector that is on one plane, but is not in the
second. For example, pick a vector u in the plane A that is not on the intersection of A and B.
In mathese that is u = 1

A (A · u) (or u ∧A = 0), where u ∧ B , 0. Thus a pseudoscalar for this
subspace is:

i =
u∧B
|u∧B|

(10.28)

To calculate the direction vector along the intersection we do not care about the scaling above.
Also note that provided u has a component in the plane A, u ·A is also in the plane (it is rotated
π/2 from 1

A (A · u).
Thus, provided that u ·A is not on the intersection, a scaled “pseudoscalar” for the subspace

can be calculated by taking from any vector u with a component in the plane A:

i ∝ (u ·A)∧B (10.29)

Thus a vector along the intersection is:

d = ((u ·A)∧B)〈AB〉2 (10.30)

Interchange of A and B in either the trivector or bivector terms above would also work.
Without showing the steps one can write the complete parametric solution of the line through

the planes of equations eq. (10.16) in terms of this direction vector:

x = p +

(
(q − p)∧B
(d ·A)∧B

)
(d ·A) + αd (10.31)

Since (d · A) , 0 and (d · A) ∧ B , 0 (unless A and B are coplanar), observe that this is a
natural generator of the pseudoscalar for the subspace, and as such shows up in the expression
above.

Also observe the non-coincidental similarity of the q − p term to Cramer’s rule (a ration of
determinants).
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10.4 components of a grade two multivector

The procedure to calculate projections and rejections of planes onto planes is similar to a vector
projection onto a space.

To arrive at that result we can consider the product of a grade two multivector A with a
bivector B and its inverse ( the restriction that B be a bivector, a grade two multivector that can
be written as a wedge product of two vectors, is required for general invertability).

A
1
B

B =

(
A ·

1
B

+

〈
A

1
B

〉
2

+ A∧
1
B

)
B

= A ·
1
B

B

+

〈
A

1
B

〉
2
·B +

〈〈
A

1
B

〉
2
B
〉

2
+

〈
A

1
B

〉
2
∧B

+

(
A∧

1
B

)
·B +

〈
A∧

1
B

B
〉

4
+ A∧

1
B
∧B

(10.32)

Since 1
B = − B

|B|2
, this implies that the 6-grade term A ∧ 1

B ∧ B is zero. Since the LHS has
grade 2, this implies that the 0-grade and 4-grade terms are zero (also independently implies
that the 6-grade term is zero). This leaves:

A = A ·
1
B

B +

〈〈
A

1
B

〉
2
B
〉

2
+

(
A∧

1
B

)
·B (10.33)

This could be written somewhat more symmetrically as

A =
∑

i=0,2,4

〈〈
A

1
B

〉
i
B
〉

2

=

〈〈
A

1
B

〉
B +

〈
A

1
B

〉
2
B +

〈
A

1
B

〉
4
B
〉

2

(10.34)

This is also a more direct way to derive the result in retrospect.
Looking at eq. (10.33) we have three terms. The first is

A ·
1
B

B (10.35)

This is the component of A that lies in the plane B (the projection of A onto B).
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The next is〈〈
A

1
B

〉
2
B
〉

2
(10.36)

If B and A have any intersecting components, this is the components of A from the intersec-
tion that are perpendicular to B with respect to the bivector dot product. ie: This is the rejective
term.

And finally,

(
A∧

1
B

)
·B (10.37)

This is the remainder, the non-projective and non-coplanar terms. Greater than three dimen-
sions is required to generate such a term. Example:

A = e12 + e23 + e43

B = e34
(10.38)

Product terms for these are:

A ·B = 1

〈AB〉2 = e24

A∧B = e1234

(10.39)

The decomposition is thus:

A = (A ·B + 〈AB〉2 + A∧B)
1
B

= (1 + e24 + e1234)e43 (10.40)

10.4.1 Closer look at the grade two term

The grade two term of eq. (10.36) can be expanded using its antisymmetric bivector product
representation

〈
A

1
B

〉
2
B =

1
2

(
A

1
B
−

1
B

A
)

B

=
1
2

(
A −

1
B

AB
)

=
1
2

(
A −

1
B̂

AB̂
) (10.41)



10.4 components of a grade two multivector 81

Observe here one can restrict the examination to the case where B is a unit bivector without
loss of generality.

〈
A

1
i

〉
2
i =

1
2
(A + iAi)

=
1
2

(
A − i†Ai

) (10.42)

The second term is a rotation in the plane i, by 180 degrees:

i†Ai = e−iπ/2Aeiπ/2 (10.43)

So, any components of A that are completely in the plane cancel out (ie: the A · 1
i i compo-

nent).
Also, if 〈Ai〉4 , 0 then those components of Ai commute so

〈
A − i†Ai

〉
4

= 〈A〉4 −
〈
i†Ai

〉
4

= 〈A〉4 −
〈
i†iA

〉
4

= 〈A〉4 − 〈A〉4
= 0

(10.44)

This implies that we have only grade two terms, and the final grade selection in eq. (10.36)
can be dropped:

〈〈
A

1
B

〉
2
B
〉

2
=

〈
A

1
B

〉
2
B (10.45)

It is also possible to write this in a few alternate variations which are useful to list explicitly
so that one can recognize them in other contexts:

〈
A

1
B

〉
2
B =

1
2

(
A −

1
B

AB
)

=
1
2

(
A + B̂AB̂

)
=

1
2

(
B̂A −AB̂

)
B̂

=
〈
B̂A

〉
2
B̂

= B̂
〈
AB̂

〉
2

(10.46)
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10.4.2 Projection and Rejection

Equation (10.45) can be substituted back into eq. (10.33) yielding:

A = A ·
1
B

B +

〈
A

1
B

〉
2
B +

(
A∧

1
B

)
·B (10.47)

Now, for the special case where A ∧ B = 0 (all bivector components of the grade two multi-
vector A have a common vector with bivector B) we can write

A = A ·
1
B

B +

〈
A

1
B

〉
2
B

= B
1
B
·A + B

〈
1
B

A
〉

2

(10.48)

This is

A = ProjB(A) + RejB(A) (10.49)

It is worth verifying that these two terms are orthogonal (with respect to the grade two vector
dot product)

ProjB(A) ·RejB(A) =
〈
ProjB(A) RejB(A)

〉
=

〈
A ·

1
B

BB
〈

1
B

A
〉

2

〉
=

1
4B2 〈(AB + BA)(BA −AB)〉

=
1

4B2 〈ABBA −ABAB + BABA −BAAB〉

=
1

4B2 〈−ABAB + BABA〉

(10.50)

Since we have introduced the restriction A ∧ B , 0, we can use the dot product to reorder
product terms:

AB = −BA + 2A ·B (10.51)

This can be used to reduce the grade zero term above:

〈BABA −ABAB〉 = 〈BA(−AB + 2A ·B) − (−BA + 2A ·B)AB〉
= +2(A ·B)〈BA −AB〉
= +4(A ·B)〈〈BA〉2〉
= 0

(10.52)
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This proves orthogonality as expected.

10.4.3 Grade two term as a generator of rotations

Figure 10.1: Bivector rejection. Perpendicular component of plane

Figure 10.1 illustrates how the grade 2 component of the bivector product acts as a rotation
in the rejection operation.

Provided that A and B are not coplanar, 〈AB〉2 is a plane mutually perpendicular to both.
Given two mutually perpendicular unit bivectors A and B, we can in fact write:

B = A〈BA〉2 (10.53)

B = 〈AB〉2A (10.54)

Compare this to a unit bivector for two mutually perpendicular vectors:

b = a(a∧ b) (10.55)

b = (b∧ a)a (10.56)
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In both cases, the unit bivector functions as an imaginary number, applying a rotation of π/2
rotating one of the perpendicular entities onto the other.

As with vectors one can split the rotation of the unit bivector into half angle left and right
rotations. For example, for the same mutually perpendicular pair of bivectors one can write

B = A〈BA〉2
= Ae〈BA〉2π/2

= e−〈BA〉2π/4Ae〈BA〉2π/4

=

(
1
√

2
(1 −BA)

)
A

(
1
√

2
(1 + BA)

) (10.57)

Direct multiplication can be used to verify that this does in fact produce the desired result.
In general, writing

i =
〈BA〉2
|〈BA〉2|

(10.58)

the rotation of plane B towards A by angle θ can be expressed with either a single sided full
angle

Rθ:A→B(A) = Aeiθ

= e−iθA
(10.59)

or double sided the half angle rotor formulas:

Rθ:A→B(A) = e−iθ/2Aeiθ/2 = R†AR (10.60)

Where:

R = eiθ/2

= cos(θ/2) +
〈BA〉2
|〈BA〉2|

sin(θ/2)
(10.61)

As with half angle rotors applied to vectors, there are two possible orientations to rotate.
Here the orientation of the rotation is such that the angle is measured along the minimal arc
between the two, where the angle between the two is in the range (0, π) as opposed to the (π, 2π)
rotational direction.
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10.4.4 Angle between two intersecting planes

Worth pointing out for comparison to the vector result, one can use the bivector dot product to
calculate the angle between two intersecting planes. This angle of separation θ between the two
can be expressed using the exponential:

B̂ = Âe
〈BA〉2
|〈BA〉2 |

θ (10.62)

=⇒ −ÂB̂ = e
〈BA〉2
|〈BA〉2 |

θ (10.63)

Taking the grade zero terms of both sides we have:

−
〈
ÂB̂

〉
=

〈
e
〈BA〉2
|〈BA〉2 |

θ
〉

(10.64)

=⇒ cos(θ) = −
A ·B
|A||B|

(10.65)

The sine can be obtained by selecting the grade two terms

−
〈
ÂB̂

〉
2

=
〈BA〉2
|〈BA〉2|

sin(θ) (10.66)

=⇒ sin(θ) =
|〈BA〉2|
|A||B|

(10.67)

Note that the strictly positive sine result here is consistent with the fact that the angle is being
measured such that it is in the (0, π) range.

10.4.5 Rotation of an arbitrarily oriented plane

As stated in a few of the GA books the rotor equation is a rotation representation that works
for all grade vectors. Let us verify this for the bivector case. Given a plane through the origin
spanned by two direction vectors and rotated about the origin in a plane specified by unit mag-
nitude rotor R, the rotated plane will be specified by the wedge of the rotations applied to the
two direction vectors. Let

A = u∧ v (10.68)
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Then,

R(A) = R(u)∧ R(v)

= (R†uR)∧ (R†vR)

=
1
2

(R†uRR†vR −R†vRR†uR)

=
1
2

(R†uvR −R†vuR)

= R†
uv − vu

2
R

= R†u∧ vR

= R†AR

(10.69)

Observe that with this half angle double sided rotation equation, any component of A in
the plane of rotation, or any component that does not intersect the plane of rotation, will be
unchanged by the rotor since it will commute with it. In those cases the opposing sign half
angle rotations will cancel out. Only the components of the plane that are perpendicular to the
rotational plane will be changed by this rotation operation.

10.5 a couple of reduction formula equivalents from R3 vector geometry

The reduction of the R3 dot of cross products to dot products can be naturally derived using
GA arguments. Writing i as the R3 pseudoscalar we have:

(a × b) · (c × d) =
a ∧ b

i
·

c ∧ d
i

=
1
2

(
a ∧ b

i
c ∧ d

i
+

c ∧ d
i

a ∧ b
i

)
= −

1
2
((a ∧ b)(c ∧ d) + (c ∧ d)(a ∧ b))

= −(a ∧ b) · (c ∧ d) − (a ∧ b) ∧ (c ∧ d)

(10.70)

In R3 this last term must be zero, thus one can write

(a × b) · (c × d) = −(a ∧ b) · (c ∧ d) (10.71)
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This is now in a form where it can be reduced to products of vector dot products.

(a ∧ b) · (c ∧ d) =
1
2
〈(a ∧ b)(c ∧ d) + (c ∧ d)(a ∧ b)〉

=
1
2
〈(a ∧ b)(c ∧ d) + (d ∧ c)(b ∧ a)〉

=
1
2
〈(ab − a · b)(c ∧ d) + (d ∧ c)(ba − b · a)〉

=
1
2
〈ab(c ∧ d) + (d ∧ c)ba〉

=
1
2
〈a(b · (c ∧ d) + b ∧ (c ∧ d))((d ∧ c) · b + (d ∧ c) ∧ b)a〉

=
1
2
〈a(b · (c ∧ d)) + ((d ∧ c) · b)a〉

=
1
2
〈a((b · c)d − (b · d)c) + (d(c · b) − c(d · b))a〉

=
1
2

((a · d)(b · c) − (b · d)(a · c) + (d · a)(c · b) − (c · a)(d · b))

= (a · d)(b · c) − (a · c)(b · d)
(10.72)

Summarizing with a comparison to the R3 relations we have:

(a∧ b) · (c∧ d) = −(a × b) · (c × d) = (a · d)(b · c) − (a · c)(b · d) (10.73)

(a∧ c) · (b∧ c) = −(a × c) · (b × c) = (a · c)(b · c) − c2(a · b) (10.74)

The bivector relations hold for all of RN .
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T R I V E C T O R G E O M E T RY

11.1 motivation

The direction vector for two intersecting planes can be found to have the form:

a
(
(v∧B)2u − (v∧B)(u∧B)v

)
+ b

(
(u∧B)2v − (u∧B)(v∧B)u

)
(11.1)

While trying to put eq. (11.1) into a form that eliminated u, and v in favor of A = u ∧ v
symmetric and antisymmetric formulations for the various grade terms of a trivector product
looked like they could be handy. Here is a summary of those results.

11.2 grade components of a trivector product

11.2.1 Grade 6 term

Writing two trivectors in terms of mutually orthogonal components

A = x∧ y∧ z = xyz (11.2)

and

B = u∧ v∧w = uvw (11.3)
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Assuming that there is no common vector between the two, the wedge of these is

A∧B = 〈AB〉6
= 〈xyzuvw〉6
= 〈yz(xu)vw〉6
= 〈yz(−ux + 2u · x)vw〉6
= −〈yzu(xv)w〉6
= −〈yzu(−vx + 2v · x)w〉6
= 〈yzuv(xw)〉6
= · · ·

= −〈uvwxyz〉6
= −〈BA〉6
= −B∧A

(11.4)

Note above that any interchange of terms inverts the sign (demonstrated explicitly for all the
x interchanges).

As an aside, this sign change on interchange is taken as the defining property of the wedge
product in differential forms. That property also implies also that the wedge product is zero
when a vector is wedged with itself since zero is the only value that is the negation of itself.
Thus we see explicitly how the notation of using the wedge for the highest grade term of two
blades is consistent with the traditional wedge product definition.

The end result here is that the grade 6 term of a trivector trivector product changes sign on
interchange of the trivectors:

〈AB〉6 = −〈BA〉6 (11.5)

11.2.2 Grade 4 term

For a trivector product to have a grade 4 term there must be a common vector between the two

A = x∧ y∧ z = xyz (11.6)

and

B = u∧ v∧ z = uvz (11.7)
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The grade four term of the product is

〈BA〉4 = 〈uvzxyz〉4
= 〈uvzzxy〉4
= z2〈uvxy〉4
= z2〈u(vx)y〉4
= z2〈u(−xv + 2x · v)y〉4
= −z2〈uxvy〉4
= · · ·

= z2〈xyuv〉4
= 〈xyzzuv〉4
= 〈xyzuvz〉4
= 〈xyzuvz〉4
= 〈AB〉4

(11.8)

Thus the grade 4 term commutes on interchange:

〈AB〉4 = 〈BA〉4 (11.9)

11.2.3 Grade 2 term

Similar to above, for a trivector product to have a grade 2 term there must be two common
vectors between the two

A = x∧ y∧ z = xyz (11.10)

and

B = u∧ y∧ z = uyz (11.11)
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The grade two term of the product is

〈AB〉2 = 〈xyzuyz〉2
= 〈xyzyzu〉2
= (yz)2〈xu〉2
= −(yz)2〈ux〉2
= −〈BA〉2

(11.12)

The grade 2 term anticommutes on interchange:

〈AB〉2 = −〈BA〉2 (11.13)

11.2.4 Grade 0 term

Any grade 0 terms are due to products of the form A = kB

〈AB〉0 = 〈kBB〉0
= 〈BkB〉0
= 〈BA〉0

(11.14)

The grade 2 term commutes on interchange:

〈AB〉0 = 〈BA〉0 (11.15)

11.2.5 combining results

AB = 〈AB〉0 + 〈AB〉2 + 〈AB〉4 + 〈AB〉6

BA = 〈BA〉0 + 〈BA〉2 + 〈BA〉4 + 〈BA〉6
= 〈AB〉0 − 〈AB〉2 + 〈AB〉4 − 〈AB〉6

(11.16)
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These can be combined to express each of the grade terms as subsets of the symmetric and
antisymmetric parts:

A ·B = 〈AB〉0 =

〈
AB + BA

2

〉
0

〈AB〉2 =

〈
AB −BA

2

〉
2

〈AB〉4 =

〈
AB + BA

2

〉
4

A∧B = 〈AB〉6 =

〈
AB −BA

2

〉
6

(11.17)

Note that above I have been somewhat loose with the argument above. A grade three vector
will have the following form:

∑
i< j<k

Di jkei jk (11.18)

Where Di jk is the determinant of i jk components of the vectors being wedged. Thus the
product of two trivectors will be of the following form:

∑
i< j<k

∑
i′< j′<k′

Di jkD′i′ j′k′(ei jkei′ j′k′) (11.19)

It is really each of these ei jkei′ j′k′ products that have to be considered in the grade and sign
arguments above. The end result will be the same though... one would just have to present it a
bit more carefully for a true proof.

11.2.6 Intersecting trivector cases

As with the intersecting bivector case, when there is a line of intersection between the two
volumes one can write:

A ·B = 〈AB〉0 =

〈
AB + BA

2

〉
0

〈AB〉2 =
AB −BA

2

〈AB〉4 =

〈
AB + BA

2

〉
4

A∧B = 〈AB〉6 = 0

(11.20)
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And if these volumes intersect in a plane a further simplification is possible:

A ·B = 〈AB〉0 =
AB + BA

2

〈AB〉2 =
AB −BA

2
〈AB〉4 = 0

A∧B = 〈AB〉6 = 0

(11.21)
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M U LT I V E C T O R P RO D U C T G R A D E Z E RO T E R M S

One can show that the grade zero component of a multivector product is independent of the
order of the terms:

〈AB〉 = 〈BA〉 (12.1)

Doran/Lasenby has an elegant proof of this, but a dumber proof using an explicit expansion
by basis also works and highlights the similarities with the standard component definition of
the vector dot product.

Writing:

A =
∑

i

〈A〉i (12.2)

B =
∑

i

〈B〉i (12.3)

The product of A and B is:

AB =
∑

i j

〈A〉i〈B〉 j

=
∑

i j

min(i, j)∑
k=0

〈
〈A〉i〈B〉 j

〉
2k+|i− j|

(12.4)

AB =
∑

i j

min(i, j)∑
k=0

〈
〈A〉i〈B〉 j

〉
2k+|i− j|

(12.5)

To get a better feel for this, consider an example

A = e1 + e2 + e12 + e13 + e34 + e345 (12.6)
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B = e2 + e21 + e23 (12.7)

AB = (e1 + e2 + e12 + e13 + e34 + e345)(e2 + e21 + e23) (12.8)

Here are multivectors with grades ranging from zero to three. This multiplication will include
vector/vector, vector/bivector, vector/trivector, bivector/bivector, and bivector/trivector. Some of
these will be grade lowering, some grade preserving and some grade raising.

Only the like grade terms can potentially generate grade zero terms, so the grade zero terms
of the product in eq. (12.5) are:

AB =
∑
i= j

〈
〈A〉i〈B〉 j

〉
(12.9)

Using the example above we have

〈AB〉 = 〈(e1 + e2)e2〉 + 〈(e12 + e13 + e34)e21〉 (12.10)

In general one can introduce an orthonormal basis σk = {σk
i }i for each of the 〈〉k spaces. Here

orthonormal is with respect to the k-vector dot product

σk
i ·σ

k
j = (−1)k(k−1)/2δi j (12.11)

then one can decompose each of the k-vectors with respect to that basis:

〈A〉k =
∑

i

(
〈A〉k ·σk

i

) 1
σk

i

(12.12)

〈B〉k =
∑

j

(
〈B〉k ·σk

j

) 1
σk

j

(12.13)

Thus the scalar part of the product is

〈AB〉 =
∑
k,i, j

〈(
〈A〉k ·σk

i

) 1
σk

i

(
〈B〉k ·σk

j

) 1
σk

j

〉
=

∑
k,i, j

〈
σk

iσ
k
j

〉 (
〈A〉k ·σk

i

) (
〈B〉k ·σk

j

)
=

∑
k,i, j

(−1)k(k−1)/2
δi j

(
〈A〉k ·σk

i

) (
〈B〉k ·σk

j

) (12.14)
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Thus the complete scalar product can be written

〈AB〉 =
∑
k,i

(−1)k(k−1)/2 (
〈A〉k ·σk

i

) (
〈B〉k ·σk

i

)
(12.15)

Note, compared to the vector dot product, the alternation in sign, which is dependent on the
grades involved.

Also note that this now trivially proves that the scalar product is commutative.
Perhaps more importantly we see how similar this generalized dot product is to the standard

component formulation of the vector dot product we are so used to. At a glance the component-
less geometric algebra formulation seems so much different than the standard vector dot product
expressed in terms of components, but we see here that this is in fact not the case.
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B L A D E G R A D E R E D U C T I O N

13.1 general triple product reduction formula

Consideration of the reciprocal frame bivector decomposition required the following identity

(Aa ∧Ab) ·Ac = Aa · (Ab ·Ac) (13.1)

This holds when a + b ≤ c, and a <= b. Similar equations for vector wedge blade dot blade
reduction can be found in NFCM, but intuition let me to believe the above generalization was
valid.

To prove this use the definition of the generalized dot product of two blades:

(Aa ∧Ab) ·Ac = 〈(Aa ∧Ab)Ac〉|c−(a+b)| (13.2)

The subsequent discussion is restricted to the b ≥ a case. Would have to think whether this
restriction is required.

Aa ∧Ab = AaAb −

a+b∑
i=|b−a|,i+=2

〈AaAb〉i

= AaAb −

a−1∑
k=0

〈AaAb〉2k+b−a

(13.3)

Back substitution gives:

〈(Aa ∧Ab)Ac〉|c−(a+b)| = 〈AaAbAc〉|c−(a+b)| −

a−1∑
k=0

〈〈AaAb〉2k+b−aAc〉c−a−b (13.4)
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Temporarily writing 〈AaAb〉2k+b−a = Ci,

〈AaAb〉2k+b−aAc =

c+i∑
j=c−i, j+=2

〈CiAc〉 j

=

i∑
r=0

〈CiAc〉c−i+2r

=

2k+b−a∑
r=0

〈CiAc〉c−2k−b+a+2r

=

2k+b−a∑
r=0

〈CiAc〉c−b+a+2(r−k)

(13.5)

We want the only the following grade terms:

c − b + a + 2(r − k) = c − b − a =⇒ r = k − a (13.6)

There are many such k, r combinations, but we have a k ∈ [0, a− 1] constraint, which implies
r ∈ [−a,−1]. This contradicts with r strictly positive, so there are no such grade elements.

This gives an intermediate result, the reduction of the triple product to a direct product, re-
moving the explicit wedge:

(Aa ∧Ab) ·Ac = 〈AaAbAc〉c−a−b (13.7)

〈AaAbAc〉c−a−b = 〈Aa(AbAc)〉c−a−b

=

〈
Aa

∑
i

〈AbAc〉i

〉
c−a−b

=

〈∑
j

〈
Aa

∑
i

〈AbAc〉i

〉
j

〉
c−a−b

(13.8)

Explicitly specifying the grades here is omitted for simplicity. The lowest grade of these is
(c − b) − a, and all others are higher, so grade selection excludes them.

By definition

〈AbAc〉c−b = Ab ·Ac (13.9)
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so that lowest grade term is thus

〈Aa〈AbAc〉c−b〉c−a−b = 〈Aa(Ab ·Ac)〉c−a−b = Aa · (Ab ·Ac) (13.10)

This completes the proof.

13.2 reduction of grade of dot product of two blades

The result above can be applied to reducing the dot product of two blades. For k <= s:

(a1 ∧ a2 ∧ a3 · · · ∧ ak) · (b1 ∧ b2 · · · ∧ bs) (13.11)

= (a1 ∧ (a2 ∧ a3 · · · ∧ ak)) · (b1 ∧ b2 · · · ∧ bs)

= (a1 · ((a2 ∧ a3 · · · ∧ ak)) · (b1 ∧ b2 · · · ∧ bs))

= (a1 · (a2 · (a3 · · · ∧ ak)) · (b1 ∧ b2 · · · ∧ bs))

= · · ·

= a1 · (a2 · (a3 · (· · · · (ak · (b1 ∧ b2 · · · ∧ bs)))))

(13.12)

This can be reduced to a single determinant, as is done in the Flanders’ differential forms
book definition of the

∧k inner product (which is then used to define the Hodge dual).
The first such product is:

ak · (b1 ∧ b2 · · · ∧ bk) =
∑

(−1)u−1(ak · bu)b1 ∧ · · · b̌u · · · ∧ bk (13.13)

Next, take dot product with ak−1:

1. k = 2

ak−1 · (ak · (b1 ∧ b2 · · · ∧ bk))

=
∑
v,u

(−1)u−1(ak · bu)(a1 · bv)

=
∑
u<v

(−1)v−1(ak · bv)(a1 · bu) +
∑
u<v

(−1)u−1(ak · bu)(a1 · bv)

= +
∑
u<v

(ak · bu)(a1 · bv) −
∑
u<v

(ak · bv)(a1 · bu)

= +
∑
u<v

(ak · bu)(a1 · bv) − (ak · bv)(a1 · bu)

(13.14)
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−
∑
u<v

∣∣∣∣∣∣∣ak−1 · bu ak−1 · bv

ak · bu ak · bv

∣∣∣∣∣∣∣ (13.15)

2. k > 2

ak−1 · (ak · (b1 ∧ b2 · · · ∧ bk)) (13.16)

=
∑

(−1)u−1(ak · bu)ak−1 · (b1 ∧ · · · b̌u · · · ∧ bk)

=
∑
v<u

(−1)u−1(ak · bu)(−1)v−1(ak−1 · bv)(b1 ∧ · · · b̌v · · · b̌u · · · ∧ bk)

+
∑
v>u

(−1)u−1(ak · bu)(−1)v(ak−1 · bv)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

(13.17)

Add negation exponents, and use a change of variables for the first sum

=
∑
u<v

(−1)v+u(ak · bv)(ak−1 · bu)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

−
∑
u<v

(−1)u+v(ak · bu)(ak−1 · bv)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)
(13.18)

Merge sums:

=
∑
u<v

(−1)u+v ((ak · bv)(ak−1 · bu) − (ak · bu)(ak−1 · bv))

(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)
(13.19)

ak−1 · (ak · (b1 ∧ b2 · · · ∧ bk)) = (13.20)

∑
u<v

(−1)u+v

∣∣∣∣∣∣∣ak−1 · bu ak−1 · bv

ak · bu ak · bv

∣∣∣∣∣∣∣ (b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

Note that special casing k = 2 does not seem to be required because in that case −1u+v =

−11+2 = −1, so this is identical to eq. (13.15) after all.
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13.2.1 Pause to reflect

Although my initial aim was to show that Ak ·Bk could be expressed as a determinant as in the
differential forms book (different sign though), and to determine exactly what that determinant
is, there are some useful identities that fall out of this even just for this bivector kvector dot
product expansion.

Here is a summary of some of the things figured out so far

1. Dot product of grade one blades.

Here we have a result that can be expressed as a one by one determinant. Worth mention-
ing to explicitly show the sign.

a · b = det[a · b] (13.21)

2. Dot product of grade two blades.

(a1 ∧ a2) · (b1 ∧ b2) = −

∣∣∣∣∣∣∣a1 · b1 a1 · b2

a2 · b1 a2 · b2

∣∣∣∣∣∣∣ = − det[ai · b j] (13.22)

3. Dot product of grade two blade with grade > 2 blade.

(a1 ∧ a2) · (b1 ∧ b2 · · · ∧ bk)

=
∑
u<v

(−1)u+v−1(a1 ∧ a2) · (bu ∧ bv)(b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk) (13.23)

Observe how similar this is to the vector blade dot product expansion:

a · (b1 ∧ b2 · · · ∧ bk) =
∑

(−1)i−1(a · bi)(b1 ∧ · · · b̌i · · · ∧ bk) (13.24)
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13.2.1.1 Expand it for k = 3

Explicit expansion of eq. (13.23) for the k = 3 case, is also helpful to get a feel for the equation:

(a1 ∧ a2) · (b1 ∧ b2 ∧ b3) = (a1 ∧ a2) · (b1 ∧ b2)b3

+ (a1 ∧ a2) · (b3 ∧ b1)b2

+ (a1 ∧ a2) · (b2 ∧ b3)b1

(13.25)

Observe the cross product like alternation in sign and indices. This suggests that a more
natural way to express the sign coefficient may be via a sgn(π) expression for the sign of the
permutation of indices.

13.3 trivector dot product

With the result of eq. (13.23), or the earlier equivalent determinant expression in equation
eq. (13.20) we are now in a position to evaluate the dot product of a trivector and a greater
or equal grade blade.

a1 · ((a2 ∧ a3) · (b1 ∧ b2 · · · ∧ bk))

=
∑
u<v

(−1)u+v−1(a2 ∧ a3) · (bu ∧ bv)a1 · (b1 ∧ · · · b̌u · · · b̌v · · · ∧ bk)

=
∑

w<u<v

(−1)u+v+w(a2 ∧ a3) · (bu ∧ bv)(a1 · bw)(b1 ∧ · · · b̌w · · · b̌u · · · b̌v · · · ∧ bk)

+
∑

u<w<v

(−1)u+v+w−1(a2 ∧ a3) · (bu ∧ bv)(a1 · bw)(b1 ∧ · · · b̌u · · · b̌w · · · b̌v · · · ∧ bk)

+
∑

u<v<w

(−1)u+v+w(a2 ∧ a3) · (bu ∧ bv)(a1 · bw)(b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk)

(13.26)

Change the indices of summation and grouping like terms we have:∑
u<v<w

(−1)u+v+w((a2 ∧ a3) · (bv ∧ bw)(a1 · bu)

− (a2 ∧ a3) · (bu ∧ bw)(a1 · bv)

+ (a2 ∧ a3) · (bu ∧ bv)(a1 · bw)

)(b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk)

(13.27)
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Now, each of the embedded dot products were in fact determinants:

(a2 ∧ a3) · (bx ∧ by) = −

∣∣∣∣∣∣∣a2 · bx a2 · by

a3 · bx a3 · by

∣∣∣∣∣∣∣ (13.28)

Thus, we can expand these triple dot products like so (factor of −1 omitted):

(a2 ∧ a3) · (bv ∧ bw)(a1 · bu)

− (a2 ∧ a3) · (bu ∧ bw)(a1 · bv)

+ (a2 ∧ a3) · (bu ∧ bv)(a1 · bw)

= (a1 · bu)

∣∣∣∣∣∣∣a2 · bv a2 · bw

a3 · bv a3 · bw

∣∣∣∣∣∣∣
− (a1 · bv)

∣∣∣∣∣∣∣a2 · bu a2 · bw

a3 · bu a3 · bw

∣∣∣∣∣∣∣
+ (a1 · bw)

∣∣∣∣∣∣∣a2 · bu a2 · bv

a3 · bu a3 · bv

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
a1 · bu a1 · bv a1 · bw

a2 · bu a2 · bv a2 · bw

a3 · bu a3 · bv a3 · bw

∣∣∣∣∣∣∣∣∣∣∣

(13.29)

Final back substitution gives:

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 · · · ∧ bk)

=
∑

u<v<w

(−1)u+v+w−1

∣∣∣∣∣∣∣∣∣∣∣
a1 · bu a1 · bv a1 · bw

a2 · bu a2 · bv a2 · bw

a3 · bu a3 · bv a3 · bw

∣∣∣∣∣∣∣∣∣∣∣ (b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk) (13.30)

In particular for k = 3 we have

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 ∧ b3)

= −

∣∣∣∣∣∣∣∣∣∣∣
a1 · b1 a1 · b2 a1 · b3

a2 · b1 a2 · b2 a2 · b3

a3 · b1 a3 · b2 a3 · b3

∣∣∣∣∣∣∣∣∣∣∣ = − det[ai · b j] (13.31)
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This can be substituted back into eq. (13.30) to put it in a non determinant form.

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 · · · ∧ bk)

=
∑

u<v<w

(−1)u+v+w(a1 ∧ a2 ∧ a3) · (bu ∧ bv ∧ bw)(b1 ∧ · · · b̌u · · · b̌v · · · b̌w · · · ∧ bk) (13.32)

13.4 induction on the result

It is pretty clear that recursively performing these calculations will yield similar determinant
and inner dot product reduction results.

13.4.1 dot product of like grade terms as determinant

Let us consider the equal grade case first, summarizing the results so far

a · b = det[a · b]

(a1 ∧ a2) · (b1 ∧ b2) = − det[ai · b j]

(a1 ∧ a2 ∧ a3) · (b1 ∧ b2 ∧ b3) = − det[ai · b j]

(13.33)

What will the sign be for the higher grade equivalents? It has the appearance of being related
to the sign associated with blade reversion. To verify this calculate the dot product of a blade
formed from a set of perpendicular unit vectors with itself.

(e1 ∧ · · · ∧ ek) · (e1 ∧ e2 ∧ · · · ∧ ek)

= (−1)k(k−1)/2(e1 ∧ · · · ∧ ek) · (ek ∧ · · · ∧ e2 ∧ e1)

= (−1)k(k−1)/2e1 · (e2 · · · (ek · (ek ∧ · · · ∧ e2 ∧ e1)))

= (−1)k(k−1)/2e1 · (e2 · · · (ek−1 · (ek−1 ∧ · · · ∧ e2 ∧ e1)))

= · · ·

= (−1)k(k−1)/2

(13.34)

This fixes the sign, and provides the induction hypothesis for the general case:

(a1 ∧ · · · ∧ ak) · (b1 ∧ b2 ∧ · · · ∧ bk) = (−1)k(k−1)/2 det[ai · b j] (13.35)
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Alternately, one can remove the sign change coefficient with reversion of one of the blades:

(a1 ∧ · · · ∧ ak) · (bk ∧ bk−1 ∧ · · · ∧ b1) = det[ai · b j] (13.36)

13.4.2 Unlike grades

Let us summarize the results for unlike grades at the same time reformulating the previous
results in terms of index permutation, also writing for brevity As = a1 ∧ · · · ∧ as, and Bk =

b1 ∧ · · · ∧ bk:

A1 ·Bk =
∑

i

sgn(π(i, 1, 2, · · · ǐ · · · , k))(A1 · bi)(b1 ∧ · · · b̌i · · · ∧ bk) (13.37)

A2 ·Bk =
∑
i1<i2

sgn(π(i1, i2, 1, 2, · · · ǐ1 · · · ǐ2 · · · , k)) (13.38)

A2 · (bi1 ∧ bi2)(b1 ∧ · · · b̌i1 · · · b̌i2 · · · ∧ bk) (13.39)

A3 ·Bk =
∑

i1<i2<i3

sgn(π(i1, i2, i3, 1, 2, · · · ǐ1 · · · ǐ2 · · · ǐ3 · · · , k)) (13.40)

A3 · (bi1 ∧ bi2 ∧ bi3)(b1 ∧ · · · b̌i1 · · · b̌i2 · · · b̌i3 · · · ∧ bk) (13.41)

We see that the dot product consumes any of the excess sign variation not described by the
sign of the permutation of indices.

The induction hypothesis is basically described above (change 3 to s, and add extra dots):

As ·Bk =
∑

i1<i2···<is

sgn(π(i1, i2 · · · , is, 1, 2, · · · ǐ1 · · · ǐ2 · · · ǐs · · · , k))

As · (bi1 ∧ bi2 · · · ∧ bis)(b1 ∧ · · · b̌i1 · · · b̌i2 · · · b̌is · · · ∧ bk) (13.42)

13.4.3 Perform the induction

In a sense this has already been done. The steps will be pretty much the same as the logic that
produced the bivector and trivector results. Thinking about typing this up in latex is not fun, so
this will be left for a paper proof.
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M O R E D E TA I L S O N N F C M P L A N E F O R M U L AT I O N

14.1 wedge product formula for a plane

The equation of the plane with bivector U through point a is given by

(x − a)∧U = 0 (14.1)

or

x∧U = a∧U = T (14.2)

14.1.1 Examining this equation in more details

Without any loss of generality one can express this plane equation in terms of a unit bivector i

x∧ i = a∧ i (14.3)

As with the line equation, to express this in the “standard” parametric form, right multiplica-
tion with 1/i is required.

(x∧ i)
1
i

= (a∧ i)
1
i

(14.4)

We have a trivector bivector product here, which in general has a vector, trivector, and 5-
vector component. Since i∧ i = 0, the 5-vector component is zero:

x∧ i∧ −i = 0 (14.5)

and intuition says that the trivector component will also be zero. However, as well as provid-
ing verification of this, expansion of this product will also demonstrate how to find the projective
and rejective components of a vector with respect to a plane (ie: components in and out of the
plane).
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14.1.2 Rejection from a plane product expansion

Here is an explicit expansion of the rejective term above

(x∧ i)
1
i

= −(x∧ i)i

= −
1
2

(xi + ix)i

=
1
2

(x − ixi)

=
1
2

(x − (xi + 2i · x)i)

= x − (i · x)i

(14.6)

In this last term the quantity i · x is a vector in the plane. This can be demonstrated by writing
i in terms of a pair of orthonormal vectors i = ûv̂ = û∧ v̂.

i · x = (û∧ v̂) · x
= û(v̂ · x) − v̂(û · x)

(14.7)

Thus, (i · x)∧ i = 0, and (i · x)i = (i · x) · i. Inserting this above we have the end result

(x∧ i)
1
i

= x − (i · x) · i

= a − (i · a) · i
(14.8)

Or

x − a = (i · (x − a)) · i (14.9)

This is actually the standard parametric equation of a plane, but expressed in terms of a unit
bivector that describes the plane instead of in terms of a pair of vectors in the plane.

To demonstrate this expansion of the right hand side is required

(i · x) · i = (û(v̂ · x) − v̂(û · x))ûv̂
= v̂(v̂ · x) + û(û · x)

(14.10)

Substituting this back yields:

x = a + û(û · (x − a)) + v̂(v̂ · (x − a))

= a + sû + tv̂
= a + s′y + t′w

(14.11)
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Where y and w are two arbitrary, but non-colinear vectors in the plane.
In words this says that the plane is specified by a point in the plane, and the span of any pair

of linearly independent vectors directed in that plane.
An expression of this form, or a normal form in terms of the cross product is often how the

plane is defined, and the analysis above demonstrates that the bivector wedge product formula,

x∧U = a∧U (14.12)

where specific direction vectors in the plane need not be explicitly specified, also implicitly
contains this parametric representation.

14.1.3 Orthonormal decomposition of a vector with respect to a plane

With the expansion above we have a separation of a vector into two components, and these can
be demonstrated to be the components that are directed entirely within and out of the plane.

Rearranging terms from above we have:

x = (x · i) ·
1
i

+ (x∧ i) ·
1
i

= (x · i)
1
i

+ (x∧ i)
1
i

(14.13)

Writing the vector x in terms of components parallel and perpendicular to the plane

x = x⊥ + x‖ (14.14)

Only the x‖ component contributes to the dot product and only the x⊥ component contributes
to the wedge product:

x = (x‖ · i) ·
1
i

+ (x⊥ ∧ i) ·
1
i

x‖ = (x · i) ·
1
i

x⊥ = (x∧ i) ·
1
i

(14.15)

So, just as in the orthonormal decomposition of a vector with respect to a unit vector, this
gives us a way to calculate components of a vector in and rejected from any plane, a very useful
result in its own right.
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Returning to back to the equation of a plane we have

−(x∧ i)i = −(a∧ i)i = a − (a · i) ·
1
i

(14.16)

Thus, for the fixed point in the plane, the quantity

d = (a∧ i) ·
1
i

(14.17)

is the component of that vector perpendicular to the plane or the minimal length directed
vector from the origin to the plane (directrix). In terms of the unit bivector for the plane and its
directrix the equation of a plane becomes

x∧ i = di = d∧ i (14.18)

Note that the directrix is a normal to the plane.

14.1.4 Alternate derivation of orthonormal planar decomposition

This could alternately be derived by expanding the vector unit bivector product directly

xi
1
i

= (x · i + x∧ i)
1
i

= −(x · i) · i − (x · i)∧ i − (x∧ i)i
= −(x · i) · i − (x∧ i) · i − 〈(x∧ i)i〉3 − (x∧ i)∧ i

= (x · i) ·
1
i

+ (x∧ i) ·
1
i
− 〈(x∧ i)i〉3

(14.19)

Since the LHS of this equation is the vector x, the RHS must also be a vector, which demon-
strates that the term

〈(x∧ i)i〉3 = 0 (14.20)

So, one has

x = (x · i) ·
1
i

+ (x∧ i) ·
1
i

= (x · i)
1
i

+ (x∧ i)
1
i

(14.21)
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14.2 generalization of orthogonal decomposition to components with respect

to a hypervolume

Having observed how to directly calculate the components of a vector in and out of a plane, we
can now do the same thing for a rth degree volume element spanned by an r-blade hypervolume
element U.

14.2.1 Hypervolume element and its inverse written in terms of a spanning orthonormal set

We take U to be a simple element, not an arbitrary multivector of grade r. Such an element can
always be written in the form

U = ku1u2 · · · ur (14.22)

Where uk are unit vectors that span the volume element.
The inverse of U is thus

U−1 =
U†

UU†

=
kur · · · u1

(ku1 · · · ur)(kurur−1 · · · u1)

=
ur · · · u1

k

(14.23)

14.2.2 Expanding the product

Having gathered the required introductory steps we are now in a position to express the vector
x in terms of components projected into and rejected from this hypervolume

x = xU
1
U

= (x ·U + x∧U)
1
U

(14.24)
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The dot product term can be expanded to

(x ·U)
1
U

= k((x · u1)u2u3 · · · ur − (x · u2)u1u3u4 · · · ur + · · ·)
1
U

= (x · u1)(u2u3 · · · ur)(urur−1 · · · u1) − (x · u2)(u1u3u4 · · · ur)(ur−1 · · · u1) + · · ·

= (x · u1)u1 + (x · u2)u2 + · · ·

(14.25)

This demonstrates that (x ·U) 1
U is a vector. Because all the potential 3, 5, ...2r − 1 grade terms

of this product are zero one can write

(x ·U)
1
U

=

〈
(x ·U)

1
U

〉
1

= (x ·U) ·
1
U

(14.26)

In general the product of a r − 1-blade and an r-blade such as (x · Ar)Br) could potentially
have any of these higher order terms.

Summarizing the results so far we have

x = (x ·U)
1
U

+ (x∧U)
1
U

= (x ·U) ·
1
U

+ (x∧U)
1
U

(14.27)

Since the RHS of this equation is a vector, this implies that the LHS is also a vector and thus

(x∧U)
1
U

=

〈
(x∧U)

1
U

〉
1

= (x∧U) ·
1
U

(14.28)

Thus we have an explicit formula for the projective and rejective terms of a vector with
respect to a hypervolume element U:

x = (x ·U)
1
U

+ (x∧U)
1
U

= (x ·U) ·
1
U

+ (x∧U) ·
1
U

=
−1r(r−1)/2

|U|2
((x ·U) ·U + (x∧U) ·U)

(14.29)
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14.2.3 Special note. Interpretation for projection and rejective components of a line

The proof above utilized the general definition of the dot product of two blades, the selection of
the lowest grade element of the product:

Ak ·B j =
〈
AkB j

〉
|k− j|

(14.30)

Because of this, the scalar-vector dot product is perfectly well defined

a · b = 〈ab〉1−0 = ab (14.31)

So, when U is a vector, the equations above also hold.

14.2.4 Explicit expansion of projective and rejective components

Having calculated the explicit vector expansion of the projective term to prove that the all the
higher grade product terms were zero, this can be used to explicitly expand the projective and
rejective components in terms of a set of unit vectors that span the hypervolume

x‖ = (x ·U) ·
1
U

= (x · u1)u1 + (x · u2)u2 + · · ·

x⊥ = (x∧U) ·
1
U

= x − (x · u1)u1 − (x · u2)u2 − · · ·

(14.32)

Recall here that the unit vectors uk are not the standard basis vectors. They are instead an
arbitrary set of orthonormal vectors that span the hypervolume element U.
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14.3 verification that projective and rejective components are orthogonal

In NFCM, for the equation of a line, it is demonstrated that the two vector components (directrix
and parametrization) are orthogonal, and that the directrix is the minimal distance to the line
from the origin. That can be done here too for the hypervolume result.

x∧U = a∧U
(x∧U)U−1 = (a∧U)U−1

(xU − x ·U)U−1 = (a∧U)U−1

x = (x ·U)U−1 + (a∧U)U−1

= αU−1 + d

(14.33)

This first component, the projective term αU−1 = (x ·U)U−1, can be interpreted as a parametriza-
tion term. The last component, the rejective term d = (a ∧U)U−1 is identified as the directrix.
Calculation of |x| allows us to verify the physical interpretation of this vector.

Expansion of the projective term has previously shown that given

U = ku1 ∧ u2 · · · ∧ ur (14.34)

then the expansion of this parametrization term has the form

α =

 r∑
i=1

αiui

 U (14.35)

This is a very specific parametrization, a r − 1 grade parametrization α with r free variables,
producing a vector directed strictly in hypervolume spanned by U.

We can calculate the length of the projective component of x expressed in terms of this
parametrization:

x‖2 =
(
(x ·U)U−1

)2

= α
U†

UU†

(
U†

UU†

)†
α†

= α
U†

|U|2
U
|U|2

α†

=
|α|2

|U|2

(14.36)
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x2 = (αU−1)2 + d2 + 2(αU−1) · d

=
|α|2

|U|2
+ d2 + 2(αU−1) · d

(14.37)

Direct computation shows that this last dot product term is zero

(αU−1) · d = (αU−1) · ((a∧U)U−1)

= (αU−1) · (U−1(U∧ a))

=
(−1)r(r−1)/2

|U|2
(αU−1) · (U(U∧ a))

=
(−1)r(r−1)/2

|U|2
〈
αU−1U(U∧ a)

〉
0

=
(−1)r(r−1)/2

|U|2
〈α(U∧ a)〉0

(14.38)

This last term is a product of an r − 1 grade blade and a r + 1 grade blade. The lowest order
term of this product has grade r + 1 − (r − 1) = 2, which implies that 〈α(U∧ a)〉0 = 0. This
demonstrates explicitly that the parametrization term is perpendicular to the rejective term as
expected.

The length from the origin to the volume is thus

x2 =
|α|2

|U|2
+ d2 (14.39)

This is minimized when α = 0. Thus d is a vector directed from the origin to the hypervolume,
perpendicular to that hypervolume, and also has the minimal distance to that space.





15
Q UAT E R N I O N S

Like complex numbers, quaternions may be written as a multivector with scalar and bivector
components (a 0,2-multivector).

q = α + B (15.1)

Where the complex number has one bivector component, and the quaternions have three.
One can describe quaternions as 0,2-multivectors where the basis for the bivector part is

left handed. There is not really anything special about quaternion multiplication, or complex
number multiplication, for that matter. Both are just a specific examples of a 0,2-multivector
multiplication. Other quaternion operations can also be found to have natural multivector equiv-
alents. The most important of which is likely the quaternion conjugate, since it implies the norm
and the inverse. As a multivector, like complex numbers, the conjugate operation is reversal:

q = q† = α −B (15.2)

Thus |q|2 = qq = α2 − B2. Note that this norm is a positive definite as expected since a
bivector square is negative.

To be more specific about the left handed basis property of quaternions one can note that the
quaternion bivector basis is usually defined in terms of the following properties

i2 = j2 = k2 = −1 (15.3)

ij = −ji, ik = −ki, jk = −kj (15.4)

ij = k (15.5)

The first two properties are satisfied by any set of orthogonal unit bivectors for the space. The
last property, which could also be written ijk = −1, amounts to a choice for the orientation of
this bivector basis of the 2-vector part of the quaternion.
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As an example suppose one picks

i = e2e3 (15.6)

j = e3e1 (15.7)

Then the third bivector required to complete the basis set subject to the properties above is

ij = e2e1 = k (15.8)

.
Suppose that, instead of the above, one picked a slightly more natural bivector basis, the duals

of the unit vectors obtained by multiplication with the pseudoscalar (e1e2e3ei). These bivectors
are

i = e2e3, j = e3e1,k = e1e2 (15.9)

.
A 0,2-multivector with this as the basis for the bivector part would have properties similar

to the standard quaternions (anti-commutative unit quaternions, negation for unit quaternion
square, same conjugate, norm and inversion operations, ...), however the triple product would
have the value ijk = 1, instead of −1.

15.1 quaternion as generator of dot and cross product

The product of pure quaternions is noted as being a generator of dot and cross products. This is
also true of a vector bivector product.

Writing a vector x as

x =
∑

i

xiei = x1e1 + x2e2 + x3e3 (15.10)

And a bivector B (where for short, ei j = eie j = ei ∧ e j) as:

B =
∑

i

bieiI = b1e23 + b2e31 + b3e12 (15.11)
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The product of these two is

xB = (x1e1 + x2e2 + x3e3)(b1e23 + b2e31 + b3e12)

= (x3b2 − x2b3)e1 + (x1b3 − x3b1)e2 + (x2b1 − x1b2)e3

+ (x1b1 + x2b2 + x3b3)e123

(15.12)

Looking at the vector and trivector components of this we recognize the dot product and
negated cross product immediately (as with multiplication of pure quaternions).

Those products are, in fact, x ·B and x∧B respectively.
Introducing a vector and bivector basis α = {ei}, and β = {eiI}, we can express the dot product

and cross product of the associated coordinate vectors in terms of vector bivectors products as
follows:

[x]α · [B]β =
B∧ x

I
(15.13)

[x]α × [B]β = [B · x]α (15.14)
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C AU C H Y E Q UAT I O N S E X P R E S S E D A S A G R A D I E N T

The complex number derivative, when it exists, is defined as:

δ f
δz

=
f (z + δz) − f (z)

δz

f ′(z) = limit|δz|→0
δ f
δz

Like any two variable function, this limit requires that all limiting paths produce the same
result, thus it is minimally necessary that the limits for the particular cases of δz = δx + iδy
exist for both δx = 0, and δy = 0 independently. Of course there are other possible ways for
δz → 0, such as spiraling inwards paths. Apparently it can be shown that if the specific cases
are satisfied, then this limit exists for any path (I am not sure how to show that, nor will try, at
least now).

Examining each of these cases separately, we have for δx = 0, and f (z) = u(x, y) + iv(x, y):

δ f
δz

=
u(x, y + δy) + iv(x, y + δy)

iδy

→ −i
∂u(x, y)
∂y

+
∂v(x, y)
∂y

(16.1)

and for δy = 0

δ f
δz

=
u(x + δx, y) + iv(x + δx, y)

δx

→
∂u(x, y)
∂x

+ i
∂v(x, y)
∂x

(16.2)

If these are equal regardless of the path, then equating real and imaginary parts of these
respective equations we have:

∂v
∂x

+
∂u
∂y

= 0

∂u
∂x
−
∂v
∂y

= 0
(16.3)
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Now, these are strikingly similar to the gradient, and we make this similarly explicit using
the planar pseudoscalar i = e1 ∧ e2 = e1e2 as the unit imaginary. For the first equation, pre
multiplying by 1 = e11, and post multiplying by e2 we have:

e1
∂e12v
∂x

+ e2
∂u
∂y

= 0,

and for the second, pre multiply by e1, and post multiply the ∂y term by 1 = e22, and rear-
range:

e1
∂u
∂x

+ e2
∂e12v
∂y

= 0.

Adding these we have:

e1
∂u + e12

∂x
+ e2

∂u + e12v
∂y

= 0.

Since f = u + iv, this is just

e1
∂ f
∂x

+ e2
∂ f
∂y

= 0. (16.4)

Or,

∇ f = 0 (16.5)

By taking second partial derivatives and equating mixed partials we are used to seeing these
Cauchy-Riemann equations take this form as second order equations:

∇2u = uxx + uyy = 0 (16.6)

∇2v = vxx + vyy = 0 (16.7)

Given this, eq. (16.5) is something that we could have perhaps guessed, since the square root
of the Laplacian operator, is in fact the gradient (there are an infinite number of such square
roots, since any rotation of the coordinate system that expresses the gradient also works). How-
ever, a guess of this is not required since we see this explicitly through some logical composition
of relationships.

The end result is that we can make a statement that in regions where the complex function is
analytic (has a derivative), the gradient of that function is zero in that region.

This is a kind of interesting result and I expect that this will relevant when figuring out how
the geometric calculus all fits together.
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16.1 verify we still have the cauchy equations hiding in the gradient

We have:

∇ f e1 = ∇(e1u − e2v) = 0

If this is to be zero, both the scalar and bivector parts of this equation must also be zero.

(∇ · f )e1 = ∇ · (e1u − e2v)

= (e1∂x + e2∂y) · (e1u − e2v)

= (∂xu − ∂yv) = 0

(16.8)

(∇∧ f )e1 = ∇∧ (e1u − e2v)

= (e1∂x + e2∂y)∧ (e1u − e2v)

= −e1 ∧ e2(∂xv + ∂yu) = 0

(16.9)

We therefore see that this recovers the expected pair of Cauchy equations:

∂xu − ∂yv = 0

∂xv + ∂yu = 0
(16.10)





17
L E G E N D R E P O LY N O M I A L S

Exercise 8.4, from [19].
Find the first couple terms of the Legendre polynomial expansion of

1
|x − a|

(17.1)

Write

f (x) =
1
|x|

(17.2)

Expanding f (x − a) about x we have

1
|x − a|

=
∑
k=0

1
k!

(−a · ∇)k 1
|x|

(17.3)

Expanding the first term we have

−a · ∇
1
|x|

=
1

|x|2
a · ∇|x|

=
1

|x|2
a · ∇(x2)1/2

=
1

|x|2
(1/2)

(|x|2)1/2
a · ∇x2

=
a · x
|x|3

(17.4)

Expansion of the second derivative term is

(−a · ∇)
2

(−a · ∇)
1

1
|x|

=
a · ∇

2

(
−a · x
|x|3

)
=
−1
2

(
a · ∇(a · x)

|x|3
+ (a · x)a · ∇

1

|x|3

) (17.5)
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For this we need

a · ∇(a · x) = a · (a · ∇x) = a2 (17.6)

And

a · ∇
1

|x|k
= k

1

|x|k−1 a · ∇
1
|x|

= k
1

|x|k−1

−a · x
|x|3

= −k
a · x
|x|k+2

(17.7)

Thus the second derivative term is

−1
2

(
a2

|x|3
− 3

(a · x)2

|x|5

)
=

(1/2)
(
3(a · x)2 − a2x2

)
|x|5

(17.8)

Summing these terms we have

1
|x − a|

=
1
|x|

+
a · x
|x|3

+
(1/2)

(
3(a · x)2 − a2x2

)
|x|5

+ · · · (17.9)

NFCM writes this as

1
|x − a|

=
P0(xa)
|x|

+
P1(xa)

|x|3
+

P2(xa)

|x|5
+ · · · (17.10)

And calls Pi = Pi(xa) terms the Legendre polynomials. This is not terribly clear since one
expects a different form for the Legendre polynomials.

Using the Taylor formula one can derive a recurrence relation for these that makes the calcu-
lation a bit simpler

Pk+1

|x|2(k+1)+1 =
−a · ∇
k + 1

(
Pk

|x|2k+1

)
=
−1

k + 1

(
a · ∇(Pk

|x|2k+1 + Pk
a · ∇
|x|2k+1

)
=

1
k + 1

(
Pk(2k + 1)

a · x
|x|2k+3 − x2 a · ∇Pk

|x|2k+3

) (17.11)

Or

(k + 1)Pk+1 = Pk(2k + 1)a · x − x2a · ∇Pk (17.12)
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Some of these have been calculated

P0 = 1

P1 = a · x

P2 =
1
2

(3(a · x)2 − a2x2)

(17.13)

And for the derivatives

a · ∇P0 = 0

a · ∇P1 = a2

a · ∇P2 =
1
2

((3)(2)(a · x)a2 − 2a2x · a)

= 2a2(x · a)

(17.14)

Using the recurrence relation one can calculate P3 for example.

P3 = (1/3)
(
5
2

(3(a · x)2 − a2x2)(a · x) − 2x2a2(x · a)
)

= (1/3)(a · x)
(
5
2

(3(a · x)2 − a2x2) − 2x2a2
)

= (a · x)
(
5
2

((a · x)2) − 3/2x2a2
)

=
1
2

(a · x)(5(a · x)2 − 3x2a2)

(17.15)

17.1 putting things in standard legendre polynomial form

This is still pretty laborious to calculate, especially because of not having a closed form recur-
rence relation for a · ∇Pk. Let us relate these to the standard Legendre polynomial form.

Observe that we can write

P0(xa) = 1
P1(xa)
|x||a|

= â · x̂

P2(xa)
|x|2|a|2

=
1
2

(3(â · x̂)2 − 1)

P3(xa)
|x|3|a|3

=
1
2

(5(â · x̂)3 − 3(â · x̂))

(17.16)
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With this scaling, we have the standard form for the Legendre polynomials, and can write

1
x − a

=
1
|x|

P0 +
|a|
|x|

P1(â · x̂) +

(
|a|
|x|

)2

P2(â · x̂) +

(
|a|
|x|

)3

P3(â · x̂) + · · ·

 (17.17)

17.2 scaling standard form legendre polynomials

Since the odd Legendre polynomials have only odd terms and even have only even terms this
allows for the scaled form that NFCM uses.

P0(xa) = P0(â · x̂)

P1(xa) = |x||a|P1(â · x̂) = a · x

P2(xa) = |x|2|a|2P2(â · x̂) =
1
2

(3(a · x)2 − x2a2)

P3(xa) = |x|3|a|3P3(â · x̂) =
1
2

(5(a · x)3 − 3(a · x)x2a2)

(17.18)

Every term for the kth polynomial is a permutation of the geometric product xkak.
This allows for writing some of these terms using the wedge product. Using the product

expansion:

(a · x)2 = (a∧ x)2 + a2x2 (17.19)

Thus we have:

P2(xa) = (a · x)2 +
1
2

(a∧ x)2

= (a · x)2 −
1
2
|a∧ x|2

(17.20)

This is nice geometrically since the directional dependence of this term on the co-linearity
and perpendicularity of the vectors a and x is clear.

Doing the same for the P3:

P3(xa) = (a · x)
1
2

(5(a · x)2 − 3x2a2)

= (a · x)
1
2

(2(a · x)2 + 3(a∧ x)2)

= (a · x)((a · x)2 −
3
2
|a∧ x|2)

(17.21)
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I suppose that one could get the same geometrical interpretation with a standard Legendre
expansion in terms of â · x̂ = cos(θ) terms, by collect both sin(θ) and cos(θ) powers, but one can
see the power of writing things explicitly in terms of the original vectors.

17.3 note on nfcm legendre polynomial notation

In NFCM’s slightly abusive notation Pk was used with various meanings. He wrote Pk(â · x̂) =
Pk(xa)
|x|k |a|k .

Note for example that the standard first degree Legendre polynomial P1(x) = x evaluated
with a xa value:

1
|x||a|

P1(x)|x=xa = x̂â

= x̂ · â + x̂∧ â
(17.22)

This has a bivector component in addition to the component identical to the standard Legen-
dre polynomial term (the first part).

By luck it happens that the scalar part of this equals P1(â · x̂), but this is not the case for other
terms. Example, P2(xa):

P2(x)|x=xa =
1
2

(3(xa)2 − 1)

=
1
2

(3(−ax + 2a · x)(xa) − 1)

=
1
2

(3(−a2x2 + 2(a · x)2 + 2(a · x)(x∧ a)) − 1)

= −(3/2)a2x2 + 3(a · x)2 + 3(a · x)(x∧ a) − 1/2

(17.23)

Scaling this by 1/(a2x2) is

−
3
2

+ 3(â · x̂)2 + 3(â · x̂)(x̂∧ â) −
1

a2x2 (17.24)

The scalar part of this is not anything recognizable.
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L E V I - C I V I T I C A S U M M AT I O N I D E N T I T Y

18.1 motivation

In [5] it is left to the reader to show

∑
k

εi jkεklm = δilδ jm − δ jlδim (18.1)

18.2 a mechanical proof

Although it is not mathematical, this is easy to prove, at least for 3D. The following perl code
does the trick

#!/usr/bin/perl

$e{111} = 0 ; $e{112} = 0 ; $e{113} = 0 ;

$e{121} = 0 ; $e{122} = 0 ; $e{123} = 1 ;

$e{131} = 0 ; $e{132} = -1 ; $e{133} = 0 ;

$e{211} = 0 ; $e{212} = 0 ; $e{213} = -1 ;

$e{221} = 0 ; $e{222} = 0 ; $e{223} = 0 ;

$e{231} = 1 ; $e{232} = 0 ; $e{233} = 0 ;

$e{311} = 0 ; $e{312} = 1 ; $e{313} = 0 ;

$e{321} = -1 ; $e{322} = 0 ; $e{323} = 0 ;

$e{331} = 0 ; $e{332} = 0 ; $e{333} = 0 ;

$d{11} = 1 ; $d{12} = 0 ; $d{13} = 0 ;

$d{21} = 0 ; $d{22} = 1 ; $d{23} = 0 ;

$d{31} = 0 ; $d{32} = 0 ; $d{33} = 1 ;

# prove: \sum_k e_{ijk} e_{klm}

# = \delta_{il}\delta_{jm} - \delta_{jl}\delta_{im}

#print "$e{123} $e{113} $e{321}\n" ;

for ( my $i = 1 ; $i <= 3 ; $i++ ) {

for ( my $j = 1 ; $j <= 3 ; $j++ ) {
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for ( my $l = 1 ; $l <= 3 ; $l++ ) {

for ( my $m = 1 ; $m <= 3 ; $m++ ) {

my $lhs = 0 ;

my $rhs = $d{"${i}${l}"} * $d{"${j}${m}"}

- $d{"${j}${l}"} * $d{"${i}${m}"} ;

for ( my $k = 1 ; $k <= 3 ; $k++ ) {

$lhs += $e{"${i}${j}${k}"} * $e{"${k}${l}${m}"} ;

}

if ( $rhs != $lhs ) {

print ’ERROR: \\sum_{k=1}^{3} \\epsilon_{’ .

"${i}${j}k" .

’} \\epsilon_{’ .

"k${l}${m}} = $lhs\n" ;

print ’ERROR: \\delta_{’ .

"${i}${l}}" . ’\\delta_{’ .

"${j}${m}" . ’} - \\delta_{’ .

"${j}${l}" . ’}\\delta_{’ .

"${i}${m}} = $rhs\n\n" ;

} else {

print "$lhs &= " .

’\\sum_{k=1}^{3} \\epsilon_{’ .

"${i}${j}k" . ’} \\epsilon_{’ .

"k${l}${m}} = " . ’\\delta_{’ .

"${i}${l}}" . ’\\delta_{’ . "${j}${m}" .

’} - \\delta_{’ . "${j}${l}" .

’}\\delta_{’ . "${i}${m}}" .

’ \\\\’ . " \n" ;

} } } } } �
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The output produced has all the variations of indices, such as

0 =

3∑
k=1

ε11kεk11 = δ11δ11 − δ11δ11

0 =

3∑
k=1

ε11kεk12 = δ11δ12 − δ11δ12

...

0 =

3∑
k=1

ε11kεk33 = δ13δ13 − δ13δ13

0 =

3∑
k=1

ε12kεk11 = δ11δ21 − δ21δ11

1 =

3∑
k=1

ε12kεk12 = δ11δ22 − δ21δ12

0 =

3∑
k=1

ε12kεk13 = δ11δ23 − δ21δ13

−1 =

3∑
k=1

ε12kεk21 = δ12δ21 − δ22δ11

...

(18.2)

18.3 proof using bivector dot product

This identity can also be derived from an expansion of the bivector dot product in two different
ways.

(ei ∧ e j) · (em ∧ en) = ((ei ∧ e j) · em) · en

= (ei(e j · em) − e j(ei · em)) · en

= (eiδ jm − e jδim) · en

= δinδ jm − δ jnδim

(18.3)

Expressing the wedge product in terms duality, using the pseudoscalar I = e1e2e3, we have

(ei ∧ e j)ek = Iεi jk (18.4)
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Or

ei ∧ e j = I
∑

k

εi jkek (18.5)

Then the bivector dot product is

(ei ∧ e j) · (em ∧ en) =

〈
I
∑

k

εi jkekI
∑

p

εmnpep

〉
= I2

∑
k,p

εi jkεmnp
〈
ekep

〉
= −

∑
k,p

εi jkεmnpδkp

= −
∑

k

εi jkεmnk

(18.6)

Comparing the two expansions we have

∑
k

εi jkεmnk = δ jnδim − δinδ jm (18.7)

Which is equivalent to the original identity (after an index switcheroo). Note both the dimen-
sion and metric dependencies in this proof.
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S O M E N F C M E X E R C I S E S O L U T I O N S A N D N OT E S

Solutions for problems in chapter 2 I recall that some of the problems from this chapter of
[19] were fairly tricky. Did I end up doing them all? I intended to revisit these and make sure I
understood it all. As I do so, write up solutions, starting with 1.3, a question on the Geometric
Algebra group.

Another thing I recall from the text is that I was fairly confused about all the mass of identities
by the time I got through it, and it was not clear to me which were the fundamental ones.
Eventually I figured out that it is really grade selection that is the fundamental operation, and
found better presentations of axiomatic treatment in [10].

For reference the GA axioms are

• vector product is linear

a(αb + βc) = αab + βac

(αa + βb)c = αac + βbc
(19.1)

• distribution of vector product

(ab)c = a(bc) = abc (19.2)

• vector contraction

a2 ∈ R (19.3)

For a Euclidean space, this provides the length a2 = |a|2, but for relativity and conformal
geometry this specific meaning is not required.

The definition of the generalized dot between two blades is

Ar · Bs = 〈AB〉|r−s| (19.4)
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and the generalized wedge product definition for two blades is

Ar ∧ Bs = 〈AB〉r+s. (19.5)

With these definitions and the GA axioms everything else should logically follow.
I personally found it was really easy to go around in circles attempting the various proofs,

and intended to revisit all of these and prove them all for myself making sure I did not invoke
any circular arguments and used only things already proven.

19.0.1 Exercise 1.3

Solve for x

αx + ax · b = c (19.6)

where α is a scalar and all the rest are vectors.

19.0.1.1 Solution

Can dot or wedge the entire equation with the constant vectors. In particular

c · b = (αx + ax · b) · b

= (α + a · b)x · b
(19.7)

=⇒ x · b =
c · b

α + a · b
(19.8)

and

c∧ a = (αx + ax · b)∧ a

= α(x ∧ a) + (a∧ a)

= 0

(x · b)∧ a

(19.9)

=⇒ x ∧ a =
1
α

(c∧ a) (19.10)
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This last can be reduced by dotting with b, and then substitute the result for x · b from above

(x ∧ a) · b = x(a · b) − (x · b)a

= x(a · b) −
c · b

α + a · b
a

(19.11)

Thus the final solution is

x =
1

a · b

(
c · b

α + a · b
a +

1
α

(c∧ a) · b
)

(19.12)

Question: was there a geometric or physical motivation for this question. I can not recall one?

19.1 sequential proofs of required identities

19.1.1 Split of symmetric and antisymmetric parts of the vector product

NFCM defines the vector dot and wedge products in terms of the symmetric and antisymmetric
parts, and not in terms of grade selection.

The symmetric and antisymmetric split of a vector product takes the form

ab =
1
2

(ab + ba) +
1
2

(ab − ba) (19.13)

Observe that if the two vectors are colinear, say b = αa, then this is

ab =
α

2
(a2 + a2) +

α

2
(a2 − a2) (19.14)

The antisymmetric part is zero for any colinear vectors, while the symmetric part is a scalar
by the contraction axiom eq. (19.3).

Now, suppose that one splits the vector b into a part that is explicit colinear with a, as in
b = αa + c.

Here one can observe that none of the colinear component of this vector contributes to the
antisymmetric part of the split

1
2

(ab − ba) =
1
2

(a(αa + c) − (αa + c)a)

=
1
2

(ac − ca)
(19.15)
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So, in a very loose fashion the symmetric part can be observed to be due to only colinear
parts of the vectors whereas colinear components of the vectors do not contribute at all to the
antisymmetric part of the product split. One can see that there is a notion of parallelism and
perpendicularity built into this construction.

What is of interest here is to show that this symmetric and antisymmetric split also provides
the scalar and bivector parts of the product, and thus matches the definitions of generalized dot
and wedge products.

While it has been observed that the symmetric product is a scalar for colinear vectors it has
not been demonstrated that this is necessarily a scalar in the general case.

Consideration of the square of a + b is enough to do so.

(a + b)2 = a2 + b2 + ab + ba

=⇒
(19.16)

1
2

(
(a + b)2 − a2 − b2

)
=

1
2

(ab + ba) (19.17)

We have only scalar terms on the LHS, which demonstrates that the symmetric product is
necessarily a scalar. This is despite the fact that the exact definition of a2 (ie: the metric for the
space) has not been specified, nor even a requirement that this vector square is even satisfies
a2 >= 0. Such an omission is valuable since it allows for a natural formulation of relativistic
four-vector algebra where both signs are allowed for the vector square.

Observe that eq. (19.17) provides a generalization of the Pythagorean theorem. If one defines,
as in Euclidean space, that two vectors are perpendicular by

(a + b)2 = a2 + b2 (19.18)

Then one necessarily has

1
2

(ab + ba) = 0 (19.19)

So, that we have as a consequence of this perpendicularity definition a sign inversion on
reversal

ba = −ab (19.20)

This equation contains the essence of the concept of grade. The product of a pair of vectors is
grade two if reversal of the factors changes the sign, which in turn implies the two factors must
be perpendicular.
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Given a set of vectors that, according to the symmetric vector product (dot product) are all
either mutually perpendicular or colinear, grouping by colinear sets determines the grade

a1a2a3...am = (b j1b j2 ...)(bk1bk2 ...)...(bl1bl2 ...) (19.21)

after grouping in pairs of colinear vectors (for which the squares are scalars) the count of
the remaining elements is the grade. By example, suppose that ei is a normal basis for RN

ei · e j ∝ δi j, and one wishes to determine the grade of a product. Permuting this product so that
it is ordered by index leaves it in a form that the grade can be observed by inspection

e3e7e1e2e1e7e6e7 = −e3e1e7e2e1e7e6e7

= e1e3e7e2e1e7e6e7

= ...

∝ e1e1e2e3e6e7e7e7

= (e1e1)e2e3e6(e7e7)e7

∝ e2e3e6e7

(19.22)

This is an example of a grade four product. Given this implicit definition of grade, one can
then see that the antisymmetric product of two vectors is necessarily grade two. An explicit
enumeration of a vector product in terms of an explicit normal basis and associated coordinates
is helpful here to demonstrate this.

Let

a =
∑

i

aiei

b =
∑

j

b je j
(19.23)

now, form the product

ab =
∑

i

∑
j

aib jeie j

=
∑
i< j

aib jeie j +
∑
i= j

aib jeie j +
∑
i> j

aib jeie j

=
∑
i< j

aib jeie j +
∑
i= j

aib jeie j +
∑
j>i

a jbie jei

=
∑
i< j

aib jeie j +
∑
i= j

aib jeie j −
∑
i< j

a jbieie j

=
∑

i

aibi(ei)2 +
∑
i< j

(aib j − a jbi)eie j

(19.24)
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similarly

ba =
∑

i

aibi(ei)2 −
∑
i< j

(aib j − a jbi)eie j (19.25)

Thus the symmetric and antisymmetric products are respectively

1
2

(ab + ba) =
∑

i

aibi(ei)2

1
2

(ab − ba) =
∑
i< j

(aib j − a jbi)eie j

(19.26)

The first part as shown above with non-coordinate arguments is a scalar. Each term in the
antisymmetric product has a grade two term, which as a product of perpendicular vectors cannot
be reduced any further, so it is therefore grade two in its entirety.

following the definitions of eq. (19.4) and eq. (19.5) respectively, one can then write

a · b =
1
2

(ab + ba)

a∧ b =
1
2

(ab − ba)
(19.27)

These can therefore be seen to be a consequence of the definitions and axioms rather than a
required a-priori definition in their own right. Establishing these as derived results is important
to avoid confusion when one moves on to general higher grade products. The vector dot and
wedge products are not sufficient by themselves if taken as a fundamental definition to establish
the required results for such higher grade products (in particular the useful formulas for vector
times blade dot and wedge products should be observed to be derived results as opposed to
definitions).

19.1.2 bivector dot with vector reduction

In the 1.3 solution above the identity

(a∧ b) · c = a(b · c) − (a · c)b (19.28)
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was used. Let us prove this.

(a∧ b) · c = 〈(a∧ b)c〉1
=⇒

2(a∧ b) · c = 〈abc − bac〉1
= 〈abc − b(−ca + 2a · c)〉1
= 〈abc + bca〉1 − 2b(a · c)

= 〈a(b · c + b∧ c) + (b · c + b∧ c)a〉1 − 2b(a · c)

= 2a(b · c) + a · (b∧ c) + (b∧ c) · a − 2b(a · c)

(19.29)

To complete the proof we need a · B = −B · a, but once that is demonstrated, one is left with
the desired identity after dividing through by 2.

19.1.3 vector bivector dot product reversion

Prove a · B = −B · a.
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O U T E R M O R P H I S M Q U E S T I O N

20.1

[10] has an example of a linear operator.

F(a) = a + α(a · f1) f2. (20.1)

This is used to compute the determinant without putting the operator in matrix form.

20.1.1 bivector outermorphism

Their first step is to compute the wedge of this function applied to two vectors. Doing this
myself (not omitting steps), I get:

F(a∧ b) = F(a)∧ F(b)

= (a + α(a · f1) f2)∧ (b + α(b · f1) f2)

= a∧ b + α(a · f1) f2 ∧ b + α(b · f1)a∧ f2 + α2(a · f1)(b · f1) f2 ∧ f2

= 0

= a∧ b + α ((b · f1)a − (a · f1)b) ∧ f2
= a∧ b + α ((a∧ b) · f1) ∧ f2

(20.2)

This has a very similar form to the original function F. In particular one can write

F(a) = a + α(a · f1) f2
= a + 〈α(a · f1) f2〉1
= a + 〈α(a · f1) f2〉0+1

= a + α(a · f1)∧ f2

(20.3)

Here the fundamental definition of the wedge product as the highest grade part of a product
of blades has been used to show that the new bivector function defined via outermorphism has
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146 outermorphism question

the same form as the original, once we put the original in the new form that applies to bivector
and vector:

F(A) = A + α(A · f1)∧ f2 (20.4)

20.1.2 Induction

Now, proceeding inductively, assuming that this is true for some grade k blade A, one can
calculate F(A)∧ F(b) for a vector b:

F(A)∧ F(b)

= (A + α(A · f1)∧ f2)∧ (b + α(b · f1) f2)

= A∧ b + α(b · f1)A∧ f2 + α((A · f1)∧ f2)∧ b + α2(b · f1)((A · f1)∧ f2)∧ f2
= A∧ b + α ((b · f1)A − (A · f1)∧ b) ∧ f2
= A∧ b + α〈(b · f1)A − (A · f1)b〉k ∧ f2

(20.5)

Now, similar to the bivector case, this inner quantity can be reduced, but it is messier to do
so:

〈(b · f1)A − (A · f1)b〉k =
1
2

〈
b f1A − A f1b + f1(bA + (−1)kAb)

〉
k

(20.6)

=⇒ 〈(b · f1)A − (A · f1)b〉k =
1
2
〈b f1A − A f1b〉k + 〈 f1(b∧ A)〉k (20.7)

Consider first the right hand expression:

〈 f1(b∧ A)〉k = f1 · (b∧ A)

= (−1)k f1 · (A∧ b)

= (−1)k(−1)k(A∧ b) · f1
= (A∧ b) · f1

(20.8)

The right hand expression in eq. (20.7) can be shown to equal zero. That is messier still and
the calculation can be found at the end.

Using that equals zero result we now have:

F(A)∧ F(b) = A∧ b + α((A∧ b) · f1)∧ f2 (20.9)

This completes the induction.
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20.1.3 Can the induction be avoided?

Now, GAFP did not do this induction, nor even claim it was required. The statement is "It
follows that", after only calculating the bivector case. Is there a reason that they would be able
to make such a statement without proof that is obvious to them perhaps but not to me?

It has been pointed out that this question is answered, “yes, the induction can be avoided”, in
[30] page 148.

20.2 appendix . messy reduction for induction

Q: Is there an easier way to do this?
Here we want to show that

1
2
〈b f1A − A f1b〉k = 0

Expanding the innards of this expression to group A and b parts together:

b f1A − A f1b = ( f1b − 2b∧ f1)A − A(b f1 − 2 f1 ∧ b)

= f1bA − Ab f1 − 2(b∧ f1)A + 2A( f1 ∧ b)

= f1(b · A + b∧ A) − (A · b + A∧ b) f1
− 2 ((b∧ f1) · A + 〈(b∧ f1)A〉k + (b∧ f1)∧ A)

+ 2 (A · ( f1 ∧ b) + 〈A( f1 ∧ b)〉k + A∧ ( f1 ∧ b))

(20.10)

the grade k − 2, and grade k + 2 terms of the bivector product cancel (we are also only inter-
ested in the grade-k parts so can discard them). This leaves:

f1 ∧ (b · A) − (A · b)∧ f1 + f1 · (b∧ A) − (A∧ b) · f1 − 2〈(b∧ f1)A〉k + 2〈A( f1 ∧ b)〉k

The bivector, blade product part of this is the antisymmetric part of that product so those
two last terms can be expressed with the commutator relationship for a bivector with blade:
〈B2A〉k = 1

2 (B2A − AB2):

2〈A( f1 ∧ b)〉k − 2〈(b∧ f1)A〉k = A( f1 ∧ b) − ( f1 ∧ b)A − (b∧ f1)A + A(b∧ f1)

= A( f1 ∧ b) − ( f1 ∧ b)A + ( f1 ∧ b)A − A( f1 ∧ b)

= 0

(20.11)
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So, we now have to show that we have zero for the remainder:

2〈b f1A − A f1b〉k = f1 ∧ (b · A) − (A · b)∧ f1
+ f1 · (b∧ A) − (A∧ b) · f1

= (−1)k−1 f1 ∧ (A · b) − (−1)k−1 f1 ∧ (A · b)

+ (−1)k f1 · (A∧ b) − (−1)k f1 · (A∧ b)

= 0

(20.12)

20.3 new observation

Looking again, I think I see one thing that I missed. The text said they were constructing the
action on a general multivector. So, perhaps they meant b to be a blade. This is a typesetting
subtlety if that is the case. Let us assume that is what they meant, and that b is a grade k blade.
This makes the coefficient of the scalar α in equation 4.147 :

a · f1 f2 ∧ b + b · f1a∧ f2 =
(
(b · f1)a + (−1)k(a · f1)b

)
∧ f2 (20.13)

whereas they have:

((b · f1)a − (a · f1)b) ∧ f2

So, no, I think they must have intended b to be a vector, not an arbitrary grade blade.
Now, indirectly, it has been proven here that for a vectors x, y, and a grade-k blade B:

(A∧ x) · y = A(x · y) − (A · y)∧ x (20.14)

Or,

(A∧ x) · y = (y · x)A + (−1)k(y · A)∧ x (20.15)

(changed variable names to disassociate this from the specifics of this particular example),
which is a generalization of the wedge product with dot product distribution identity for vectors:

(a∧ b) · c = a(b · c) − (a · c)∧ b (20.16)

I believe I have seen a still more general form of eq. (20.14) in a Hestenes paper, but did not
think about using it a-priori. Regardless, it does not really appear the the GAFP text was treating
b as anything but a vector, since there would have to be a (−1)k factor on equation 4.147 for it
to be general.
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R E C I P RO C A L F R A M E V E C T O R S

21.1 approach without geometric algebra

Without employing geometric algebra, one can use the projection operation expressed as a dot
product and calculate the a vector orthogonal to a set of other vectors, in the direction of a
reference vector.

Such a calculation also yields RN results in terms of determinants, and as a side effect pro-
duces equations for parallelogram area, parallelepiped volume and higher dimensional ana-
logues as a side effect (without having to employ change of basis diagonalization arguments
that do not work well for higher dimensional subspaces).

21.1.1 Orthogonal to one vector

The simplest case is the vector perpendicular to another. In anything but R2 there are a whole
set of such vectors, so to express this as a non-set result a reference vector is required.

Calculation of the coordinate vector for this case follows directly from the dot product. Bor-
rowing the GA term, we subtract the projection to calculate the rejection.

Rejû (v) = v − v · ûû

=
1
u2 (vu2 − v · uu)

=
1
u2

∑
vieiu ju j − v ju juiei

=
1
u2

∑
u jei

∣∣∣∣∣∣∣vi v j

ui u j

∣∣∣∣∣∣∣
=

1
u2

∑
i< j

(uie j − u jei)

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣

(21.1)

Thus we can write the rejection of v from û as:

Rejû (v) =
1
u2

∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣ (21.2)
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Or introducing some shorthand:

Duv
i j =

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
Due

i j =

∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣
(21.3)

eq. (21.2) can be expressed in a form that will be slightly more convenient for larger sets of
vectors:

Rejû (v) =
1
u2

∑
i< j

Duv
i j Due

i j (21.4)

Note that although the GA axiom u2 = u · u has been used in equations eq. (21.2) and
eq. (21.4) above and the derivation, that was not necessary to prove them. This can, for now, be
thought of as a notational convenience, to avoid having to write u · u, or ‖u‖2.

This result can be used to express the RN area of a parallelogram since we just have to
multiply the length of Rejû (v):

‖Rejû (v)‖
2 = Rejû (v) · v =

1
u2

∑
i< j

(
Duv

i j

)2
(21.5)

with the length of the base ‖u‖. [FIXME: insert figure.]
Thus the area (squared) is:

A2
u,v =

∑
i< j

(
Duv

i j

)2
(21.6)

For the special case of a vector in R2 this is

Au,v = |Duv
12 | = abs


∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
 (21.7)
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21.1.2 Vector orthogonal to two vectors in direction of a third

The same procedure can be followed for three vectors, but the algebra gets messier. Given three
vectors u, v, and w we can calculate the component w′ of w perpendicular to u and v. That is:

v′ = v − v · ûû
=⇒

w′ = w −w · ûû −w · v̂′v̂′
(21.8)

After expanding this out, a number of the terms magically cancel out and one is left with

w′′ = w′(u2v2 − (u · v)2) = u
(
−u ·wv2 + (u · v)(v ·w)

)
+ v

(
−u2(v ·w) − (u · v)(u ·w)

)
+ w

(
u2v2 − (u · v)2

) (21.9)

And this in turn can be expanded in terms of coordinates and the results collected yielding

w′′ =
∑

eiu jvk

ui

∣∣∣∣∣∣∣v j vk

w j wk

∣∣∣∣∣∣∣ − vi

∣∣∣∣∣∣∣u j uk

w j wk

∣∣∣∣∣∣∣ wi

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣


=
∑

eiu jvk

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
=

∑
i, j<k

ei

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
=

 ∑
i< j<k

+
∑
j<i<k

+
∑
j<k<i

 ei

∣∣∣∣∣∣∣u j uk

v j vk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣ .

(21.10)

Expanding the sum of the denominator in terms of coordinates:

u2v2 − (u · v)2 =
∑
i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2

(21.11)
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and using a change of summation indices, our final result for the vector perpendicular to two
others in the direction of a third is:

Rejû,v̂ (w) =

∑
i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

wi w j wk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

ei e j ek

∣∣∣∣∣∣∣∣∣∣∣
∑

i< j

∣∣∣∣∣∣∣ui u j

vi v j

∣∣∣∣∣∣∣
2 (21.12)

As a small aside, it is notable here to observe that span


∣∣∣∣∣∣∣ui u j

ei e j

∣∣∣∣∣∣∣
 is the null space for the vec-

tor u, and the set span


∣∣∣∣∣∣∣∣∣∣∣
ui u j uk

vi v j vk

ei e j ek

∣∣∣∣∣∣∣∣∣∣∣
 is the null space for the two vectors u and v respectively.

Since the rejection is a normal to the set of vectors it must necessarily include these cross
product like determinant terms.

As in eq. (21.4), use of a Duvw
i jk notation allows for a more compact result:

Rejûv̂ (w) =

∑
i< j

(
Duv

i j

)2


−1 ∑

i< j<k

Duvw
i jk Duve

i jk (21.13)

And, as before this yields the Volume of the parallelepiped by multiplying perpendicular
height:

‖Rejûv̂ (w)‖ = Rejûv̂ (w) ·w =

∑
i< j

(
Duv

i j

)2


−1 ∑

i< j<k

(
Duvw

i jk

)2
(21.14)

by the base area.
Thus the squared volume of a parallelepiped spanned by the three vectors is:

V2
u,v,w =

∑
i< j<k

(
Duvw

i jk

)2
. (21.15)
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The simplest case is for R3 where we have only one summand:

Vu,v,w = |Duvw
i jk | = abs


∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣
 . (21.16)

21.1.3 Generalization. Inductive Hypothesis

There are two things to prove

1. hypervolume of parallelepiped spanned by vectors u1,u2, . . . ,uk

V2
u1,u2,···,uk

=
∑

i1<i2<···<ik

(
D

ui1 ui2 ···uik
i1i2···ik

)2
(21.17)

2. Orthogonal rejection of a set of vectors in direction of another.

Rejû1···ûk−1
(uk) =

∑
i1<···<ik D

ui1 ···uik
i1···ik

D
ui1 ···uik−1 e
i1···ik∑

i1<···<ik−1

(
D

ui1 ···uik−1
i1···ik−1

)2 (21.18)

I cannot recall if I ever did the inductive proof for this. Proving for the initial case is done
(since it is proved for both the two and three vector cases). For the limiting case where k = n it
can be observed that this is normal to all the others, so the only thing to prove for that case is if
the scaling provided by hypervolume eq. (21.17) is correct.

21.1.4 Scaling required for reciprocal frame vector

Presuming an inductive proof of the general result of eq. (21.18) is possible, this rejection has
the property

Rejû1···ûk−1
(uk) · ui ∝ δki

With the scaling factor picked so that this equals δki, the resulting “reciprocal frame vector”
is

uk =

∑
i1<···<ik D

ui1 ···uik
i1···ik

D
ui1 ···uik−1 e
i1···ik∑

i1<···<ik

(
D

ui1 ···uik
i1···ik

)2 (21.19)
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The superscript notation is borrowed from Doran/Lasenby, and denotes not a vector raised to
a power, but this this special vector satisfying the following orthogonality and scaling criteria:

uk · ui = δki. (21.20)

Note that for k = n − 1, eq. (21.19) reduces to

un =
Du1···un−1e

1···(n−1)

Du1···un
1···n

. (21.21)

This or some other scaled version of this is likely as close as we can come to generalizing the
cross product as an operation that takes vectors to vectors.

21.1.5 Example. R3 case. Perpendicular to two vectors

Observe that for R3, writing u = u1, v = u2, w = u3, and w′ = u3
3 this is:

w′ =

∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

e1 e2 e3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣
=

u × v
(u × v) ·w

(21.22)

This is the cross product scaled by the (signed) volume for the parallelepiped spanned by the
three vectors.

21.2 derivation with ga

Regression with respect to a set of vectors can be expressed directly. For vectors ui write B =

u1 ∧ u2 · · · uk. Then for any vector we have:

x = xB
1
B

=

〈
xB

1
B

〉
1

=

〈
(x ·B + x∧B)

1
B

〉
1

(21.23)
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All the grade three and grade five terms are selected out by the grade one operation, leaving
just

x = (x ·B) ·
1
B

+ (x∧B) ·
1
B
. (21.24)

This last term is the rejective component.

RejB (x) = (x∧B) ·
1
B

=
(x∧B) ·B†

BB†
(21.25)

Here we see in the denominator the squared sum of determinants in the denominator of
eq. (21.18):

BB† =
∑

i1<···<ik

(
D

ui1 ···uik
i1···ik

)2
(21.26)

In the numerator we have the dot product of two wedge products, each expressible as sums
of determinants:

B† = (−1)k(k−1)/2
∑

i1<···<ik

D
ui1 ···uik
i1···ik

ei1ei2 · · · eik (21.27)

And

x∧B =
∑

i1<···<ik+1

D
xui1 ···uik
i1···ik+1

ei1ei2 · · · eik+1 (21.28)

Dotting these is all the grade one components of the product. Performing that calculation
would likely provide an explicit confirmation of the inductive hypothesis of eq. (21.18). This
can be observed directly for the k + 1 = n case. That product produces a Laplace expansion
sum.

(x∧B) ·B† = Dxu1···un−1
12···n

(
e1Du1···un−1

234···n − e2Du1···un−1
134···n + e3Du1···un−1

124···n

)
(21.29)

(x∧B) ·
1
B

=
Dxu1···un−1

12···n Deu1···un−1
12···n∑

i1<···<ik

(
D

ui1 ···uik
i1···ik

)2 (21.30)
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Thus eq. (21.18) for the k = n− 1 case is proved without induction. A proof for the k + 1 < n
case would be harder. No proof is required if one picks the set of basis vectors ei such that
ei ∧ B = 0 (then the k + 1 = n result applies). I believe that proves the general case too if one
observes that a rotation to any other basis in the span of the set of vectors only changes the sign
of the each of the determinants, and the product of the two sign changes will then have value
one.

Follow through of the details for a proof of original non GA induction hypothesis is proba-
bly not worthwhile since this reciprocal frame vector problem can be tackled with a different
approach using a subspace pseudovector.

It is notable that although this had no induction in the argument above, note that it is funda-
mentally required. That is because there is an inductive proof required to prove that the general
wedge and dot product vector formulas:

x ·B =
1
2

(xB − (−1)kBx) (21.31)

x∧B =
1
2

(xB + (−1)kBx) (21.32)

from the GA axioms (that is an easier proof without the mass of indices and determinant
products.)

21.3 pseudovector from rejection

As noted in the previous section the reciprocal frame vector uk is the vector in the direction of
uk that has no component in span u1, · · · ,uk−1, normalized such that uk · uk = 1. Explicitly, with
B = u1 ∧ u2 · · · ∧ uk−1 this is:

uk =
(uk ∧B) ·B

uk · ((uk ∧B) ·B)
(21.33)

This is derived from eq. (21.25), after noting that B†
BB† ∝ B, and further scaling to produce the

desired orthonormal property of equation eq. (21.20) that defines the reciprocal frame vector.
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21.3.1 back to reciprocal result

Now, eq. (21.33) looks considerably different from the Doran/Lasenby result. Reduction to a
direct pseudovector/blade product is possible since the dot product here can be converted to a
direct product.

(uk ∧B) ·B = (xB)

x = uk − (uk ·B) · 1
B

·B

= 〈xBB〉1
= xB2

=

((
uk − (uk ·B) ·

1
B

)
∧B

)
B

= (uk ∧B)B

(21.34)

Thus eq. (21.33) is a scaled pseudovector for the subspace defined by span ui, multiplied by
a k-1 blade.

21.4 components of a vector

The delta property of eq. (21.20) allows one to use the reciprocal frame vectors and the basis that
generated them to calculate the coordinates of the a vector with respect to this (not necessarily
orthonormal) basis.

That is a pretty powerful result, but somewhat obscured by the Doran/Lasenby super/sub
script notation.

Suppose one writes a vector in span ui in terms of unknown coefficients

a =
∑

aiui (21.35)

Dotting with u j gives:

a · u j =
∑

aiui · u j =
∑

aiδi j = a j (21.36)

Thus

a =
∑

(a · ui)ui (21.37)
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Similarly, writing this vectors in terms of ui we have

a =
∑

biui (21.38)

Dotting with u j gives:

a · u j =
∑

biui · u j =
∑

biδi j = b j (21.39)

Thus

a =
∑

(a · ui)ui (21.40)

We are used to seeing the equation for components of a vector in terms of a basis in the
following form:

a =
∑

(a · ui)ui (21.41)

This is true only when the basis vectors are orthonormal. Equations eq. (21.37) and eq. (21.40)
provide the general decomposition of a vector in terms of a general linearly independent set.

21.4.1 Reciprocal frame vectors by solving coordinate equation

A more natural way to these results are to take repeated wedge products. Given a vector decom-
position in terms of a basis ui, we want to solve for ai:

a =

k∑
i=1

aiui (21.42)

The solution, from the wedge is:

a∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk = ai(−1)i−1u1 ∧ · · · ∧ uk (21.43)

=⇒ ai = (−1)i−1 a∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk

u1 ∧ · · · ∧ uk
) (21.44)
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The complete vector in terms of components is thus:

a =
∑

(−1)i−1 a∧ (u1 ∧ u2 · · · ǔi · · · ∧ uk)

u1 ∧ · · · ∧ uk
ui (21.45)

We are used to seeing the coordinates expressed in terms of dot products instead of wedge
products. As in R3 where the pseudovector allows wedge products to be expressed in terms of
the dot product we can do the same for the general case.

Writing B ∈
∧k−1 and I ∈

∧k we want to reduce an equation of the following form

a∧B
I

=
1
I

aB + (−1)k−1Ba
2

(21.46)

The pseudovector either commutes or anticommutes with a vector in the subspace depending
on the grade

Ia = I · a + I∧ a

= 0

= (−1)k−1a · I
= (−1)k−1aI

(21.47)

Substituting back into eq. (21.46) we have

a∧B
I

= (−1)k−1
a
(

1
I B

)
+

(
1
I B

)
a

2

= (−1)k−1a ·
(
1
I

B
)

= a ·
(
B

1
I

) (21.48)

With I = u1 ∧ · · ·uk, and B = u1 ∧ u2 · · · ǔi · · · ∧ uk, back substitution back into eq. (21.45)
is thus

a =
∑

a ·
(
(−1)i−1B

1
I

)
ui (21.49)
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The final result yields the reciprocal frame vector uk, and we see how to arrive at this result
naturally attempting to answer the question of how to find the coordinates of a vector with
respect to a (not necessarily orthonormal) basis.

a =
∑

a ·
(
(u1 ∧ u2 · · · ǔi · · · ∧ uk)

(−1)i−1

u1 ∧ · · · ∧ uk

)uk

ui (21.50)

21.5 components of a bivector

To find the coordinates of a bivector with respect to an arbitrary basis we have a similar problem.
For a vector basis ai, introduce a bivector basis ai ∧ a j, and write

B =
∑
u<v

buvau ∧ av (21.51)

Wedging with ai ∧ a j will select all but the i j component. Specifically

B∧ (a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak) = bi jai ∧ a j ∧ (a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak)

= bi j(−1) j−2+i−1(a1 ∧ · · · ∧ ak)
(21.52)

Thus

bi j = (−1)i+ j−3B∧
(a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak)

a1 ∧ · · · ∧ ak
(21.53)

We want to put this in dot product form like eq. (21.50). To do so we need a generalized grade
reduction formula

(Aa ∧Ab) ·Ac = Aa · (Ab ·Ac) (21.54)

This holds when a + b ≤ c. Writing A = a1 ∧ · · · ǎi · · · ǎ j · · · ∧ ak, and I = a1 ∧ · · · ∧ ak, we
have

(B∧A)
1
I

= (B∧A) ·
1
I

= B ·
(
A ·

1
I

)
= B ·

(
A

1
I

) (21.55)
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Thus the bivector in terms of its coordinates for this basis is:

∑
u<v

B ·
(
(a1 ∧ · · · ǎu · · · ǎv · · · ∧ ak)

(−1)u+v−2−1

a1 ∧ · · · ∧ ak

)
au ∧ av (21.56)

It is easy to see how this generalizes to higher order blades since eq. (21.54) is good for all
required grades. In all cases, the form is going to be the same, with only differences in sign and
the number of omitted vectors in the A blade.

For example for a trivector

T =
∑

u<v<w

tuvwau ∧ av ∧ aw (21.57)

It is pretty straightforward to show that this can be decomposed as follows

T =
∑

u<v<w

T ·
(
(a1 ∧ · · · ǎu · · · ǎv · · · ǎw · · · ∧ ak)

(−1)u+v+w−3−2−1

a1 ∧ · · · ∧ ak

)
au ∧ av ∧ aw (21.58)

21.5.1 Compare to GAFP

Doran/Lasenby’s GAFP demonstrates eq. (21.50), and with some incomprehensible steps skips
to a generalized result of the form 1

B =
∑
i< j

B ·
(
a j ∧ ai

)
ai ∧ a j (21.59)

GAFP states this for general multivectors instead of bivectors, but the idea is the same.
This makes intuitive sense based on the very similar vector result. This does not show that the

generalized reciprocal frame k-vectors calculated in eq. (21.56) or eq. (21.58) can be produced
simply by wedging the corresponding individual reciprocal frame vectors.

To show that either takes algebraic identities that I do not know, or am not thinking of as
applicable. Alternately perhaps it would just take simple brute force.

Easier is to demonstrate the validity of the final result directly. Then assuming my direct
calculations are correct implicitly demonstrates equivalence.

1 In retrospect I do not think that the in between steps had anything to do with logical sequence. The authors wanted
some of the results for subsequent stuff (like: rotor recovery) and sandwiched it between the vector and reciprocal
frame multivector results somewhat out of sequence.
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Starting with B as defined in eq. (21.51), take dot products with a j ∧ ai.

B · (a j ∧ ai) =
∑
u<v

buv(au ∧ av) · (a j ∧ ai)

=
∑
u<v

buv

∣∣∣∣∣∣∣au · ai au · a j

av · ai av · a j

∣∣∣∣∣∣∣
=

∑
u<v

buv

∣∣∣∣∣∣∣δui δu j

δvi δv j

∣∣∣∣∣∣∣
(21.60)

Consider this determinant when u = i for example∣∣∣∣∣∣∣δui δu j

δvi δv j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1 δi j

δvi δv j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1 0

δvi δv j

∣∣∣∣∣∣∣ = δv j (21.61)

If any one index is common, then both must be common (i j = uv) for this determinant to
have a non-zero (ie: one) value. On the other hand, if no index is common then all the δ’s are
zero.

Like eq. (21.20) this demonstrates an orthonormal selection behavior like the reciprocal frame
vector. It has the action:

(ai ∧ a j) · (av ∧ au) = δi j,uv (21.62)

This means that we can write buv directly in terms of a bivector dot product

buv = B · (av ∧ au) (21.63)

and thus proves eq. (21.59). Proof of the general result also follows from the determinant
expansion of the respective blade dot products.

21.5.2 Direct expansion of bivector in terms of reciprocal frame vectors

Looking at linear operators I realized that the result for bivectors above can follow more easily
from direct expansion of a bivector written in terms of vector factors:

a∧ b =
∑

(a · uiui)∧ (b · u ju j)

=
∑
i< j

(a · uib · u j − a · u jb · ui) ui ∧ u j

=
∑
i< j

∣∣∣∣∣∣∣a · ui a · u j

b · ui b · u j

∣∣∣∣∣∣∣ ui ∧ u j

(21.64)
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When the set of vectors ui = ui are orthonormal we have already calculated this result when
looking at the wedge product in a differential forms context:

a∧ b =
∑
i< j

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ ui ∧ u j (21.65)

For this general case for possibly non-orthonormal frames, this determinant of dot products
can be recognized as the dot product of two blades

(a∧ b) · (u j ∧ ui) = a · (b · (u j ∧ ui))

= a · (b · u jui − b · uiu j)

= b · u ja · ui − b · uia · u j

(21.66)

Thus we have a decomposition of the bivector directly into a sum of components for the
reciprocal frame bivectors:

a∧ b =
∑
i< j

((a∧ b) · (u j ∧ ui)) ui ∧ u j (21.67)





22
M AT R I X R E V I E W

22.1 motivation

My initial intention for subset of notes was to get a feel for the similarities and differences
between GA and matrix approaches to solution of projection. Attempting to write up that com-
parison I found gaps in my understanding of the matrix algebra. In particular the topic of pro-
jection as well as the related ideas of pseudoinverses and SVD were not adequately covered in
my university courses, nor my texts from those courses. Here is my attempt to write up what I
understand of these subjects and explore the gaps in my knowledge.

Particularly helpful was Gilbert Strang’s excellent MIT lecture on subspace projection (avail-
able on the MIT opencourseware website). Much of the notes below are probably detailed in
his course textbook.

There is some GA content here, but the focus in this chapter is not neccessarily GA.

22.2 subspace projection in matrix notation

22.2.1 Projection onto line

The simplest sort of projection to compute is projection onto a line. Given a direction vector b,
and a line with direction vector u as in fig. 22.1.

The projection onto u is some value:

p = αu (22.1)

and we can write

b = p + e (22.2)

where e is the component perpendicular to the line u.
Expressed in terms of the dot product this relationship is described by:

(b − p) · a = 0 (22.3)

167
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Figure 22.1: Projection onto line

Or,

b · a = αa · a (22.4)

and solving for α and substituting we have:

p = a
a · b
a · a

(22.5)

In matrix notation that is:

p = a
(
aTb
aTa

)
(22.6)

Following Gilbert Strang’s MIT lecture on subspace projection, the parenthesis can be moved
to directly express this as a projection matrix operating on b.

p =

(
aaT

aTa

)
b = Pb (22.7)
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Figure 22.2: Projection onto plane

22.2.2 Projection onto plane (or subspace)

Calculation of the projection matrix to project onto a plane is similar. The variables to solve for
are p, and e in as fig. 22.2.

For projection onto a plane (or hyperplane) the idea is the same, splitting the vector into
a component in the plane and an perpendicular component. Since the idea is the same for any
dimensional subspace, explicit specification of the summation range is omitted here so the result
is good for higher dimensional subspaces as well as the plane:

b − p = e (22.8)

p =
∑

αiui (22.9)

however, we get a set of equations, one for each direction vector in the plane

(b − p) · ui = 0 (22.10)
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Expanding p explicitly and rearranging we have the following set of equations:

b · ui = (
∑

s

αsus) · ui (22.11)

putting this in matrix form

[b · ui]i =
[
(
∑

s αus) · ui

]
i

(22.12)

Writing U =
[
u1 u2 · · ·

]

uT

1

uT
2
...

 b =
[
(
∑

s αsus) · ui

]

=
[
ui · u j

]
i j


α1

α2
...


(22.13)

Solving for the vector of unknown coefficients α = [αi]i we have

α =
[
ui · u j

]
i j

−1
UTb (22.14)

And

p = Uα = U
[
ui · u j

]
i j

−1
UTb (22.15)

However, this matrix in the middle is just UTU:


uT

1

uT
2
...


[
u1 u2 . . .

]
=


uT

1 u1 uT
1 u2 . . .

uT
2 u1 uT

2 u2 . . .
...


=

[
uT

i u j

]
i j

=
[
ui · u j

]
i j

(22.16)

This provides the final result:

ProjU (b) = U(UTU)−1UTb (22.17)
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22.2.3 Simplifying case. Orthonormal basis for column space

To evaluate eq. (22.17) we need only full column rank for U, but this will be messy in general
due to the matrix inversion required for the center product. That can be avoided by picking an
orthonormal basis for the vector space that we are projecting on. With an orthonormal column
basis that central product term to invert is:

UTU = [uT
i u j]i j = [δi j]i j = Ir,r (22.18)

Therefore, the projection matrix can be expressed using the two exterior terms alone:

ProjU = U(UTU)−1UT = UUT (22.19)

22.2.4 Numerical expansion of left pseudoscalar matrix with matrix

Numerically expanding the projection matrix A(ATA)−1AT is not something that we want to do,
but the simpler projection matrix of equation eq. (22.19) that we get with an orthonormal basis
makes this not so daunting.

Let us do this to get a feel for things.

22.2.4.1 R4 plane projection example

Take a simple projection onto the plane spanned by the following two orthonormal vectors

u1 =

√
2

4


1

2
√

3

0


(22.20)

u2 =

√
2

4


−
√

3

0

1

2


(22.21)
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Thus the projection matrix is:

P =
[
u1 u2

] uT
1

uT
2

 =
1
8


1 −

√
3

2 0
√

3 1

0 2


 1 2

√
3 0

−
√

3 0 1 2

 (22.22)

=⇒ P =
1
8


4 2 0 −2

√
3

2 4 2
√

3 0

0 2
√

3 4 2

−2
√

3 0 2 4


=


1/2 1/4 0 −

√
3/4

1/4 1/2
√

3/4 0

0
√

3/4 1/2 1/4

−
√

3/4 0 1/4 1/2


(22.23)

What can be said about this just by looking at the matrix itself?

1. One can verify by inspection that Pu1 = u1 and Pu2 = u2. This is what we expected so
this validates all the math performed so far. Good!

2. It is symmetric. Analytically, we know to expect this, since for a a full column rank matrix
A the transpose of the projection matrix is:

PT =

(
A

1
ATA

AT
)T

= P. (22.24)

3. In this particular case columns 2,4 and columns 1,3 are each pairs of perpendicular vec-
tors. Is something like this to be expected in general for projection matrices?

4. We expect this to be a rank two matrix, so the null space has dimension two. This can be
verified.

22.2.5 Return to analytic treatment

Let us look at the matrix for projection onto an orthonormal basis in a bit more detail. This
simpler form allows for some observations that are a bit harder in the general form.

Suppose we have a vector n that is perpendicular to all the orthonormal vectors ui that span
the subspace. We can then write:

ui · n = 0 (22.25)
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Or,

uT
i n = 0 (22.26)

In block matrix form for all ui that is:

[uT
i n]i = [uT

i ]in = UTn = 0 (22.27)

This is all we need to verify that our projection matrix indeed produces a zero for any vector
completely outside of the subspace:

ProjU(n) = U(UTn) = U0 = 0 (22.28)

Now we have seen numerically that UUT is not an identity matrix despite operating as one
on any vector that lies completely in the subspace.

Having seen the action of this matrix on vectors in the null space, we can now directly exam-
ine the action of this matrix on any vector that lies in the span of the set {ui}. By linearity it is
sufficient to do this calculation for a particular ui:

UUTui = U


uT

1 ui

uT
2 ui
...

uT
r ui


=

[
u1 u2 · · · ur

] [
δsi

]
s

=

r∑
k=1

ukδki

= ui

(22.29)

This now completes the validation of the properties of this matrix (in its simpler form with
an orthonormal basis for the subspace).

22.3 matrix projection vs . geometric algebra

I found it pretty interesting how similar the projection product is to the projection matrix above
from traditional matrix algebra. It is worthwhile to write this out and point out the similarities
and differences.
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22.3.1 General projection matrix

We have shown above, provided a matrix A is of full column rank, a projection onto its columns
can be written:

ProjA(x) =

(
A

1
ATA

AT
)

x (22.30)

Now contrast this with the projection written in terms of a vector dot product with a non-null
blade

ProjA(x) = A
(

1
A
· x

)
= A

1
A†A

(
A† · x

)
(22.31)

This is a curious correspondence and naive comparison could lead one to think that perhaps
there the concepts of matrix transposition and blade reversal are equivalent.

This is not actually the case since the matrix transposition actually corresponds to the adjoint
operation of a linear transformation for blades. Be that as it may, there appears to be other
situations other than projections where matrix operations of the form BTA end up with GA
equivalents in the form B†A. An example is the rigid body equations where the body angular
velocity bivector corresponding to a rotor R is of the form Ω = R′R†, whereas the matrix form
for a rotation matrix R is of the form Ω = R′R†.

22.3.2 Projection matrix full column rank requirement

The projection matrix derivations above required full column rank. A reformulation in terms
of a generalized matrix (Moore-Penrose) inverse, or SVD can eliminate this full column rank
requirement for the formulation of the projection matrix.

We will get to this later, but we never really proved that full column rank implies ATA inverta-
bility.

If one writes out the matrix ATA in full
Now, if A = [ai]i, the matrix

ATA =


a1 · a1 a1 · a2 . . .

a2 · a1 a2 · a2 . . .
...

 . (22.32)

This is an invertible matrix provided {ai}i is a linearly independent set of vectors. For full
column rank to imply invertability, it would be sufficient to prove that the determinant of this
matrix was non-zero.
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I am not sure how to show that this is true with just matrix algebra, however one can identify
the determinant of the matrix of eq. (22.32), after an adjustment of sign for reversion, as the GA
dot product of a k-blade:

(−1)k(k−1)/2(a1 ∧ · · · ∧ ak) · (a1 ∧ · · · ∧ ak). (22.33)

Linear independence means that this wedge product is non-zero, and therefore the dot prod-
uct, and thus original determinant is also non-zero.

When the ATA matrix of eq. (22.32) is invertible that inverse can be written using a cofactor
matrix (adjoint expansion):

Let us write this out, where Ci j are the cofactor matrices of ATA, we have:

1
ATA

=
1∣∣∣ATA

∣∣∣ [Ci j]T (22.34)

Observe that the denominator here is exactly the determinant of eq. (22.33). This illustrates
the motivation of Hestenes to label the explicit alternating vector-vector dot product expansion
of a blade-vector dot product the “generalized Laplace expansion”.

22.3.3 Projection onto orthonormal columns

When the columns of the matrix A are orthonormal, the projection matrix is reduced to:

ProjA(x) =
(
AAT

)
x. (22.35)

The corresponding GA entity is a projection onto a unit magnitude blade. With that scaling
the inverse term also drops out leaving:

ProjA(x) = A
(
A† · x

)
(22.36)

This helps point out the similarity between the matrix inverse 1
ATA and the blade product

inverse 1
A†A is only on the surface, since this blade product is only a scalar.
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22.4 proof of omitted details and auxiliary stuff

22.4.1 That we can remove parenthesis to form projection matrix in line projection equation

Remove the parenthesis in some of these expressions may not always be correct, so it is worth
demonstrating that this is okay as done to calculate the projection matrix P in eq. (22.7). We
only need to look at the numerator since the denominator is a scalar in this case.

(aaT)b = [aia j]i j[bi]i

=
[∑

k aiakbk

]
i

=
[
ai

∑
k akbk

]
i

= [ai]iaTb

= a(aTb)

(22.37)

22.4.2 Any invertible scaling of column space basis vectors does not change the projection

Suppose that one introduces an alternate basis for the column space

vi =
∑

αikuk (22.38)

This can be expressed in matrix form as:

V = UE (22.39)

or

UE−1 = V (22.40)
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We should expect that the projection onto the plane expressed with this alternate basis should
be identical to the original. Verification is straightforward:

ProjV = V
(
VTV

)−1
VT

=
(
UE−1

) ((
UE−1

)T (
UE−1

))−1 (
UE−1

)T

=
(
UE−1

) (
E−1T

UTUE−1
)−1 (

UE−1
)T

=
(
UE−1

)
E

(
UTU

)−1
ET

(
UE−1

)T

= U
(
UTU

)−1
ETE−1T

UT

= U
(
UTU

)−1
UT

= ProjU

(22.41)
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O B L I Q U E P RO J E C T I O N A N D R E C I P RO C A L F R A M E V E C T O R S

23.1 motivation

Followup on wikipedia projection article’s description of an oblique projection. Calculate this
myself.

23.2 using ga . oblique projection onto a line

INSERT DIAGRAM.
Problem is to project a vector x onto a line with direction p̂, along a direction vector d̂.
Write:

x + αd̂ = βp̂ (23.1)

and solve for p = βp̂. Wedging with d̂ provides the solution:

x∧ d̂ + α d̂∧ d̂

= 0

= βp̂∧ d̂ (23.2)

=⇒ β =
x∧ d̂
p̂∧ d̂

(23.3)

So the “oblique” projection onto this line (using direction d̂) is:

Projd̂→p̂(x) =
x∧ d̂
p̂∧ d̂

p̂ (23.4)

This also shows that we do not need unit vectors for this sort of projection operation, since
we can scale these two vectors by any quantity since they are in both the numerator and denom-
inator.
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Let D, and P be vectors in the directions of d̂, and p̂ respectively. Then the projection can
also be written:

ProjD→P(x) =
x∧D
P∧D

P (23.5)

It is interesting to see projection expressed here without any sort of dot product when all our
previous projection calculations had intrinsic requirements for a metric.

Now, let us compare this to the matrix forms of projection that we have become familiar with.
For the matrix result we need a metric, but because this result is intrinsically non-metric, we
can introduce one if convenient and express this result with that too. Such an expansion is:

x∧D
P∧D

P = x∧D
D∧ P
D∧ P

1
P∧D

P

= (x∧D) · (D∧ P)
1

|P∧D|2
P

= ((x∧D) ·D) · P
1

|P∧D|2
P

= (xD2 − x ·DD) · P
1

|P∧D|2
P

=
x · PD2 − x ·DD · P

P2D2 − (P ·D)2 P

(23.6)

This gives us the projection explicitly:

ProjD→P(x) =

(
x ·

PD2 −DD · P
P2D2 − (P ·D)2

)
P (23.7)

It sure does not simplify things to expand things out, but we now have things prepared to
express in matrix form.

Assuming a euclidean metric, and a bit of playing shows that the denominator can be written
more simply as:

P2D2 − (P ·D)2 =
∣∣∣∣UTU

∣∣∣∣ (23.8)

where:

U =
[
P D

]
(23.9)
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Similarly the numerator can be written:

x · PD2 − x ·DD · P = DTU

0 −1

1 0

 UTx. (23.10)

Combining these yields a projection matrix:

ProjD→P(x) =

P 1∣∣∣∣UTU
∣∣∣∣DTU

0 −1

1 0

 UT

 x. (23.11)

The alternation above suggests that this is related to the matrix inverse of something. Let us
try to calculate this directly instead.

23.3 oblique projection onto a line using matrices

Let us start at the same place as in eq. (23.1), except that we know we can discard the unit
vectors and work with any vectors in the projection directions:

x + αD = βP (23.12)

Assuming an inner product, we have two sets of results:

〈P, x〉 + α〈P,D〉 = β〈P,P〉
〈D, x〉 + α〈D,D〉 = β〈D,P〉

(23.13)

and can solve this for α, and β.

〈P,D〉 〈P,P〉
〈D,D〉 〈D,P〉


−α
β

 =

〈P, x〉
〈D, x〉

 (23.14)

If our inner product is defined by 〈u, v〉 = u∗Av, we have:

〈P,D〉 〈P,P〉
〈D,D〉 〈D,P〉

 =

P∗AD P∗AP
D∗AD D∗AP


=

[
P D

]∗
A

[
D P

] (23.15)
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Thus the solution to eq. (23.14) is

−α
β

 =

 1[
P D

]∗
A

[
D P

] [P D
]∗

A

 x (23.16)

Again writing U =
[
P D

]
, this is:

−α
β

 =


1

U∗AU

0 1

1 0


U∗A


x

=


0 1

1 0

 1
U∗AU

U∗A

 x

(23.17)

Since we only care about solution for β to find the projection, we have to discard half the
inversion work, and just select that part of the solution (suggests that a Cramer’s rule method is
more efficient than matrix inversion in this case) :

β =
[
0 1

] −α
β

 (23.18)

Thus the solution of this oblique projection problem in terms of matrices is:

ProjD→P(x) =

P [
0 1

] 0 1

1 0

 1
U∗AU

U∗A

 x (23.19)

Which is:

ProjD→P(x) =

(
P

[
1 0

] 1
U∗AU

U∗A
)

x (23.20)

Explicit expansion can be done easily enough to show that this is identical to eq. (23.7), so
the question of what we were implicitly inverting in eq. (23.11) is answered.
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23.4 oblique projection onto hyperplane

Now that we have got this directed projection problem solved for a line in both GA and matrix
form, the next logical step is a k-dimensional hyperplane projection. The equation to solve is
now:

x + αD =
∑

βiPi (23.21)

23.4.1 Non metric solution using wedge products

For x with some component not in the hyperplane, we can wedge with P = P1 ∧ P2 ∧ · · · ∧ Pk

x∧ P + αD∧ P =

k∑
i=1

βi Pi ∧ P

= 0

Thus the projection onto the hyperplane spanned by P is going from x along D is x + αD:

ProjD→P(x) = x −
x∧ P
D∧ P

D (23.22)

23.4.1.1 Q: reduction of this

When P is a single vector we can reduce this to our previous result:

ProjD→P(x) = x −
x∧ P
D∧ P

D

=
1

D∧ P
((D∧ P)x − (x∧ P)D)

=
1

D∧ P
((D∧ P) · x − (x∧ P) ·D)

=
1

D∧ P
(DP · x − PD · x − xP ·D + Px ·D)

=
1

D∧ P
(DP · x − xP ·D)

(23.23)

Which is:

ProjD→P(x) =
1

P∧D
P · (D∧ x). (23.24)
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A result that is equivalent to our original eq. (23.5). Can we similarly reduce the general
result to something of this form. Initially I wrote:

ProjD→P(x) = x −
x∧ P
D∧ P

D

=
D∧ P
D∧ P

x −
x∧ P
D∧ P

D

=
1

D∧ P
((D∧ P)x − (x∧ P)D)

=
1

D∧ P
((D∧ P) · x − (x∧ P) ·D)

=
1

D∧ P
(DP · x − PD · x − xP ·D + Px ·D)

=
1

D∧ P
(DP · x − xP ·D)

= −
1

D∧ P
P · (D∧ x)

(23.25)

However, I am not sure that about the manipulations done on the last few lines where P has
grade greater than 1 (ie: the triple product expansion and recollection later).

23.4.2 hyperplane directed projection using matrices

To solve eq. (23.21) using matrices, we can take a set of inner products:

〈D, x〉 + α〈D,D〉 =

k∑
u=1

βu〈D,Pu〉

〈Pi, x〉 + α〈Pi,D〉 =

k∑
u=1

βu〈Pi,Pu〉

(23.26)

Write D = Pk+1, and α = −βk+1 for symmetry, which reduces this to:

〈Pk+1, x〉 =

k∑
u=1

βu〈Pk+1,Pu〉 + βk+1〈Pk+1,Pk+1〉

〈Pi, x〉 =

k∑
u=1

βu〈Pi,Pu〉 + βk+1〈Pi,Pk+1〉

(23.27)
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That is the following set of equations:

〈Pi, x〉 =

k+1∑
u=1

βu〈Pi,Pu〉 (23.28)

Which we can now express as a single matrix equation (for i, j ∈ [1, k + 1]) :

[
〈Pi, x〉

]
i
=

[
〈Pi,P j〉

]
i j

[
βi

]
i

(23.29)

Solving for β =
[
βi

]
i
, gives:

β =
1[

〈Pi,P j〉
]

i j

[
〈Pi, x〉

]
i

(23.30)

The projective components of interest are
∑k

i=1 βiPi. In matrix form that is:

[
P1 P2 · · · Pk

]

β1

β2
...

βk


=

[
P1 P2 · · · Pk

] [
Ik,k 0k,1

]
β (23.31)

Therefore the directed projection is:

ProjD→P(x) =
[
P1 P2 · · · Pk

] [
Ik,k 0k,1

] 1[
〈Pi,P j〉

]
i j

[
〈Pi, x〉

]
i

(23.32)

As before writing U =
[
P1 P2 · · · Pk D

]
, and write 〈u, v〉 = u∗Av. The directed projec-

tion is now:

ProjD→P(x) =

U
 Ik,k

01,k

 [Ik,k 0k,1

] 1
U∗AU

U∗A

 x

=

U
 Ik,k 0k,1

01,k 01,1

 1
U∗AU

U∗A

 x (23.33)
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23.5 projection using reciprocal frame vectors

In a sense the projection operation is essentially a calculation of components of vectors that
span a given subspace. We can also calculate these components using a reciprocal frame. To
start with consider just orthogonal projection, where the equation to solve is:

x = e +
∑

β jP j (23.34)

and e · Pi = 0.
Introduce a reciprocal frame {P j} that also spans the space of {P j}, and is defined by:

Pi · P j = δi j (23.35)

With this we have:

x · Pi = e · Pi

= 0

+
∑

β jP j · Pi

=
∑

β jδi j

= βi

(23.36)

x = e +
∑

P j(P j · x)

For a Euclidean metric the projection part of this is:

ProjP(x) =
(∑

P j(P j)T
)

x (23.37)

Note that there is a freedom to remove the dot product that was employed to form the matrix
representation of eq. (23.37) that may not be obvious. I did not find that this was obvious,
when seen in Prof. Gilbert Strang’s MIT OCW lectures, and had to prove it for myself. That
proof is available at the end of 22 comparing the geometric and matrix projection operations ,
in the ’That we can remove parenthesis to form projection matrix in line projection equation.’
subsection.

Writing P =
[
P1 P2 · · · Pk

]
and for the reciprocal frame vectors: Q =

[
P1 P2 · · · Pk

]



23.5 projection using reciprocal frame vectors 187

We now have the following simple calculation for the projection matrix onto a set of linearly
independent vectors (columns of P):

ProjP(x) = PQTx. (23.38)

Compare to the general projection matrix previously calculated when the columns of P weare
not orthonormal:

ProjP(x) = P
1

PTP
PTx (23.39)

With orthonormal columns the PT P becomes identity and the inverse term drops out, and we
get something similar with reciprocal frames. As a side effect this shows us how to calculate
without GA the reciprocal frame vectors. Those vectors are thus the columns of

Q = P
1

PTP
(23.40)

We are thus able to get a specific understanding of some of the interior terms of the general
orthogonal projection matrix.

Also note that the orthonormality of these columns is confirmed by observing that QTP =
1

PTP PTP = I.

23.5.1 example/verification

As an example to see that this works write:

P =


1 1

1 0

0 1

 (23.41)

PTP =

1 1 0

1 0 1



1 1

1 0

0 1

 =

2 1

1 2

 (23.42)

1
PTP

=
1
3

 2 −1

−1 2

 (23.43)
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Q = P
1

PTP
=

1
3


1 1

1 0

0 1


 2 −1

−1 2

 =
1
3


1 1

2 1

−1 2

 (23.44)

By inspection these columns have the desired properties.

23.6 directed projection in terms of reciprocal frames

Suppose that one has a set of vectors {Pi} that span the subspace that contains the vector to be
projected x. If one wants to project onto a subset of those Pk, say, the first k of l of these vectors,
and wants the projection directed along components of the remaining l− k of these vectors, then
solution of the following is required:

x =

l∑
j=1

β jP j

This (affine?) projection is then just the
∑k

j=1 β jP j components of this vector.
Given a reciprocal frame for the space, the solution follows immediately.

Pi · x =
∑

β jPi · P j = βi (23.45)

βi = Pi · x (23.46)

Or,

ProjPk
(x) =

k∑
j=1

P jP j · x (23.47)

In matrix form, with inner product u · v = u∗Av, and writing P =
[
P1 P2 · · · Pl

]
, and

Q =
[
P1 P2 · · · Pl

]
, this is:

ProjPk
(x) =

P

Ik 0

0 0

 Q∗A

 x (23.48)
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Observe that the reciprocal frame vectors can be expressed as the rows of the matrix

Q∗A =
1

P∗AP
P∗A

Assuming the matrix of dot product is invertible, the reciprocal frame vectors are the columns
of:

Q = P
1

P∗A∗P
(23.49)

I had expect that the matrix of most dot product forms would also have
A = A∗ (ie: Hermitian symmetric).
That is certainly true for all the vector dot products I am interested in utilizing. ie: the standard

euclidean dot product, Minkowski space time metrics, and complex field vector space inner
products (all of those are not only real symmetric, but are also all diagonal). For completeness,
exploring this form for a more generalized form of inner product was also explored in E.

23.6.1 Calculation efficiency

It would be interesting to compare the computational complexity for a set of reciprocal frame
vectors calculated with the GA method (where overhat indicates omission) :

Pi = (−1)i−1P1 ∧ · · · P̂i · · · ∧ Pk
1

P1 ∧ P2 ∧ · · · ∧ Pk
(23.50)

The wedge in the denominator can be done just once for all the frame vectors. Is there a way
to use that for the numerator too (dividing out the wedge product with the vector in question)?

Calculation of the 1
PTP term could be avoided by using SVD.

Writing P = UΣVT, the reciprocal frame vectors will be Q = UΣ 1
ΣTΣ VT.

Would that be any more efficient, or perhaps more importantly, for larger degree vectors is
that a more numerically stable calculation?

23.7 followup

Review: Have questionable GA algebra reduction earlier for grade > 1 (following eq. (23.24)).
Q: Can a directed frame vector projection be defined in terms of an “oblique” dot product.
Q: What applications would a non-diagonal bilinear form have?
Editorial: I have defined the inner product in matrix form with:

〈u, v〉 = u∗Av (23.51)
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This is slightly irregular since it is the conjugate of the normal complex inner product, so in
retrospect I would have been better to express things as:

〈u, v〉 = uTAv (23.52)

Editorial: I have used the term oblique projection. In retrospect I think I have really been
describing what is closer to an affine (non-metric) projection so that would probably have been
better to use.
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P RO J E C T I O N A N D M O O R E - P E N RO S E V E C T O R I N V E R S E

24.1 projection and moore-penrose vector inverse

One can observe that the Moore Penrose left vector inverse v+ shows up in the projection matrix
for a projection onto a line with a direction vector v:

Projv(x) = v
1

vTv
vT

v+

x (24.1)

I do not know of any other “application” of this Moore-Penrose vector inverse in traditional
matrix algebra. As stated it is an interesting mathematical curiosity that yes one can define a
vector inverse, however what would you do with it?

In geometric algebra we also have a vector inverse, but it plays a much more fundamental
role, and does not have the restriction of only acting from the left and producing a scalar result.
As an example consider the projection, and rejection decomposition of a vector:

x = v
1
v

x

= v
(
1
v
· x

)
+ v

(
1
v
∧ x

)
= v

( v
v2 · x

)
+ v

( v
v2 ∧ x

) (24.2)

In the above, v
v2 · =

vT

vTv = v+. We can therefore describe the Moore Penrose vector left inverse
as the matrix of the GA linear transformation 1

v ·.
Unlike the GA vector inverse, whos associativity allowed for the projection/rejection deriva-

tion above, this Moore-Penrose vector inverse has only left action, so in the above, you can not
further write:

vv+ = 1 (24.3)

(ie: vv+ is a projection matrix not scalar or matrix unity).
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24.1.1 matrix of wedge project transformation?

Q: What is the matrix of the linear transformation 1
v∧?

In rigid body dynamics we see the matrix of the linear transformation Tv(x) = (v×)(x). This
is the completely antisymmetric matrix as follows:

v × x =


0 −v3 v2

v3 0 −v1

−v2 v1 0



x1

x2

x3

 (24.4)

In order to specify the matrix of a vector-vector wedge product linear transformation we must
introduce bivector coordinate vectors. For the matrix of the cross product linear transformation
the standard vector basis was the obvious choice.

Let us pick the following orthonormal basis:

σ = {σi j = ei ∧ e j}i< j (24.5)

and construct the matrix of the wedge project Tv : RN →
∧2

Tv(x) = v∧ x =
∑

µ=i j,i< j

∣∣∣∣∣∣∣vi v j

xi x j

∣∣∣∣∣∣∣σµ (24.6)

=⇒ Tv(ek) ·σi j
† =

∑
k∈i j,i< j

∣∣∣∣∣∣∣vi v j

xi x j

∣∣∣∣∣∣∣ = viδk j − v jδki (24.7)

Since k cannot be simultaneously equal to both i, and j, this is:

Tv(ek) ·σi j
† =


vi k = j

−v j k = i

0 k , i, j

 (24.8)

Unlike the left Moore-Penrose vector inverse that we find as the matrix of the linear trans-
formation v · (·), except for R3 where we have the cross product, I do not recognize this as the
matrix of any common linear transformation.
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A N G L E B E T W E E N G E O M E T R I C E L E M E N T S

Have the calculation for the angle between bivectors done elsewhere

cos θ = −
A ·B
|A||B|

(25.1)

For θ ∈ [0, π].
The vector/vector result is well known and also works fine in RN

cos θ =
u · v
|u||v|

(25.2)

25.1 calculation for a line and a plane

Given a line with unit direction vector u, and plane with unit direction bivector A, the compo-
nent of that vector in the plane is:

−u ·AA. (25.3)

So the direction cosine is available immediately

cos θ = u ·
−u ·AA
|u ·AA|

(25.4)

However, this can be reduced significantly. Start with the denominator

|u ·AA|2 = (u ·AA)(AA · u)

= (u ·A)2.
(25.5)
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And in the numerator we have:

u · (u ·AA) =
1
2

(u(u ·AA) + (u ·AA)u)

=
1
2

((uu ·A)A + (u ·A)Au)

=
1
2

((A · uu)A − (A · u)Au)

= (A · u)
1
2

(uA −Au)

= −(A · u)2.

(25.6)

Putting things back together

cos θ =
(A · u)2

|u ·A|
= |u ·A|

The strictly positive value here is consistent with the fact that theta as calculated is in the
[0, π/2] range.

Restated for consistency with equations eq. (25.2) and eq. (25.1) in terms of not necessarily
unit vector and bivectors u and A, we have

cos θ =
|u ·A|
|u||A|

(25.7)
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O RT H O G O NA L D E C O M P O S I T I O N TA K E I I

26.1 lemma . orthogonal decomposition

To do so we first need to be able to express a vector x in terms of components parallel and
perpendicular to the blade A ∈ ∧k.

x = xA
1
A

= (x ·A + x∧A)
1
A

= (x ·A) ·
1
A

+
∑

i=3,5,···,2k−1

〈
(x ·A)

1
A

〉
i

+ (x∧A) ·
1
A

+
∑

i=3,5,···,2k−1

〈
(x∧A)

1
A

〉
i
+ (x∧A)∧

1
A

= 0

(26.1)

Since the LHS and RHS must both be vectors all the non-grade one terms are either zero or
cancel out. This can be observed directly since:

〈
x ·A

1
A

〉
i
=

〈
xA − (−1)kAx

2
1
A

〉
i

= −
(−1)k

2

〈
Ax

1
A

〉
i

(26.2)

and

〈
x∧A

1
A

〉
i
=

〈
xA + (−1)kAx

2
1
A

〉
i

= +
(−1)k

2

〈
Ax

1
A

〉
i

(26.3)

Thus all of the grade 3, · · · , 2k − 1 terms cancel each other out. Some terms like (x ·A) ∧ 1
A

are also independently zero.
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(This is a result I have got in other places, but I thought it is worth writing down since I
thought the direct cancellation is elegant).



27
M AT R I X O F G R A D E K M U LT I V E C T O R L I N E A R
T R A N S F O R M AT I O N S

27.1 motivation

The following shows explicitly the calculation required to form the matrix of a linear transfor-
mation between two grade k multivector subspaces (is there a name for a multivector of fixed
grade that is not neccessarily a blade?). This is nothing fancy or original, but just helpful to
have written out showing naturally how one generates this matrix from a consideration of the
two sets of basis vectors. After so much exposure to linear transformations only in matrix form
it is good to write this out in a way so that it is clear exactly how the coordinate matrices come
in to the picture when and if they are introduced.

27.2 content

Given T , a linear transformation between two grade k multivector subspaces, let σ = {σi}
m
i=1 be

a basis for a grade k multivector subspace. For T (x) ∈ span{βi} (ie: image of T contained in this
span). Let β = {βi}

n
i=1 be a basis for this (possibly different) grade k multivector subspace.

Additionally introduce a set of respective reciprocal frames {σi}, and {βi}. Define the recip-
rocal frame with respect to the dot product for the space. For a linearly independent, but not
necessary orthogonal (or orthonormal), set of vectors {ui} this set has as its defining property:

ui · u j = δi j (27.1)

I have chosen to use this covariant, contravariant coordinate notation since that works well for
both vectors (not necessarily orthogonal or orthonormal), as well as higher grade vectors. When
the basis is orthonormal these reciprocal frame grade k multivectors can be computed with just
reversion. For example, suppose that {βi} is an orthonormal bivector basis for the image of T ,
then the reciprocal frame bivectors are just βi = βi

†.
With this we can decompose the linear transformation into components generated by each of

the σi grade k multivectors:

T (x) = T (
∑

x ·σ jσ
j) =

∑
x jT (σ j) (27.2)
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198 matrix of grade k multivector linear transformations

This we can write as a matrix equation:

T (x) =
[
T (σ1) T (σ1) · · · T (σn)

]

x1

x2
...

xn


(27.3)

Now, decompose the T (σ j) in terms of the basis β:

T (σ j) =
∑

T (σ j) · βiβi (27.4)

This we can also write as a matrix equation

T (σ j) =
[
β1 β2 · · · βm

]

T (σ j) · β1

T (σ j) · β2

...

T (σ j) · βm



=
[
β1 β2 · · · βm

]

β1 · T (σ j)

β2 · T (σ j)
...

βm · T (σ j)



(27.5)

These two sets of matrix equations, can be combined into a single equation:

T (x) =


β1

β2
...

βm



T 
β1 · T (σ1) β1 · T (σ2) · · · β1 · T (σn)

β2 · T (σ1) β2 · T (σ2) · · · β2 · T (σn)
... · · ·

. . .
...

βm · T (σ1) βm · T (σ2) · · · βm · T (σn)




x1

x2
...

xn


(27.6)

Here the matrix (x1, x2, · · · , xn) is a coordinate vector with respect to basis σ, but the vector
(β1, β2, · · · , βn) is matrix of the basis vectors βi ∈ β. This makes sense since the end result has
not been defined in terms of a coordinate vector space, but the space of T itself.

This can all be written more compactly as

T (x) =
[
βi

]T [
βi · T (σ j)

] [
xi

]
(27.7)
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We can also recover the original result from this by direct expansion and then regrouping:

[
βi

]T [∑
j β

i · T (σ j)x j

]
=

[∑
k j βkβ

k · T (σ j)x j

]
=

∑
k j

βkβ
k · T (σ j)x j

=
∑

k

βkβ
k · T (

∑
j

σ jx j)

=
∑

k

βkβ
k · T (x)

= T (x)

(27.8)

Observe that this demonstrates that we can write the coordinate vector [T ]β as the two left
most matrices above

[T (x)]β =
[
βi · T (x)

]
i

=
[∑

j β
i · T (σ j)x j

]
i

=
[
βi · T (σ j)

] [
xi

] (27.9)

Looking at the above I found it interesting that eq. (27.6) which embeds the coordinate vector
of T (x) has the structure of a bilinear form, so in a sense one can view the matrix of a linear
transformation:

[T ]βσ =
[
βi · T (σ j)

]
(27.10)

as a bilinear form that can act as a mapping from the generating basis to the image basis.





28
V E C T O R F O R M O F J U L I A F R AC TA L

28.1 motivation

As outlined in [11], 2-D and N-D Julia fractals can be computed using the geometric product,
instead of complex numbers. Explore a couple of details related to that here.

28.2 guts

Fractal patterns like the Mandelbrot and Julia sets are typically using iterative computations in
the complex plane. For the Julia set, our iteration has the form

Z → Zp + C (28.1)

where p is an integer constant, and Z, and C are complex numbers. For p = 2 I believe we
obtain the Mandelbrot set. Given the isomorphism between complex numbers and vectors using
the geometric product, we can use write

Z = xn̂
C = cn̂,

(28.2)

and re-express the Julia iterator as

x→ (xn̂)pn̂ + c (28.3)

It is not obvious that the RHS of this equation is a vector and not a multivector, especially
when the vector x lies in R3 or higher dimensional space. To get a feel for this, let us start by
write this out in components for n̂ = e1 and p = 2. We obtain for the product term

(xn̂)pn̂ = xn̂xn̂n̂
= xn̂x
= (x1e1 + x2e2)e1(x1e1 + x2e2)

= (x1 + x2e2e1)(x1e1 + x2e2)

= (x2
1 − x2

2)e1 + 2x1x2e2

(28.4)
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Looking at the same square in coordinate representation for the Rn case (using summation
notation unless otherwise specified), we have

xn̂x = xkeke1xmem

=

x1 +
∑
k>1

xkeke1

 xmem

= x1xmem +
∑
k>1

xkxmeke1em

= x1xmem +
∑
k>1

xkx1ek +
∑

k>1,m>1

xkxmeke1em

=

x2
1 −

∑
k>1

x2
k

 e1 + 2
∑
k>1

x1xkek +
∑

1<k<m,1<m<k

xkxmeke1em

(28.5)

This last term is zero since eke1em = −eme1ek, and we are left with

xn̂x =

x2
1 −

∑
k>1

x2
k

 e1 + 2
∑
k>1

x1xkek, (28.6)

a vector, even for non-planar vectors. How about for an arbitrary orientation of the unit vector
in Rn? For that we get

xn̂x = (x · n̂n̂ + x∧ n̂n̂)n̂x
= (x · n̂ + x∧ n̂)(x · n̂n̂ + x∧ n̂n̂)

= ((x · n̂)2 + (x∧ n̂)2)n̂ + 2(x · n̂)(x∧ n̂)n̂
(28.7)

We can read eq. (28.6) off of this result by inspection for the n̂ = e1 case.
It is now straightforward to show that the product (xn̂)pn̂ is a vector for integer p ≥ 2. We

have covered the p = 2 case, justifying an assumption that this product has the following form

(xn̂)p−1n̂ = an̂ + b(x∧ n̂)n̂, (28.8)

for scalars a and b. The induction test becomes

(xn̂)pn̂ = (xn̂)p−1(xn̂)n̂
= (xn̂)p−1x
= (a + b(x∧ n̂))((x · n̂)n̂ + (x∧ n̂)n̂)

= (a(x · n̂)2 − b(x∧ n̂)2)n̂ + (a + b(x · n̂))(x∧ n̂)n̂.

(28.9)
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Again we have a vector split nicely into projective and rejective components, so for any
integer power of p our iterator eq. (28.3) employing the geometric product is a mapping from
vectors to vectors.

There is a striking image in the text of such a Julia set for such a 3D iterator, and an exercise
left for the adventurous reader to attempt to code that based on the 2D p = 2 sample code they
provide.





Part III

ROTAT I O N





29
ROT O R N OT E S

29.1 rotations strictly in a plane

For a plane rotation, a rotation does not have to be expressed in terms of left and right half angle
rotations, as is the case with complex numbers. Starting with this “natural” one sided rotation
we will see why the half angle double sided Rotor formula works.

29.1.1 Identifying a plane with a bivector. Justification

Given a bivector B, we can say this defines the orientation of a plane (through the origin) since
for any vector in the plane we have B∧ x = 0, or any vector strictly normal to the plane B · x = 0.

Note that this naturally compares to the equation of a line (through the origin) expressed in
terms of a direction vector b, where b ∧ x = 0 if x lies on the line, and b · x = 0 if x is normal
to the line.

Given this it is not unreasonable to identify the plane with its bivector. This will be done
below, and it should be clear that loose language such as “the plane B”, should really be inter-
preted as “the plane with direction bivector B”, where the direction bivector has the wedge and
dot product properties noted above.

29.1.2 Components of a vector in and out of a plane

To calculate the components of a vector in and out of a plane, we can form the product

x = xB
1
B

= x ·B
1
B

+ x∧B
1
B

(29.1)

This is an orthogonal decomposition of the vector x where the first part is the projective term
onto the plane B, and the second is the rejective term, the component not in the plane. Let us
verify this.

Write x = x‖ + x⊥, where x‖, and x⊥ are the components of x parallel and perpendicular to
the plane. Also write B = b1 ∧ b2, where bi are non-colinear vectors in the plane B.

If x = x‖, a vector entirely in the plane B, then one can write

x = a1b1 + a2b2 (29.2)
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and the wedge product term is zero

x∧B = (a1b1 + a2b2) ∧ b1 ∧ b2

= a1(b1 ∧ b1)∧ b2 − a2(b2 ∧ b2)∧ b1

= 0

(29.3)

Thus the component parallel to the plane is composed strictly of the dot product term

x‖ = x ·B
1
B

(29.4)

Or for a general vector not necessarily in the plane the component of that vector in the plane,
its projection onto the plane is,

ProjB(x) = x ·B
1
B

=
1
|B|2

(B · x)B = (B̂ · x)B̂ (29.5)

Now, for a vector that lies completely perpendicular to the plane x = x⊥, the dot product term
with the plane is zero. To verify this observe

x⊥ ·B = x⊥ · (b1 ∧ b2)

= (x⊥ · b1)b2 − (x⊥ · b2)b1
(29.6)

Each of these dot products are zero since x has no components that lie in the plane (those
components if they existed could be expressed as linear combinations of bi).

Thus only the component perpendicular to the plane is composed strictly of the wedge prod-
uct term

x⊥ = x∧B
1
B

(29.7)

And again for a general vector the component that lies out of the plane as, the rejection of the
plane from the vector is

RejB(x) = x∧B
1
B

= −
1
|B|2

x∧BB = −x∧ B̂B̂ (29.8)
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Figure 29.1: Rotation of Vector

29.2 rotation around normal to arbitrarily oriented plane through origin

Having established the preliminaries, we can now express a rotation around the normal to a
plane (with the plane and that normal through the origin).

Such a rotation is illustrated in fig. 29.1 preserves all components of the vector that are
perpendicular to the plane, and operates only on the components parallel to the plane.

Expressed in terms of exponentials and the projective and rejective decompositions above,
this is

Rθ(x) = x∧B
1
B

+

(
x ·B

1
B

)
eB̂θ

= x∧B
1
B

+ e−B̂θ
(
x ·B

1
B

) (29.9)

Where we have made explicit note that a plane rotation does not commute with a vector in a
plane (its reverse is required).



210 rotor notes

To demonstrate this write i = e2e1, a unit bivector in some plane with unit vectors ei also in
the plane. If a vector lies in that plane we can write the rotation

xeiθ = (a1e1 + a2e2) (cos θ + i sin θ)

= cos θ (a1e1 + a2e2) + (a1e1 + a2e2) (e2e1 sin θ)

= cos θ (a1e1 + a2e2) + sin θ (−a1e2 + a2e1)

= cos θ (a1e1 + a2e2) − e2e1 sin θ (a1e1 + a2e2)

= e−iθx

(29.10)

Similarly for a vector that lies outside of the plane we can write

xeiθ = (
∑
j,1,2

a je j)(cos θ + e2e1 sin θ)

= (cos θ + e2e1 sin θ)(
∑
j,1,2

a je j)

= eiθx

(29.11)

The multivector for a rotation in a plane perpendicular to a vector commutes with that vector.
The properties of the exponential allow us to factor a rotation

R(θ) = R(αθ)R((1 − α)θ) (29.12)

where α <= 1, and in particular we can set α = 1/2, and write

Rθ(x) = x∧B
1
B

+

(
x ·B

1
B

)
eB̂θ

=

(
x∧B

1
B

)
e−B̂θ/2eB̂θ/2 +

(
x ·B

1
B

)
eB̂θ/2eB̂θ/2

= e−B̂θ/2
(
x∧B

1
B

)
eB̂θ/2 + e−B̂θ/2

(
x ·B

1
B

)
eB̂θ/2

= e−B̂θ/2 (x∧B + x ·B)
1
B

eB̂θ/2

= e−B̂θ/2
(
xB

1
B

)
eB̂θ/2

(29.13)

This takes us full circle from dot and wedge products back to x, and allows us to express the
rotated vector as:

Rθ(x) = e−B̂θ/2xeB̂θ/2 (29.14)
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Only when the vector lies in the plane (x = x‖, or x∧B = 0) can be written using the familiar
left or right “full angle” rotation exponential that we are used to from complex arithmetic:

Rθ(x) = e−B̂θx = xeB̂θ (29.15)

29.3 rotor equation in terms of normal to plane

The rotor equation above is valid for any number of dimensions. For R3 we can alternatively
parametrize the plane in terms of a unit normal n:

B = kin (29.16)

Here i is the R3 pseudoscalar e1e2e3.
Thus we can write

B̂ = in (29.17)

and expressing eq. (29.14) in terms of the unit normal becomes trivial

Rθ(x) = e−inθ/2xeinθ/2 (29.18)

Expressing this in terms of components and the unit normal is a bit harder

Rθ(x) = x∧B
1
B

+

(
x ·B

1
B

)
eB̂θ

= x∧ (in)
1
in

+

(
x · (in)

1
in

)
einθ

(29.19)

Now,

x∧ (in) =
1
2

(xin + inx)

=
i
2

(xn + nx)

= (x · n)i

(29.20)
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And

1
in

=
1
in

1
ni

ni

= −in
(29.21)

So the rejective term becomes

x∧B
1
B

= x∧ (in)
1
in

= x∧ (in)
1
in

= (x · n)i(−i)n
= (x · n)n
= Projn(x)

(29.22)

Now, for the dot product with the plane term, we have

x ·B = x · (in)

=
1
2

(xin − inx)

= (x∧ n)i

(29.23)

Putting it all together we have

Rθ(x) = (x · n)n + (x∧ n)neinθ (29.24)

In terms of explicit sine and cosine terms this is (observe that (in)2 = −1),

Rθ(x) = (x · n) n + (x∧ n) n (cos θ + in sin θ) (29.25)

Rθ(x) = (x · n) n + (x∧ n) n cos θ + (x∧ n)i sin θ (29.26)

This triplet of mutually orthogonal direction vectors, n, (x ∧ n)n, and (x ∧ n)i are illustrated
in fig. 29.2. The component of the vector in the direction of the normal Projn(x) = x · nn is
unaltered by the rotation. The rotation is applied to the remaining component of x, Rejn(x) =

(x∧ n)n, and we rotate in the direction (x∧ n)i
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Figure 29.2: Direction vectors associated with rotation

29.3.1 Vector rotation in terms of dot and cross products only

Expression of this rotation formula eq. (29.26) in terms of “vector” relations is also possible, by
removing the wedge products and the pseudoscalar references.

First the rejective term

(x∧ n)n = ((x × n)i)n
= ((x × n)i) · n

=
1
2

(((x × n)i)n − n((x × n)i))

=
i
2

((x × n)n − n(x × n))

= i((x × n)∧ n)

= i2((x × n) × n)

= n × (x × n)

(29.27)

The next term expressed in terms of the cross product is

(x∧ n)i = (x × n)i2

= n × x
(29.28)
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And putting it all together we have

Rθ(x) = (x · n) n + (n × x) × n cos θ + n × x sin θ (29.29)

Compare eq. (29.29) to eq. (29.26) and eq. (29.24), and then back to eq. (29.14).

29.4 giving a meaning to the sign of the bivector

For a rotation between two vectors in the plane containing those vectors, we can write the
rotation in terms of the exponential as either a left or right rotation operator:

b = aeiθ = e−iθa (29.30)

b = ejθa = ae−jθ/2 (29.31)

Here both i and j = −i are unit bivectors with the property i2 = j2 = −1. Thus in order to
write a rotation in exponential form a meaning must be assigned to the sign of the unit bivector
that describes the plane and the orientation of the rotation.

Consider for example the case of a rotation by π/2. For this is the exponential is:

eiπ/2 = cos(π/2) + i sin(π/2) = i (29.32)

Thus for perpendicular unit vectors u and v, if we wish i to act as a π/2 rotation left acting
operator on u towards v its value must be:

i = u∧ v (29.33)

ui = uu∧ v = uuv = v (29.34)

For that same rotation if the bivector is employed as a right acting operator, the reverse is
required:

j = v∧ u (29.35)
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Figure 29.3: Orientation of unit imaginary

ju = v∧ u = vuu = v (29.36)

In general, for any two vectors, one can find an angle θ in the range 0 ≤ θ ≤ π between
those vectors. If one lets that angle define the orientation of the rotation between the vectors,
and implicitly define a sort of “imaginary axis” for that plane, that imaginary axis will have
direction

1
a

a∧ b = b∧ a
1
a
. (29.37)

This is illustrated in fig. 29.3.
Thus the bivector

i =
a∧ b
|a∧ b|

(29.38)

When acting as an operator to the left (ai) with a vector in the plane can be interpreted as
acting as a rotation by π/2 towards b.



216 rotor notes

Similarly the bivector

j = i† = −i =
b∧ a
|b∧ a|

(29.39)

also applied to a vector in the plane produces the same rotation when acting as an operator to
the right. Thus, in general we can write a rotation by theta in the plane containing non-colinear
vectors a and b in the direction of minimal angle from a towards b in one of the three forms:

Rθ:a→b(a) = ae
a∧b
|a∧b| θ = e

b∧a
|b∧a| θa (29.40)

Or,

Rθ:a→b(x) = e
b∧a
|b∧a| θ/2xe

a∧b
|a∧b| θ/2 (29.41)

This last (writing x instead of a since it also applies to vectors that lie outside of the a ∧ b
plane), is our rotor formula eq. (29.14), reexpressed in a way that removes the sign ambiguity
of the bivector i in that equation.

29.5 rotation between two unit vectors

As illustrated in fig. 29.4, when the angle between two vectors is less than π the fact that the
sum of two arbitrarily oriented unit vectors bisects those vectors provides a convenient way to
compute the half angle rotation exponential.

Thus we can write

a + b
|a + b|

= aeiθ/2 = ejθ/2a

Where i = j† are unit bivectors of appropriate sign. Multiplication through by a gives

eiθ/2 =
1 + ab
|a + b|

Or,

ejθ/2 =
1 + ba
|a + b|

Thus we can write the total rotation from a to b as
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Figure 29.4: Sum of unit vectors bisects angle between

b = e−iθ/2aeiθ/2 = ejθ/2ae−jθ/2 =

(
1 + ba
|a + b|

)
a
(
1 + ab
|a + b|

)
For the case where the rotation is through an angle θ where π < θ < 2π, again employing a

left acting exponential operator we have

a + b
|a + b|

= bei(2π−θ)/2

= beiπe−iθ/2

= −be−iθ/2

(29.42)

Or,

e−iθ/2 = −
ba + 1
|a + b|

(29.43)

Thus

b = e−iθ/2aeiθ/2 =

(
−

1 + ba
|a + b|

)
a
(
−

1 + ab
|a + b|

)
(29.44)
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Note that the two negatives cancel, giving the same result as in the θ < π case. Thus
eq. (29.44) is valid for all vectors a , −b (this can be verified by direct multiplication.)

These half angle exponentials are called rotors, writing the rotor as

R =
1 + ab
|a + b|

(29.45)

and the rotation in terms of rotors is:

b = R†aR (29.46)

The angle associated with this rotor R is the minimal angle between the two vectors (0 < θ <
π), and is directed from a to b. Inverting the rotor will not change the net effect of the rotation,
but has the geometric meaning that the rotation from a to b rotates in the opposite direction
through the larger angle (π < θ < 2π) between the vectors.

29.6 eigenvalues , vectors and coordinate vector and matrix of the rotation lin-
ear transformation

Given the plane containing two orthogonal vectors u and v, we can form a unit bivector for the
plane

B = uv (29.47)

A normal to this plane is n = vuI.
The rotation operator for a rotation around n in that plane (directed from u towards v) is

Rθ(x) = evuθ/2xeuvθ/2 (29.48)

To form the matrix of this linear transformation assume an orthonormal basis σ = {ei}.
In terms of these basis vectors we can write

Rθ(e j) = e−vuθ/2e jeuvθ/2 =
∑

i

(
e−vuθ/2e jeuvθ/2

)
· eiei (29.49)

Thus the coordinate vector for this basis is

[
Rθ(e j)

]
σ

=


(
e−vuθ/2e jeuvθ/2

)
· e1

...(
e−vuθ/2e jeuvθ/2

)
· en

 (29.50)
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We can use this to form the matrix for the linear operator that takes coordinate vectors from
the basis σ to σ:

[
Rθ(x)

]
σ

=
[
Rθ

]σ
σ

[
x
]
σ

(29.51)

Where[
Rθ

]σ
σ

=

[[
Rθ(e1)

]
σ
. . .

[
Rθ(en)

]
σ

]
=

[(
e−vuθ/2e jeuvθ/2

)
· ei

]
i j

(29.52)

If one uses the plane and its normal to form an alternate orthonormal basis α = {u, v,n}.
The transformation matrix for coordinate vectors in this basis is

[
Rθ

]α
α

=


(
ueuvθ

)
· u

(
veuvθ

)
· u 0(

ueuvθ
)
· v

(
veuvθ

)
· v 0

0 0 n · n

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (29.53)

This matrix has eigenvalues eiθ, e−iθ, 1, with (coordinate) eigenvectors

1
√

2


1

−i

0

 , 1
√

2


1

i

0

 ,

0

0

1

 (29.54)

Its interesting to observe that without introducing coordinate vectors an eigensolution is pos-
sible directly from the linear transformation itself.

The rotation linear operator has right and left eigenvalues euvθ, evuθ (respectively), where the
eigenvectors for these are any vectors in the plane. There is also a scalar eigenvalue 1 (both left
and right eigenvalue), for the eigenvector n:

Rθ(u) = evuθx = xeuvθ

Rθ(u) = evuθx = xeuvθ

Rθ(n) = n(1)

(29.55)

Observe that the eigenvalues here are not all scalars, which is likely related to the fact that
the coordinate matrix was not diagonalizable with real vectors.
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the matrix of the linear transformation. Given this, one can write:

[
Rθ(u) Rθ(v) Rθ(n)

]
=

[
u v n

] 
euvθ 0 0

0 euvθ 0

0 0 1


=


evuθ 0 0

0 evuθ 0

0 0 1


[
u v n

] (29.56)

But neither of these can be used to diagonalize the matrix of the transformation. To do that
we require dot products that span the matrix product to form the coordinate vector columns.

Observe that interestingly enough the left and right eigenvalues of the operator in the plane
are of complex exponential form (e±nIθ) just as the eigenvalues for coordinate vectors restricted
to the plane are complex exponentials (e±iθ).

29.7 matrix for rotation linear transformation

Let us expand the terms in eq. (29.52) to calculate explicitly the rotation matrix for an arbitrary
rotation. Also, as before, write n = vuI, and parametrize the Rotor as follows:

R = enIθ/2 = cos θ/2 + nI sin θ/2 = α + Iβ (29.57)

Thus the i j terms in the matrix are:

ei ·
(
e−nIθ/2e jenIθ/2

)
= 〈ei(α − Iβ)e j(α + Iβ)〉

= 〈ei(e jα − Iβe j)(α + Iβ)〉

= 〈ei
(
e jα

2 − Iα(βe j − e jβ) + βe jβ
)
〉

= δi jα
2 + 〈ei (−2Iα(β∧ e j) + βe jβ)〉

= δi jα
2 + 2αei · (β × e j) + 〈eiβe jβ〉

(29.58)

Lets expand the last term separately:

〈eiβe jβ〉 = 〈(ei · β + ei ∧ β)(e j · β + e j ∧ β)〉

= (ei · β)(e j · β) + 〈(ei ∧ β)(e j ∧ β)〉
(29.59)
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And once more considering first the i = j case (writing s , i , t).

〈(ei ∧ β)2〉 =

∑
k,i

eikβk

2

= (eisβs + eitβt)(eisβs + eitβt)

= −β2
s − β

2
t − estβsβt + etsβtβs

= −β2
s − β

2
t

= −β2 + β2
i

(29.60)

For the i , j term, writing i , j , k

〈(ei ∧ β)(e j ∧ β)〉 = 〈
∑
s,i

eisβs

∑
t,i

eitβt〉

= 〈(ei jβ j + eikβk)(e jiβi + e jkβk)〉

= βiβ j + 〈e jiβ
2
k + eikβ jβk + ek jβkβi〉

= βiβ j

(29.61)

Thus

〈(ei ∧ β)(e j ∧ β)〉 = δi j(−β2 + β2
i ) + (1 − δi j)βiβ j = βiβ j − δi jβ

2 (29.62)

And putting it all back together

ei ·
(
e−nIθ/2e jenIθ/2

)
= δi j(α2 − β2) + 2αei · (β × e j) + 2βiβ j (29.63)

The α and β terms can be expanded in terms of θ. we see that The δi j coefficient is

α2 − β2 = 2cos2θ − 1 = cos θ. (29.64)

The triple product ei · (β × e j) is zero along the diagonal where i = j since an e j = ei cross
has no ei component, so for k , i , j, the triple product term is

2αei · (β × e j) = 2αβkei · (ek × e j)

= 2αβk sgn πik j

= 2nk cos(θ/2) sin(θ/2) sgn πik j

= nk sin θ sgn πik j

(29.65)
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The last term is:

2βiβ j = 2nin jsin2(θ/2) = nin j(1 − cos θ) (29.66)

Thus we can alternatively write eq. (29.63)

ei ·
(
e−nIθ/2e jenIθ/2

)
= δi j cos θ + nk sin θεik j + nin j(1 − cos θ) (29.67)

This is enough to easily and explicitly write out the complete rotation matrix for a rotation
about unit vector n = (n1, n2, n3): (with basis σ = {ei}):

[Rθ]σσ =


cos θ(1 − n2

1) + n2
1 n1n2(1 − cos θ) − n3 sin θ n1n3(1 − cos θ) + n2 sin θ

n1n2(1 − cos θ) + n3 sin θ cos θ(1 − n2
2) + n2

2 n2n3(1 − cos θ) − n1 sin θ

n1n3(1 − cos θ) − n2 sin θ n2n3(1 − cos θ) + n1 sin θ cos θ(1 − n2
3) + n2

3


(29.68)

Note also that the ni terms are the direction cosines of the unit normal for the rotation, so
all the terms above are really strictly sums of sine and cosine products, so we have the rotation
matrix completely described in terms of four angles. Also observe how much additional com-
plexity we have to express a rotation in terms of the matrix. This representation also does not
work for plane rotations, just vectors (whereas that is not the case for the rotor form).

It is actually somewhat simpler looking to leave things in terms of the α, and β parameters.
We can rewrite eq. (29.63) as:

ei ·
(
e−nIθ/2e jenIθ/2

)
= δi j(2α2 − 1) + 2αβkεik j + 2βiβ j (29.69)

and the rotation matrix:

[Rθ]σσ = 2


α2 − 1

2 + β2
1 β1β2 − β3α β1β3 + β2α

β1β2 + β3α α2 − 1
2 + β2

2 β2β3 − β1α

β1β3 − β2α β2β3 + β1α α2 − 1
2 + β2

3

 (29.70)

Not really that much simpler, but a bit. The trade off is that the similarity to the standard 2x2
rotation matrix is not obvious.
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30.1 removing the rotors from the exponentials

In [10] section 2.7.5 the Euler angle formula is developed for {z, x′, z′′} axis rotations by {φ, θ, ψ}
respectively.

Other than a few details the derivation is pretty straightforward. Equation 2.153 would be
clearer with a series expansion hint like

exp(RαiR†) =
∑

k

1
k!

(RαiR†)k

=
∑

k

1
k!

R(αi)kR†

= R exp(αi)R†

(30.1)

where i is a bivector, and R is a rotor (RR† = 1).
The first rotation is straightforward, by an angle φ around the z axis

Rφ(x) = exp(−Ie3φ/2)x exp(Ie3φ/2) = RφxR†φ (30.2)

The next rotation is around the transformed x axis, for which the rotational plane is

IRφe1R†φ = RφIe1R†φ (30.3)

So the rotor for this plane by angle θ is

Rθ = exp(RφIe1R†φ)

= Rφ exp(Ie1θ/2)R†φ,
(30.4)

resulting in the composite rotor

Rθφ = RθRφ

= Rφ exp(Ie1θ/2)R†φRφ

= Rφ exp(Ie1θ/2)

= exp (−Ie3φ/2) exp(−Ie1θ/2)

(30.5)

223
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The composition of the simple rotation around the e3 axis, followed by the rotation around
the e′1 axis ends up as a product of rotors around the original e1 and e3 axis, but curiously enough
in inverted order.

30.2 expanding the rotor product

Completing the calculation outlined above follows in the same fashion. The end result is that
the composite Euler rotations has the following rotor form

R(x) = RxR†

R = exp(−e12φ/2) exp(−e23θ/2) exp(−e12ψ/2)
(30.6)

Then there are notes saying this is easier to visualize and work with than the equivalent matrix
formula. Let us see what the equivalent matrix formula is. First calculate the rotor action on e1

Re1R† = e−e12φ/2e−e23θ/2e−e12ψ/2e1ee12ψ/2ee23θ/2ee12φ/2

= e−e12φ/2e−e23θ/2e1ee12ψee23θ/2ee12φ/2

= e−e12φ/2e−e23θ/2(e1Cψ + e2S ψ)ee23θ/2ee12φ/2

= e−e12φ/2(e1Cψ + e2S ψee23θ)ee12φ/2

= e−e12φ/2(e1Cψ + e2S ψCθ + e3S ψS θ)ee12φ/2

= (e1Cψ + e2S ψCθ)ee12φ + e3S ψS θ

= e1(CψCφ − S ψCθS φ) + e2(CψS φ + S ψCθCφ) + e3S ψS θ

(30.7)

Now e2:

Re2R† = e−e12φ/2e−e23θ/2e−e12ψ/2e2ee12ψ/2ee23θ/2ee12φ/2

= e−e12φ/2e−e23θ/2(e2Cψ − e1S ψ)ee23θ/2ee12φ/2

= (e2CψCθ − e1S ψ)ee12φ + e3CψS θ

= e1(−CψCθS φ − S ψCφ) + e2(−S ψS φ + CψCθCφ) + e3CψS θ

(30.8)

And finally e3

Re3R† = e−e12φ/2e−e23θ/2e−e12ψ/2e3ee12ψ/2ee23θ/2ee12φ/2

= e−e12φ/2e3ee23θee12φ/2

= e−e12φ/2(e3Cθ − e2S θ)ee12φ/2

= −e2S θee12φ + e3Cθ

= e1S θS φ − e2S θCφ + e3Cθ

(30.9)
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This can now be assembled into matrix form
R(x) · e1

R(x) · e2

R(x) · e3

 =


(Re1R†) · e1 (Re2R†) · e1 (Re3R†) · e1

(Re1R†) · e2 (Re2R†) · e2 (Re3R†) · e2

(Re1R†) · e3 (Re2R†) · e3 (Re3R†) · e3



x1

x2

x3

 = Rx (30.10)

Therefore we have the composite matrix form for the Euler angle rotations

R =


CψCφ − S ψCθS φ −S ψCφ −CψCθS φ S θS φ

CψS φ + S ψCθCφ −S ψS φ + CψCθCφ −S θCφ

S ψS θ CψS θ Cθ

 (30.11)

Lots of opportunity to make sign errors here. Let us check with matrix multiplication, which
should give the same result

30.3 with composition of rotation matrices (done wrong , but with discussion
and required correction)

R(x) = Rx
= Rψe3Rθe1Rφe3x

(30.12)

Now, that first rotation is

Rφ(x) = e−e12φ/2(eixi)ee12φ/2

= (e1x1 + e2x2)ee12φ + e3x3

= x1(e1 cos φ + e2 sin φ) + x2(e2 cos φ − e1 sin φ) + x3e3

= e1(x1 cos φ − x2 sin φ) + e2(x1 sin φ + x2 cos φ) + e3x3

(30.13)

Which has the expected matrix form

Rφe3x =


cos φ − sin φ 0

sin φ cos φ 0

0 0 1



x1

x2

x3

 (30.14)
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Using Cx = cos(x), and S x = sin(x) for brevity, the composite rotation is

Rψe3Rθe1Rφe3 =


Cψ −S ψ 0

S ψ Cψ 0

0 0 1



1 0 0

0 Cθ −S θ

0 S θ Cθ



Cφ −S φ 0

S φ Cφ 0

0 0 1


=


Cψ −S ψCθ S ψS θ

S ψ CψCθ −CψS θ

0 S θ Cθ



Cφ −S φ 0

S φ Cφ 0

0 0 1


=


CψCφ − S ψCθS φ −CψS φ − S ψCθCφ S ψS θ

S ψCφ + CψCθS φ −S ψS φ + CψCθCφ −CψS θ

S θS φ S θCφ Cθ



(30.15)

This is different from the rotor generated result above, although with a φ, and ψ interchange
things appear to match?


CφCψ − S φCθS ψ −S φCψ −CφCθS ψ S θS ψ

CφS ψ + S φCθCψ −S φS ψ + CφCθCψ −S θCψ

S φS θ CφS θ Cθ

 (30.16)

Where is the mistake? I suspect it is in the matrix formulation, where the plain old rotations
for the axis were multiplied. Because the rotations need to be along the transformed axis I bet
there is a reversion of matrix products as there was an reversion of rotors? How would one show
if this is the case?
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What is needed is more careful treatment of the rotation about the transformed axis. Consid-
ering the first, for a rotation around the e′1 = (Cφ, S φ, 0) axis. From 29 we have the rotation
matrix for a θ rotation about an arbitrary normal n = (n1, n2, n3)

Rθ =


Cθ(1 − n2

1) + n2
1 n1n2(1 −Cθ) − n3S θ n1n3(1 −Cθ) + n2S θ

n1n2(1 −Cθ) + n3S θ Cθ(1 − n2
2) + n2

2 n2n3(1 −Cθ) − n1S θ

n1n3(1 −Cθ) − n2S θ n2n3(1 −Cθ) + n1S θ Cθ(1 − n2
3) + n2

3


=


Cθ(1 −Cφ

2) + Cφ
2 CφS φ(1 −Cθ) S φS θ

CφS φ(1 −Cθ) Cθ(1 − S φ
2) + S φ

2 −CφS θ

−S φS θ CφS θ Cθ


=


Cθ(S φ

2) + Cφ
2 CφS φ(1 −Cθ) S φS θ

CφS φ(1 −Cθ) Cθ(Cφ
2) + S φ

2 −CφS θ

−S φS θ CφS θ Cθ



(30.17)

Now the composite rotation for the sequence of φ, and θ rotations about the z, and x′ axis is

Rφe3,θe′1 =


Cθ(S φ

2) + Cφ
2 CφS φ(1 −Cθ) S φS θ

CφS φ(1 −Cθ) Cθ(Cφ
2) + S φ

2 −CφS θ

−S φS θ CφS θ Cθ



Cφ −S φ 0

S φ Cφ 0

0 0 1


=


Cφ −CθS φ S φS θ

S φ CθCφ −CφS θ

0 S θ Cθ


=


Cφ −S φ 0

S φ Cφ 0

0 0 1



1 0 0

0 Cθ −S θ

0 S θ Cθ


= Rφe3Rθe1

(30.18)

Wow, sure enough the composite rotation matrix is the result of the inverted order product
of the two elementary rotation matrices. The algebra here is fairly messy, so it would not be
terribly fun to go one step further using just matrices that the final triple rotation is not the
product of eq. (30.12), but instead requires the matrix product

R(x) = Rx
= Rφe3Rθe1Rψe3x

(30.19)
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Assuming that this is true, the swapping of angles to match the rotor expression is fully
accounted for, and it is understood how to correctly do the same calculation in matrix form.

30.4 relation to cayley-klein parameters

Exercise 2.9 from [10] is to relate the rotation matrix expressed in terms of Cayley-Klein param-
eters back to the rotor formulation. That matrix has the look of something that involves the half
angles. Use of software to expressing the rotation in terms of the half angle signs and cosines,
plus some manually factoring (which could be carried further), produces the following mess

R11 = S 2
φS 2

ψ −C2
ψS 2

φ −C2
φS 2

ψ + C2
φC

2
ψ − 4CφS φCψS ψ(C2

θ − S 2
θ)

R21 = 2CψS ψ(C2
φ − S 2

φ)(C2
θ − S 2

θ) + 2CφS φ(C2
ψ − S 2

ψ)

R31 = 4CψCθS ψS θ

R12 = −2CφS φ(C2
ψ − S 2

ψ)(C2
θ − S 2

θ) − 2CψS ψ(C2
φ − S 2

φ)

R22 = (C2
θ − S 2

θ)(−S 2
φ + C2

φ)(C2
ψ − S 2

ψ) − 4CφS φCψS ψ

R32 = 2CθS θ(C2
ψ − S 2

ψ)

R13 = 4CφCθS φS θ

R23 = −2CθS θ(C2
φ − S 2

φ)

R33 = +C2
θS 2

φ − S 2
ψS 2

θ −C2
ψS 2

θ + C2
φC

2
θ

(30.20)

It kind of looks like the terms CθS φ may be related to these parameters. error prone. A Google
search for Cayley Klein also verifies that those parameters are expressed in terms of half angle
relations, but even with the hint, I was not successful getting something tidy out of all this.

An alternate approach is to just expand the rotor, so terms may be grouped before that rotor
and its reverse is applied to the object to be rotated. Again in terms of half angle signs and
cosines this is

R = exp(−e12φ/2) exp(−e23θ/2) exp(−e12ψ/2)

= (CφCψ − S φS ψ)Cθ − (CψS φ + CφS ψ)Cθe12

+ (CφS ψ −CψS φ)S θe31 − (S φS ψ + CφCψ)S θe23

(30.21)

Grouping terms produces

R = cos
(
θ

2

)
exp

(
−e12

2
(ψ + φ)

)
+ sin

(
θ

2

)
exp

(e12

2
(ψ − φ)

)
e32 (30.22)

Okay... now I see how you naturally get four parameters out of this. Also see why it was hard
to get there from the fully expanded rotation product ... it would first be required to group all
the φ and ψ terms just right in terms of sums and differences.
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With

R = α + δe12 + βe23 + γe31

α = cos
(
θ

2

)
cos

(
1
2
(ψ + φ)

)
δ = − cos

(
θ

2

)
sin

(
1
2
(ψ + φ)

)
β = − sin

(
θ

2

)
cos

(
1
2
(ψ − φ)

)
γ = sin

(
θ

2

)
sin

(
1
2
(ψ − φ)

)
(30.23)

By inspection, these have the required property α2 + β2 + γ2 + δ2 = 1, and multiplying out
the rotors yields the rotation matrix

U =


−γ2 + β2 − δ2 + α2 +2βγ + 2αδ +2δβ − 2αγ

+2βγ − 2αδ +γ2 − β2 − δ2 + α2 +2δγ + 2αβ

+2δβ + 2αγ +2δγ − 2αβ −γ2 − β2 + δ2 + α2

 (30.24)

Now that particular choice of sign and permutation of the α, β, γ, and δ is not at all obvious,
and is also arbitrary. Of the 120 different sign and permutation variations that can be tried, this
one results in the particular desired matrix U from the problem. The process of performing the
multiplications was well suited to a symbolic GA calculator and one was written with this and
other problems in mind.

[16] also treats these Cayley-Klein parametrizations, but does so considerably differently. He
has complex parametrizations and quaternion matrix representations, and it will probably be
worthwhile to reconcile all of these.
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30.5 omitted details

30.5.1 Cayley Klein details

Equation (30.22) was obtained with the following manipulations

R = (CφCψ − S φS ψ)Cθ − (CψS φ + CφS ψ)Cθe12

+ (CφS ψ −CψS φ)S θe31 − (S φS ψ + CφCψ)S θe23

= cos
(
1
2

(φ + ψ)
)

Cθ − sin
(
1
2

(φ + ψ)
)

Cθe12

− sin
(
1
2

(φ − ψ)
)

S θe31 − cos
(
1
2

(φ − ψ)
)

S θe23

= cos
(
1
2

(ψ + φ)
)

Cθ − sin
(
1
2

(ψ + φ)
)

Cθe12

+ sin
(
1
2

(ψ − φ)
)

S θe31 − cos
(
1
2

(ψ − φ)
)

S θe23

= Cθ

(
cos

(
1
2

(ψ + φ)
)
− sin

(
1
2

(ψ + φ)
)

e12

)
+ S θ

(
sin

(
1
2

(ψ − φ)
)

e31 − cos
(
1
2

(ψ − φ)
)

e23

)
= Cθ exp

(
−e12

2
(ψ + φ)

)
+ S θe3

(
sin

(
1
2

(ψ − φ)
)

e1 + cos
(
1
2

(ψ − φ)
)

e2

)
= Cθ exp

(
−e12

2
(ψ + φ)

)
+ S θ exp

(e12

2
(ψ − φ)

)
e32

(30.25)

In that last step an arbitrary but convenient decision to write the complex number i as e12 was
employed.
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S P H E R I C A L P O L A R C O O R D I NAT E S

31.1 motivation

Reading the math intro of [47], I found the statement that the gradient in spherical polar form
is:

∇ = r̂
∂

∂r
+ θ̂

1
r
∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ
(31.1)

There was no picture or description showing the conventions for measurement of the angles
or directions. To clarify things and leave a margin note I decided to derive the coordinates
and unit vector transformation relationships, gradient, divergence and curl in spherical polar
coordinates.

Although details for this particular result can be found in many texts, including the excel-
lent review article [14], the exercise of personally working out the details was thought to be
a worthwhile learning exercise. Additionally, some related ideas about rotating frame systems
seem worth exploring, and that will be done here.

31.2 notes

31.2.1 Conventions

Figure 31.1 illustrates the conventions used in these notes. By inspection, the coordinates can
be read off the diagram.

u = r cos φ

x = u cos θ = r cos φ cos θ

y = u sin θ = r cos φ sin θ

z = r sin φ

(31.2)

231
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Figure 31.1: Angles and lengths in spherical polar coordinates

31.2.2 The unit vectors

To calculate the unit vectors r̂, θ̂, φ̂ in the spherical polar frame we need to apply two sets of
rotations. The first is a rotation in the x, y plane, and the second in the x′, z plane.

For the intermediate frame after just the x, y plane rotation we have

Rθ = exp(−e12θ/2)

e′i = RθeiR
†

θ

(31.3)

Now for the rotational plane for the φ rotation is

e′1 ∧ e3 = (Rθe1R†θ)∧ e3

=
1
2

(Rθe1R†θe3 − e3Rθe1R†θ)
(31.4)

The rotor (or quaternion) Rθ has scalar and e12 components, so it commutes with e3 leaving

e′1 ∧ e3 = Rθ
1
2

(e1e3 − e3e1)R†θ

= Rθe1 ∧ e3R†θ

(31.5)
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Therefore the rotor for the second stage rotation is

Rφ = exp(−Rθe1 ∧ e3R†θφ/2)

=
∑ 1

k!

(
−Rθe1 ∧ e3R†θφ/2

)k

= Rθ
∑ 1

k!
(−e1 ∧ e3φ/2)kR†θ

= Rθ exp(−e13φ/2)R†θ

(31.6)

Composing both sets of rotations one has

R(x) = Rθ exp(−e13φ/2)R†θRθxR†θRθ exp(e13φ/2)R†θ
= exp(−e12θ/2) exp(−e13φ/2)x exp(e13φ/2) exp(e12θ/2)

(31.7)

Or, more compactly

R(x) = RxR†

R = RθRφ
Rφ = exp(−e13φ/2)

Rθ = exp(−e12θ/2)

(31.8)

Application of these to the {ei} basis produces the {r̂, θ̂, φ̂} basis. First application of Rφ yields
the basis vectors for the intermediate rotation.

Rφe1Rφ† = e1(cos φ + e13 sin φ) = e1 cos φ + e3 sin φ

Rφe2Rφ† = e2RφRφ† = e2

Rφe3Rφ† = e3(cos φ + e13 sin φ) = e3 cos φ − e1 sin φ

(31.9)
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Applying the second rotation to Rφ(ei) we have

r̂ = Rθ(e1 cos φ + e3 sin φ)Rθ†

= e1 cos φ(cos θ + e12 sin θ) + e3 sin φ

= e1 cos φ cos θ + e2 cos φ sin θ + e3 sin φ

θ̂ = Rθ(e2)Rθ†

= e2(cos θ + e12 sin θ)

= −e1 sin θ + e2 cos θ

φ̂ = Rθ(e3 cos φ − e1 sin φ)Rθ†

= e3 cos φ − e1 sin φ(cos θ + e12 sin θ)

= −e1 sin φ cos θ − e2 sin φ sin θ + e3 cos φ

(31.10)

In summary these are

r̂ = e1 cos φ cos θ + e2 cos φ sin θ + e3 sin φ

θ̂ = −e1 sin θ + e2 cos θ

φ̂ = −e1 sin φ cos θ − e2 sin φ sin θ + e3 cos φ

(31.11)

31.2.3 An alternate pictorial derivation of the unit vectors

Somewhat more directly, r̂ can be calculated from the coordinate expression of eq. (31.2)

r̂ =
1
r

(x, y, z), (31.12)

which was found by inspection of the diagram.
For θ̂, again from the figure, observe that it lies in an latitudinal plane (ie: x, y plane), and is

perpendicular to the outwards radial vector in that plane. That is

θ̂ = (cos θe1 + sin θe2)e1e2 (31.13)

Lastly, φ̂ can be calculated from the dual of r̂∧ θ̂

φ̂ = −e1e2e3(r̂∧ θ̂) (31.14)
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Completing the algebra for the expressions above we have

r̂ = cos φ cos θe1 + cos φ sin θe2 + sin φe3

θ̂ = cos θe2 − sin θe1

r̂∧ θ̂ = sin φ sin θe1e3 + sin φ cos θe3e2 + cos φe1e2

φ̂ = − sin φ cos θe1 − sin φ sin θe2 + cos φe3

(31.15)

Sure enough this produces the same result as with the rotor logic.
The rotor approach was purely algebraically and does not have the same reliance on pictures.

That may have an additional advantage since one can then study any frame transformations
of the general form {e′i} = {ReiR†}, and produce results that apply to not only spherical polar
coordinate systems but others such as the cylindrical polar.

31.2.4 Tensor transformation

Considering a linear transformation providing a mapping from one basis to another of the fol-
lowing form

fi = L(ei) = LeiL−1 (31.16)

The coordinate representation, or Fourier decomposition, of the vectors in each of these
frames is

x = xiei = y j f j. (31.17)

Utilizing a reciprocal frame (ie: not yet requiring an orthonormal frame here), such that ei ·

e j = δi
j, then dot product provide the coordinate transformations

xkek · ek = y j f j · ek

y j f j · f i = xkek · f i

=⇒

xi = y j f j · ei

yi = x je j · f i

(31.18)
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The transformed reciprocal frame vectors can be expressed directly in terms of the initial
reciprocal frame f i = L(ei). Taking dot products confirms this

(LeiL−1) · (Le jL−1) =
〈
LeiL−1Le jL−1

〉
=

〈
Leie jL−1

〉
= ei · e j

〈
LL−1

〉
= ei · e j

(31.19)

This implies that the forward and inverse coordinate transformations may be summarized as

yi = x je j · L(ei)

xi = y jL(e j) · ei (31.20)

Or in matrix form

Λi
j = L(ei) · e j

{Λ−1}
i
j = L(e j) · ei

yi = Λi
jx j

xi = {Λ−1}
i
jy

j

(31.21)

The use of inverse notation is justified by the following

xi = {Λ−1}
i
kyk

= {Λ−1}
i
kΛk

jx j

=⇒

{Λ−1}
i
kΛk

j = δi
j

(31.22)

For the special case where the basis is orthonormal (ei · e j = δi
j), then it can be observed here

that the inverse must also be the transpose since the forward and reverse transformation tensors
then differ only be a swap of indices.

On notation. Some references such as [34] use Λi
j for both the forward and inverse transfor-

mations, with specific conventions about which index is varied to distinguish the two matrices.
I have found that confusing and have instead used the explicit inverse notation of [41].



31.2 notes 237

31.2.5 Gradient after change of coordinates

With the transformation matrices enumerated above we are now equipped to take the gradient
expressed in initial frame

∇ =
∑

ei ∂

∂xi , (31.23)

and express it in the transformed frame. The chain rule is required for the derivatives in terms
of the transformed coordinates

∂

∂xi =
∂y j

∂xi

∂

∂y j

= Λ j
i
∂

∂y j

= L(e j) · ei
∂

∂y j

= f j · ei
∂

∂y j

(31.24)

Therefore the gradient is

∇ =
∑

ei( f j · ei)
∂

∂y j

=
∑

f j ∂

∂y j

(31.25)

This gets us most of the way towards the desired result for the spherical polar gradient since
all that remains is a calculation of the ∂/∂y j values for each of the r̂, θ̂, and φ̂ directions.

It is also interesting to observe (as in [7]) that the gradient can also be written as

∇ =
1
f j

∂

∂y j (31.26)

Observe the similarity to the Fourier component decomposition of the vector itself x = fiyi.
Thus, roughly speaking, the differential operator parts of the gradient can be seen to be direc-
tional derivatives along the directions of each of the frame vectors.

This is sufficient to read the elements of distance in each of the directions off the figure

δx · r̂ = δr

δx · θ̂ = r cos φδθ

δx · φ̂ = rδθ

(31.27)
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Therefore the gradient is just

∇ = r̂
∂

∂r
+ θ̂

1
r cos φ

∂

∂θ
+ φ̂

1
r
∂

∂φ
(31.28)

Although this last bit has been derived graphically, and not analytically, it does clarify the
original question of exactly angle and unit vector conventions were intended in the text (polar
angle measured from the North pole, not equator, and θ, and φ reversed).

This was the long way to that particular result, but this has been an exploratory treatment of
frame rotation concepts that I personally felt the need to clarity for myself.

There are still some additional details that I will explore before concluding (including an
analytic treatment of the above).

31.3 transformation of frame vectors vs . coordinates

To avoid confusion it is worth noting how the frame vectors vs. the components themselves
differ under rotational transformation.

31.3.1 Example. Two dimensional plane rotation

Consideration of the example of a pair of orthonormal unit vectors for the plane illustrates this

e′1 = e1 exp(e12θ) = e1 cos θ + e2 sin θ

e′2 = e2 exp(e12θ) = e2 cos θ − e1 sin θ
(31.29)

Forming a matrix for the transformation of these unit vectors we havee′1e′2

 =

 cos θ sin θ

− sin θ cos θ


e1

e2

 (31.30)

Now compare this to the transformation of a vector in its entirety

y1e′1 + y2e′2 = (x1e1 + x2e2) exp(e12θ)

= x1(e1 cos θ + e2 sin θ) + x2(e2 cos θ − e1 sin θ)
(31.31)

If one uses the standard basis to specify both the rotated point and the original, then taking
dot products with ei yields the equivalent matrix representation

y1

y2

 =

cos θ − sin θ

sin θ cos θ


x1

x2

 (31.32)
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Note how this inverts (transposes) the transformation matrix here compared to the matrix for
the transformation of the frame vectors.

31.3.2 Inverse relations for spherical polar transformations

The relations of eq. (31.11) can be summarized in matrix form


r̂
θ̂

φ̂

 =


cos φ cos θ cos φ sin θ sin φ

− sin θ cos θ 0

− sin φ cos θ − sin φ sin θ cos φ



e1

e2

e3

 (31.33)

Or, more compactly
r̂
θ̂

φ̂

 = U


e1

e2

e3

 (31.34)

This composite rotation can be inverted with a transpose operation, which becomes clear with
the factorization

U =


cos φ 0 sin φ

0 1 0

− sin φ 0 cos φ




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (31.35)

Thus
e1

e2

e3

 =


cos φ cos θ − sin θ − sin φ cos θ

cos φ sin θ cos θ − sin φ sin θ

sin φ 0 cos φ



r̂
θ̂

φ̂

 (31.36)

31.3.3 Transformation of coordinate vector under spherical polar rotation

In eq. (31.32) the matrix for the rotation of a coordinate vector for the plane rotation was ob-
served to be the transpose of the matrix that transformed the frame vectors themselves. This
is also the case in this spherical polar case, as can be seen by forming a general vector and
applying equation eq. (31.33) to the standard basis vectors.

x1e1 → x1(cos φ cos θe1 + cos φ sin θe2 + sin φe3)

x2e2 → x2(− sin θe1 + cos θe2)

x3e3 → x3(− sin φ cos θe1 − sin φ sin θe2 + cos φe3)

(31.37)
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Summing this and regrouping (ie: a transpose operation) one has:

xiei → yiei

e1(x1 cos φ cos θ − x2 sin θ − x3 sin φ cos θ)

+ e2(x1 cos φ sin θ + x2 cos θ − x3 sin φ sin θ)

+ e3(x1 sin φ + x3 cos φ)

(31.38)

taking dot products with ei produces the matrix form
y1

y2

y3

 =


cos φ cos θ − sin θ − sin φ cos θ

cos φ sin θ cos θ − sin φ sin θ

sin φ 0 cos φ



x1

x2

x3


=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ



x1

x2

x3


(31.39)

As observed in 30 the matrix for this transformation of the coordinate vector under the com-
posite x, y rotation followed by an x′, z rotation ends up expressed as the product of the elemen-
tary rotations, but applied in reverse order!



32
ROT O R I N T E R P O L AT I O N C A L C U L AT I O N

The aim is to compute the interpolating rotor r that takes an object from one position to another
in n steps. Here the initial and final positions are given by two rotors R1, and R2 like so

X1 = R1XR1
†

X2 = R2XR2
† = rnR1XR1

†rn†
(32.1)

So, writing

a = rn = R2
1

R1
=

R2R1
†

R1R1
†

= cos θ + I sin θ (32.2)

So,

〈a〉2
〈a〉

=
〈a〉2
|〈a〉2|

|〈a〉2|
〈a〉

= I tan θ
(32.3)

Therefore the interpolating rotor is:

I =
〈a〉2
|〈a〉2|

θ = atan2 (|〈a〉2|, 〈a〉)

r = cos(θ/n) + I sin(θ/n)

(32.4)

In [11], equation 10.15, they have got something like this for a fractional angle, but then say
that they do not use that in software, instead using r directly, with a comment about designing
more sophisticated algorithms (bivector splines). That spline comment in particular sounds in-
teresting. Sounds like the details on that are to be found in the journals mentioned in Further
Reading section of chapter 10.
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33
E X P O N E N T I A L O F A B L A D E

33.1 motivation

Exponentials of bivectors and complex numbers are useful as generators of rotations, and expo-
nentials of square matrices can be used in linear differential equation solution.

How about exponentials of vectors?
Because any power of a vector can be calculated it should be perfectly well defined to use the

exponential infinite series with k-vector parameters. An exponential function of this form will
be expanded explicitly and compared to the real number result. The first derivative will also be
calculated to examine its form.

In addition for completeness, the bivector and quaternion exponential forms will be exam-
ined.

33.2 vector exponential

The infinite series representation of the exponential defines a function for any x that can be
repeatedly multiplied with it self.

ex =

∞∑
k=0

xk

k!
(33.1)

Depending on the type of the parameter x this may or may not have properties consistent with
the real number exponential function. For a vector x = x̂|x|, after splitting the sum into even and
odd terms this infinite series takes the following form:

e±x =

∞∑
k=0

x2k

(2k)!
±

∞∑
k=0

|x|2k|x|x̂
(2k + 1)!

=⇒ e±x = cosh|x| ± x̂ sinh|x| (33.2)
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One can also employ symmetric and antisymmetric sums to write the hyperbolic functions in
terms of the vector exponentials:

cosh|x| =
ex + e−x

2
(33.3)

sinh|x| =
ex − e−x

2x̂
(33.4)

33.2.1 Vector Exponential derivative

One of the defining properties of the exponential is that its derivative is related to itself

dex

du
=

dx
du

ex = ex dx
du

(33.5)

For a vector parameter x one should not generally expect that. Let us expand this to see the
form of this derivative:

dex

du
=

d
du

(cosh|x| + x̂ sinh|x|)

= (sinh|x| + x̂ cosh|x|)
d|x|
du

+
dx̂
du

sinh|x|
(33.6)

Can calculate d|x|
du with the usual trick:

d|x|2

du
= 2|x|

d|x|
du

=
dx
du

x + x
dx
du

= 2
dx
du
· x (33.7)

=⇒
d|x|
du

=
dx
du
· x̂ (33.8)
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Calculation of dx̂
du uses this result:

dx̂
du

=
d
du

x
|x|

=
dx
du

1
|x|
−

x
|x|2

d|x|
du

=
dx
du

1
|x|
−

x
|x|2

dx
du
· x̂

=
1
|x|

(
dx
du
− x̂

(
dx
du
· x̂

))
=

x̂
|x|

(
x̂∧

dx
du

)
=

1
|x|

Rejx̂

(
dx
du

)

(33.9)

Putting these together one write the derivative in a few ways:

dex

du
=

(
dx
du
· x̂

)
x̂(x̂ sinh|x| + cosh|x|) +

x̂
|x|

(
x̂∧

dx
du

)
sinh|x|

= x̂
(
dx
du
· x̂

)
ex +

x̂
|x|

(
x̂∧

dx
du

)
sinh|x|

= Projx̂

(
dx
du

)
ex +

1
|x|

Rejx̂

(
dx
du

)
sinh|x|

(33.10)

This is considerably different from the real number case. Only when the vector x and all its
variation dx

du are colinear does dx
du = Projx̂

(
dx
du

)
for the real number like result:

dex

du
=

dx
du

ex = ex dx
du

(33.11)

Note that the sinh term can be explicitly removed

dex

du
=

(
x̂
(
dx
du
· x̂

)
−

1
2|x|

(
x̂∧

dx
du

))
ex −

1
2|x|

(
x̂∧

dx
du

)
e−x (33.12)

, but without a Rejx̂
(

dx
du

)
= 0 constraint, there will always be a term that is not proportional

to ex.
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33.3 bivector exponential

The bivector exponential can be expanded utilizing its complex number equivalence:

eB = eB̂|B|

= cos |B| + B̂ sin |B|
(33.13)

So, taking the derivative we have

(eB)′ =
(
− sin|B| + B̂ cos|B|

)
|B|′ + B̂′ sin|B|

= B̂
(
B̂ sin|B| + cos|B|

)
|B|′ + B̂′ sin|B|

= B̂eB|B|′ + B̂′ sin|B|
= eBB̂|B|′ + B̂′ sin|B|

(33.14)

33.3.1 bivector magnitude derivative

As with the vector case we have got a couple helper derivatives required. Here is the first:

(|B|2)′ = 2|B||B|′ = −(BB′ + B′B)

=⇒

|B|′ = −
B̂B′ + B′B̂

2

(33.15)

Unlike the vector case this last expression is not a bivector dot product = −B̂ ·B′ since there
could be a 〈〉4 term that this symmetric sum would also include. That wedge term would be zero
for example if B = x∧ k for a constant vector k.
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33.3.2 Unit bivector derivative

Now calculate B̂′:

B̂′ =
B′

|B|
−

B
|B|2
|B|′

=
1
|B|

(
B′ + B̂

B̂B′ + B′B̂
2

)
=

1
2|B|

(
B′ + B̂B′B̂

)
=

B̂
|B|
−B̂B′ + B′B̂

2

(33.16)

Thus, the derivative is a scaled bivector rejection:

B̂′ =
1
B

〈
B̂B′

〉
2

(33.17)

Although this appears different from a unit vector derivative, a slight adjustment highlights
the similarities:

r̂′ =
r̂
|r|

r̂∧ r′

=
1
r
〈
r̂r′

〉
2

(33.18)

Note however the sign inversion that is built into the bivector inversion.

33.3.3 combining results

Putting the individual results back together we have:

(eB)′ =
1
B̂

B̂B′ + B′B̂
2

eB +
1
B

〈
B̂B′

〉
2

sin|B| (33.19)

In general with bivectors we can have two sorts of perpendicularity. The first is perpendicular
but intersecting (generated by the grade 2 term of the product), and perpendicular with no
common line (generated by the grade 4 term). In R3 we have only the first sort.
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With a restriction that the derivative only changes the bivector enough to introduce the first
term, this exponential derivative is reduced to:

(eB)′ =
1
B̂

B̂ ·B′eB +
1
B

〈
B̂B′

〉
2

sin|B|

= ProjB̂(B′)eB +
1
|B|

RejB̂(B′) sin|B|
(33.20)

Only if the bivector variation is in the same plane as the bivector itself can the 〈〉2 term be
dropped in which case, since the derivative will equal its projection one has:

(eB)′ = B′eB = eBB′ (33.21)

33.4 quaternion exponential derivative

Using the phrase somewhat loosely a quaternion, or complex number is a multivector of the
form

α + B (33.22)

Where α is a scalar, and B is a bivector.
Using the results above, the derivative of a quaternion exponential (ie: a rotation operator)

will be

(eα+B)′ = (eα)′eB + eα(eB)′

= α′eα+B + eα
1
B̂

B̂B′ + B′B̂
2

eB +
1
B

〈
B̂B′

〉
2
eα sin|B|

(33.23)

For the total derivative:

(eα+B)′ =

(
α′ +

1
B̂

B̂B′ + B′B̂
2

)
eα+B +

1
B

〈
B̂B′

〉
2
eα sin|B| (33.24)

As with the bivector case, the two restrictions
〈
B̂B′

〉
2

= 0, and
〈
B̂B′

〉
4

= 0 are required to
get a real number like exponential derivative:

(eα+B)′ = (α + B)′ eα+B = eα+B (α + B)′ (33.25)

Note that both of these are true for the important class of multivectors, the complex number.
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33.4.1 bivector with only one degree of freedom

For a bivector that includes a constant vector such as B = x∧ k there will be no 〈〉4 term.

〈
B̂B′

〉
4
∝

〈
x∧ kx′ ∧ k

〉
4 = x∧ k∧ x′ ∧ k = 0 (33.26)

Suppose α+ B = xk = x ·k + x∧k. In this case this quaternion exponential derivative reduces
to

(exk)′ =

(
x′ · k +

1
x∧ k

(x∧ k) · (x′ ∧ k)
)

exk

+
1

x∧ k

〈
x∧ k
|x∧ k|

x′ ∧ k
〉

2
ex·k sin|x∧ k|

(33.27)

It is only with the addition restriction that all the bivector variation lies in the plane i = x∧k
|x∧k| .

ie:

〈
x∧ kx′ ∧ k

〉
2 = 0 (33.28)

does one have:

(exk)′ = (x′ · k + Proji(x
′ ∧ k)) exk

= (x′ · k + x′ ∧ k) exk (33.29)

Thus with these two restrictions to the variation of the bivector term we have:

(exk)′ = x′kexk = exkx′k (33.30)
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G E N E R AT O R O F ROTAT I O N S I N A R B I T R A RY D I M E N S I O N S

34.1 motivation

Eli in his recent blog post on angular momentum operators used an exponential operator to
generate rotations

R∆θ = e∆θn̂·(x×∇) (34.1)

This is something I hhad not seen before, but is comparable to the vector shift operator
expressed in terms of directional derivatives x ·∇

f (x + a) = ea·∇ f (x) (34.2)

The translation operator of eq. (34.2) translates easily to higher dimensions. Of particular
interest is the Minkowski metric 4D spacetime case, where we can use the four gradient ∇ =

γµ∂µ, and a vector spacetime translation of x = xµγµ → (xµ + aµ)γµ to translate “trivially”
translate this

f (x + a) = ea·∇ f (x) (34.3)

Since we do not have a cross product of two vectors in a 4D space, re-expressing eq. (34.1) in
a form that is not tied to three dimensions is desirable. A duality transformation with n̂ = ie1e2e3

accomplishes this, where i is a unit bivector for the plane perpendicular to n̂ (i.e. product of two
perpendicular unit vectors in the plane). That duality transformation, expressing the rotation
direction using an oriented plane instead of the normal to the plane gives us

n̂ · (x ×∇) = 〈n̂(x ×∇)〉

= 〈(ie1e2e3)(−e1e2e3)(x∧∇)〉

= 〈i(x∧∇)〉

(34.4)

This is just i · (x∧∇), so the generator of the rotation in 3D is

R∆θ = e∆θi·(x∧∇) (34.5)
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It is reasonable to guess then that we could substitute the spacetime gradient and allow i to
be any 4D unit spacetime bivector, where a spacelike product pair will generate rotations and
a spacetime bivector will generate boosts. That is really just a notational shift, and we would
write

R∆θ = e∆θi·(x∧∇) (34.6)

This is very likely correct, but building up to this guess in a logical sequence from a known
point will be the aim of this particular exploration.

34.2 setup and conventions

Rather than expressing the rotation in terms of coordinates, here the rotation will be formulated
in terms of dual sided multivector operators (using Geometric Algebra) on vectors. Then em-
ploying the chain rule an examination of the differential change of a multivariable scalar valued
function on the underlying rotation will be made.

Following conventions of [10] vectors will be undecorated rather than boldface since we are
deriving results applicable to four vector (and higher) spaces, and not requiring an Euclidean
metric.

Figure 34.1: Rotating vector in the plane with bivector i



34.2 setup and conventions 253

The fig. 34.1 has a pair of vectors related by rotation, where the vector x(θ) is rotated to y(θ) =

x(θ + ∆θ). We choose here to express this rotation using a quaternion-ic operator R = α + ab,
where α is a scalar and a, and b are vectors.

y = R̃xR (34.7)

Required of R is an invertability property, but without loss of generality we can impose a
strictly unitary property R̃R = 1. Here R̃ denotes the multivector reverse of a Geometric product

(ab)̃ = b̃ã (34.8)

Where for individual vectors the reverse is itself ã = a. A singly parametrized rotation or
boost can be conveniently expressed using the half angle exponential form

R = eiθ/2 (34.9)

where i = ûv̂ is a unit bivector, a product of two perpendicular unit vectors (ûv̂ = −v̂û). For
rotations û, and v̂ are both spatial vectors, implying i2 = −1. For boosts i is the product of a unit
timelike vector and unit spatial vector, and with a Minkowski metric condition û2v̂2 = −1, we
have a positive square i2 = 1 for our spacetime rotation plane i.

A general Lorentz transformation, containing a composition of rotations and boosts can be
formed by application of successive transformations

L(x) = (Ũ(T̃ · · · (S̃ xS )T ) · · ·U) = ŨT̃ · · · S̃ xS T · · ·U (34.10)

The composition still has the unitary property (S T · · ·U )̃S T · · ·U = 1, so when the specifics
of the parametrization are not required we will allow the rotation operator R = S T · · ·U to be a
general composition of individual rotations and boosts.

We will have brief use of coordinates and employ a reciprocal basis pair {γµ} and {γν} where
γµ · γν = δµν. A vector, employing summation convention, is then denoted

x = xµγµ = xµγµ (34.11)

Where

xµ = x · γµ
xµ = x · γµ

(34.12)
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Shorthand for partials

∂µ ≡
∂

∂xµ

∂µ ≡
∂

∂xµ

(34.13)

will allow the gradient to be expressed as

∇ ≡ γµ∂µ = γµ∂
µ (34.14)

The perhaps unintuitive mix of upper and lower indices is required to make the indices in the
direction derivative come out right when expressed as a dot product

lim
τ→0

f (x + aτ) − f (x)
τ

= aµ∂µ f (x) = a · ∇ f (x) (34.15)

34.3 rotor examples

While not attempting to discuss the exponential rotor formulation in any depth, at least illustrat-
ing by example for a spatial rotation and Lorentz boost seems called for.

Application of either of these is most easily performed with a split of the vector into compo-
nents parallel and perpendicular to the “plane” of rotation i. For example suppose we decompose
a vector x = p + n where n is perpendicular to the rotation plane i (i.e. ni = in), and p is the
components in the plane (pi = −ip). A consequence is that n commutes with R and p induces a
conjugate effect in the rotor

R̃xR = e−iθ/2(p + n)eiθ/2

= peiθ/2eiθ/2 + ne−iθ/2eiθ/2 (34.16)

This is then just

R̃xR = peiθ + n (34.17)

To expand any further the metric details are required. The half angle rotors of eq. (34.9) can
be expanded in series, where the metric properties of the bivector dictate the behavior. In the
spatial bivector case, where i2 = −1 we have

R = eiθ/2 = cos(θ/2) + i sin(θ/2) (34.18)
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whereas when i2 = 1, the series expansion yields a hyperbolic pair

R = eiθ/2 = cosh(θ/2) + i sinh(θ/2) (34.19)

To make things more specific, and relate to the familiar, consider a rotation in the Euclidean
x, y plane where we pick i = e1e2, and rotate x = xe1 + ye2 + ze3. Applying eq. (34.17), and
eq. (34.18) we have

R̃xR = (xe1 + ye2)(cos θ + e1e2 sin θ) + ze3 (34.20)

We have e1
2 = e2

2 = 1 and e1e2 = −e1e2, so with some rearrangement

R̃xR = e1(x cos θ − y sin θ) + e2(x sin θ + y cos θ) + e3z (34.21)

This is the familiar x, y plane rotation up to a possible sign preference. Observe that we have
the flexibility to adjust the sign of the rotation by altering either θ or i (we could use i = e2e1 for
example). Because of this Hestenes [19] chooses to make the angle bivector valued, so instead
of iθ writes

R = eB (34.22)

where B is bivector valued, and thus contains the sign or direction of the rotation or boost as
well as the orientation.

For completeness lets also expand a rotor application for an x-axis boost in the spacetime
plane i = γ1γ0. Following [10], we use the (+,−,−,−) metric convention 1 = γ0

2 = −γ1
2 =

−γ2
2 = −γ3

2. Switching variable conventions to match the norm lets use α for the rapidity
angle, with x-axis boost rotor

R = eγ1γ0α/2 (34.23)

for the rapidity angle α. The rotor application then gives

L(x) = R̃(x0γ0 + x1γ1 + x2γ2 + x3γ3)R

= R̃(x0γ0 + x1γ1)R + x2γ2 + x3γ3

= (x0γ0 + x1γ1)(cosh(θ) + γ1γ0 sinh(θ/2)) + x2γ0 + x3γ3

(34.24)
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A final bit of rearrangement yields the familiar

L(x) = γ0(x0 cosh(θ) − x1 sinh(θ/2))

+ γ1(−x0 sinh(θ/2) + x1 cosh(θ)) + x2γ0 + x3γ3
(34.25)

Again observe the flexibility to adjust the sign as desired by either the bivector orientation or
the sign of the scalar rapidity angle.

34.4 the rotation operator

Moving on to the guts. From eq. (34.7) we can express x in terms of y using the inverse trans-
formation

x = RyR̃ (34.26)

Assuming R is parametrized by θ, and that both x and y are not directly dependent on θ, we
have

dx
dθ

=
dR
dθ

yR̃ + Ry
dR̃
dθ

=

(
dR
dθ

R̃
)

(RyR̃) + (RyR̃)
(
R

dR̃
dθ

)
=

(
dR
dθ

R̃
)

x + x
(
R

dR̃
dθ

) (34.27)

Since we also have RR̃ = 1, this product has zero derivative

0 =
d(RR̃)

dθ
=

dR
dθ

R̃ + R
dR̃
dθ

(34.28)

Labeling one of these, say

Ω ≡
dR
dθ

R̃ (34.29)

The multivector Ω must in fact be a bivector. As the product of a grade 0, 2 multivector
with another 0, 2 multivector, the product may have grades 0, 2, 4. Since reversing Ω negates
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it, this product can only have grade 2 components. In particular, employing the exponential
representation of R from eq. (34.9) for a simply parametrized rotation (or boost), we have

Ω =
i
2

eiθ/2e−iθ/2 =
i
2

(34.30)

With this definition we have a
complete description of the incremental (first order) rotational along the curve from x to y

induced by R via the commutator of this bivector Ω with the initial position vector x.

dx
dθ

= [Ω, x] =
1
2

(ix − xi) (34.31)

This commutator is in fact the generalize bivector-vector dot product [Ω, x] = i · x, and is
vector valued.

Now consider a scalar valued function f = f (x(θ)). Employing the chain rule, for the theta
derivative of f we have a contribution from each coordinate xµ. That is

d f
dθ

=
∑
µ

dxµ

dθ
∂ f
∂xµ

=
dxµ

dθ
∂µ f

=

(
dxµ

dθ
γµ

)
· (γν∂ν) f

(34.32)

But this is just

d f
dθ

=
dx
dθ
· ∇ f (34.33)

Or in operator form

d
dθ

= (i · x) · ∇ (34.34)

The complete Taylor expansion of f (θ) = f (x(θ)) is therefore

f (x(θ + ∆θ)) =

∞∑
k=0

1
k!

(
∆θ

d
dθ

)k

f (x(θ))

=

∞∑
k=0

1
k!

(∆θ(i · x) · ∇)k f (x(θ))

(34.35)
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Expressing this sum formally as an exponential we have

f (x(θ + ∆θ)) = e∆θ(i·x)·∇ f (x(θ)) (34.36)

In this form, the product (i · x) · ∇ does not look much like the cross or wedge product repre-
sentations of the angular momentum operator that was initially guessed at. Referring to fig. 34.2
let us make a couple observations about this particular form before translating back to the wedge
formulation.

Figure 34.2: Bivector dot product with vector

It is worth pointing out that any bivector has no unique vector factorization. For example any
of the following are equivalent

i = û∧ v̂
= (2û)∧ (v̂/2 + αû)

=
1

αb − βa
(αû + βv̂)∧ (aû + bv̂)

(34.37)

For this reason if we factor a bivector into two vectors within the plane we are free to pick one
of these in any direction we please and can pick the other in one of the perpendiculars within the
plane. In the figure exactly this was done, factoring the bivector into two perpendicular vectors
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i = ûv̂, where û was picked to be in the direction of the projection of the vector x onto the
plane spanned by {û, v̂}. Suppose that projection of x onto the plane is αû. We then have for the
bivector vector dot product

i · x = (ûv̂) · (αû)

= αûv̂û

= −α ûû

= 1

v̂ (34.38)

So we have for the dot product i · x = −αv̂, a rotation in the plane of the projection of
the vector x onto the plane by 90 degrees. The direction of the rotation is metric dependent,
and a spatially positive metric was used in this example. Observe that the action of a bivector
product on a vector, provided that vector is in the plane spanned by the factors of the bivector
is very much like the complex imaginary action. In both cases we have a 90 degree rotation.
This complex number correspondence is not entirely equivalent though, since we also have
i · x = −x · i, a negation on reversal of the product ordering, whereas we do not have to worry
about commuting the imaginary of complex arithmetic.

This shows how the bivector dot product naturally encodes a rotation. We could leave things
this way, but we also want to see how to put this in a more “standard” form. This is possible by
rewriting the scalar product using a scalar grade selection operator. Also employing the cyclic
reordering identity 〈abc〉 = 〈bca〉, we have

(i · x) · ∇ =
1
2
〈(ix − xi)∇〉

=
1
2
〈ix∇−∇xi〉

(34.39)

A pause is required to note that this reordering needs to be interpreted with x fixed with
respect to the gradient so that the gradient is acting only to the extreme right. Then we have

(i · x) · ∇ =
1
2
〈i(x · ∇) − (x · ∇)i〉 +

1
2
〈i(x ∧∇) + (x · ∇)i〉 (34.40)

The rightmost action of the gradient allows the gradient dot and wedge products to be re-
ordered (with interchange of sign for the wedge). The product in the first scalar selector has
only bivector terms, so we are left with

(i · x) · ∇ = i · (x ∧∇) (34.41)
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and the rotation operator takes the postulated form

f (x(θ + ∆θ)) = e∆θi·(x∧∇) f (x(θ)) (34.42)

While the cross product formulation of this is fine for 3D, this works in a plane when de-
sired, as well as higher dimensional spaces as well as optionally non-Euclidean spaces like the
Minkowski space required for electrodynamics and relativity.

34.5 coordinate expansion

We have seen the structure of the scalar angular momentum operator of eq. (34.41) in the context
of components of the cross product angular momentum operator in 3D spaces. For a more
general space what do we have?

Let i = γβγα, then we have

i · (x ∧∇) = (γβ ∧ γα) · (γµ ∧ γν)xµ∂ν
= (δβνδαµ − δβµδαν)xµ∂ν

(34.43)

which is

(γβ ∧ γα) · (x ∧∇) = xα∂β − xβ∂α (34.44)

In particular, in the four vector Minkowski space, when the pair α, β includes both space and
time indices we loose (or gain) negation in this operator sum. For example with i = γ1γ0, we
have

(γ1 ∧ γ0) · (x ∧∇) = x0 ∂

∂x1 + x1 ∂

∂x0
(34.45)

We can also generalize the coordinate expansion of eq. (34.44) to a more general plane of
rotation. Suppose that u and v are two perpendicular unit vectors in the plane of rotation. For
this rotational plane we have i = uv = u∧ v, and our expansion is

i · (x ∧∇) = (γβ ∧ γα) · (γµ ∧ γν)uβvαxµ∂ν
= (δβνδαµ − δβµδαν)uβvαxµ∂ν

(34.46)

So we have

i · (x ∧∇) = (uνvµ − uµvν)xµ∂ν (34.47)
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This scalar antisymmetric mixed index object is apparently called a vierbien (not a tensor)
and written

ενµ = (uνvµ − uµvν) (34.48)

It would be slightly prettier to raise the index on xµ (and correspondingly lower the µs in ε).
We then have a completely non Geometric Algebra representation of the angular momentum
operator for higher dimensions (and two dimensions) as well as for the Minkowski (and other
if desired) metrics.

i · (x ∧∇) = ενµxµ∂ν (34.49)

34.6 matrix treatment

It should be more accessible to do the same sort of treatment with matrices than the Geometric
Algebra approach. It did not occur to me to try it that way initially, and it is worthwhile to do a
comparative derivation. Setup should be similar

y = Rx
x = RTy

(34.50)

Taking derivatives we then have

dx
dθ

=
dRT

dθ
y

=
dRT

dθ
RRTy

=

(
dRT

dθ
R
)

x

(34.51)

Introducing an Ω = (dRT/dθ)R very much like before we can write this

dx
dθ

= Ωx (34.52)

For Euclidean spaces (where R−1 = RT as assumed above), we have RTR = 1, and thus

Ω =
dRT

dθ
R = −RT dR

dθ
(34.53)
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Transposition shows that this matrix Ω is completely antisymmetric since we have

ΩT = −Ω (34.54)

Now, is there a convenient formulation for a general plane rotation in matrix form, perhaps
like the Geometric exponential form? Probably can be done, but considering an x,y plane rota-
tion should give the rough idea.

Rθ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (34.55)

After a bit of algebra we have

Ω =


0 1 0

−1 0 0

0 0 0

 (34.56)

In general we must have

Ω =


0 −c b

c 0 −a

b a 0

 (34.57)

For some a, b, c. This procedure is not intrinsically three dimension, but in the specific 3D
case, we can express this antisymetrization using the cross product. Writing n̂ = (a, b, c) for the
vector with these components, we have in the 3D case only

Ωx = n̂ × x (34.58)

The first order rotation of a function f (x(θ)) now follows from the chain rule as before

d f
dθ

=
dxm

dθ
∂ f
∂xm

=
dx
dθ
·∇ f

= (n × x) ·∇ f

(34.59)
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We have then for the first order rotation derivative operator in 3D

d
dθ

= n · (x ×∇) (34.60)

For higher (or 2D) spaces one cannot use the cross product so a more general expression of
the result eq. (34.60) would be

d
dθ

= (Ωx) ·∇ (34.61)

Now, in this outline was a fair amount of cheating. We know that n̂ is the unit normal to
the rotational plane, but that has not been shown here. Instead it was a constructed quantity
just pulled out of thin air knowing it would be required. If one were interested in pursuing a
treatment of the rotation generator operator strictly using matrix algebra, that would have to
be considered. More troublesome and non-obvious is how this would translate to other metric
spaces, where we do not necessarily have the transpose relationships to exploit.





35
S P H E R I C A L P O L A R U N I T V E C T O R S I N E X P O N E N T I A L F O R M

35.1 motivation

In 110 I blundered on a particularly concise exponential non-coordinate form for the unit vectors
in a spherical polar coordinate system. For future reference outside of a quantum mechanical
context here is a separate and more concise iteration of these results.

35.2 the rotation and notation

The spherical polar rotor is a composition of rotations, expressed as half angle exponentials.
Following the normal physics conventions we first apply a z, x plane rotation by angle theta,
then an x, y plane rotation by angle φ. This produces the rotor

R = ee31θ/2ee12φ/2 (35.1)

Our triplet of Cartesian unit vectors is therefore rotated as


r̂
θ̂

φ̂

 = R̃


e3

e1

e2

 R (35.2)

In the quantum mechanical context it was convenient to denote the x, y plane unit bivector
with the imaginary symbol

i = e1e2 (35.3)

reserving for the spatial pseudoscalar the capital

I = e1e2e3 = r̂θ̂φ̂ = ie3 (35.4)

Note the characteristic differences between these two “imaginaries”. The planar quantity i =

e1e2 commutes with e3, but anticommutes with either e1 or e2. On the other hand the spatial
pseudoscalar I commutes with any vector, bivector or trivector in the algebra.
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35.3 application of the rotor . the spherical polar unit vectors

Having fixed notation, lets apply the rotation to each of the unit vectors in sequence, starting
with the calculation for φ̂. This is

φ̂ = e−iφ/2e−e31θ/2(e2)ee31θ/2eiφ/2

= e2eiφ (35.5)

Here, since e2 commutes with the rotor bivector e3e1 the innermost exponentials cancel, leav-
ing just the iφ rotation. For r̂ it is a bit messier, and we have

r̂ = e−iφ/2e−e31θ/2(e3)ee31θ/2eiφ/2

= e−iφ/2e3ee31θeiφ/2

= e−iφ/2(e3 cos θ + e1 sin θ)eiφ/2

= e3 cos θ + e1 sin θeiφ

= e3 cos θ + e1e2 sin θe2eiφ

= e3 cos θ + i sin θφ̂

= e3(cos θ + e3i sin θφ̂)

= e3eIφ̂θ

(35.6)

Finally for θ̂, we have a similar messy expansion

θ̂ = e−iφ/2e−e31θ/2(e1)ee31θ/2eiφ/2

= e−iφ/2e1ee31θeiφ/2

= e−iφ/2(e1 cos θ − e3 sin θ)eiφ/2

= e1 cos θeiφ − e3 sin θ

= i cos θe2eiφ − e3 sin θ

= iφ̂ cos θ − e3 sin θ

= iφ̂(cos θ + φ̂ie3 sin θ)

= iφ̂eIφ̂θ

(35.7)

Summarizing the three of these relations we have for the rotated unit vectors

r̂ = e3eIφ̂θ

θ̂ = iφ̂eIφ̂θ

φ̂ = e2eiφ

(35.8)
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and in particular for the radial position vector from the origin, rotating from the polar axis,
we have

x = rr̂ = re3eIφ̂θ (35.9)

Compare this to the coordinate representation

x = r(sin θ cos φ, sin θ sin φ, cos θ) (35.10)

it is not initially obvious that these θ and φ rotations admit such a tidy factorization. In ret-
rospect, this does not seem so surprising, since we can form a quaternion product that acts via
multiplication to map a vector to a rotated position. In fact those quaternions, acting from the
right on the initial vectors are

e3 → r̂ = e3(eIφ̂θ)

e1 → θ̂ = e1(e2φ̂eIφ̂θ)

e2 → φ̂ = e2(eiφ)

(35.11)

FIXME: it should be possible to reduce the quaternion that rotates e1 → θ̂ to a single expo-
nential. What is it?

35.4 a consistency check

We expect that the dot product between a north pole oriented vector z = Ze3 and the spherically
polar rotated vector x = re3eIφ̂θ is just

x · z = Zr cos θ (35.12)

Lets verify this

x · z =
〈
Ze3e3reIφ̂θ

〉
= Zr

〈
cos θ + Iφ̂ sin θ

〉
= Zr cos θ

�

(35.13)
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35.5 area and volume elements

Let us use these results to compute the spherical polar volume element. Pictorially this can be
read off simply from a diagram. If one is less trusting of pictorial means (or want a method
more generally applicable), we can also do this particular calculation algebraically, expanding
the determinant of partials

∣∣∣∣∂x
∂r

∂x
∂θ

∂x
∂φ

∣∣∣∣ drdθdφ =

∣∣∣∣∣∣∣∣∣∣∣
sin θ cos φ cos θ cos φ − sin θ sin φ

sin θ sin φ cos θ sin φ sin θ cos φ

cos θ − sin θ 0

∣∣∣∣∣∣∣∣∣∣∣ r
2drdθdφ (35.14)

One can chug through the trig reduction for this determinant with not too much trouble, but
it is not particularly fun.

Now compare to the same calculation proceeding directly with the exponential form. We do
still need to compute the partials

∂x
∂r

= r̂ (35.15)

∂x
∂θ

= re3
∂

∂θ
eIφ̂θ

= rr̂Iφ̂

= rr̂(r̂θ̂φ̂)φ̂

= rθ̂

(35.16)

∂x
∂φ

= re3
∂

∂φ
(cos θ + Iφ̂ sin θ)

= −re3Iiφ̂ sin θ

= rφ̂ sin θ

(35.17)

So the area element, the oriented area of the parallelogram between the two vectors dθ∂x/∂θ,
and dφ∂x/∂φ on the spherical surface at radius r is

dS =

(
dθ
∂x
∂θ

)
∧

(
dφ
∂x
∂φ

)
= r2θ̂φ̂ sin θdθdφ (35.18)

and the volume element in trivector form is just the product

dV =

(
dr
∂x
∂r

)
∧ dS = r2 sin θIdrdθdφ (35.19)
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35.6 line element

The line element for the particle moving on a spherical surface can be calculated by calculating
the derivative of the spherical polar unit vector r̂

dr̂
dt

=
∂r̂
∂φ

dφ
dt

+
∂r̂
∂θ

dθ
dt

(35.20)

than taking the magnitude of this vector. We can start either in coordinate form

r̂ = e3 cos θ + e1 sin θ cos φ + e2 sin θ sin φ (35.21)

or, instead do it the fun way, first grouping this into a complex exponential form. This factor-
ization was done above, but starting over allows this to be done a bit more effectively for this
particular problem. As above, writing i = e1e2, the first factorization is

r̂ = e3 cos θ + e1 sin θeiφ (35.22)

The unit vector ρ = e1eiφ lies in the x, y plane perpendicular to e3, so we can form the unit
bivector e3ρ and further factor the unit vector terms into a cos +i sin form

r̂ = e3 cos θ + e1 sin θeiφ

= e3(cos θ + e3ρ sin θ)
(35.23)

This allows the spherical polar unit vector to be expressed in complex exponential form
(really a vector-quaternion product)

r̂ = e3ee3ρθ = e−e3ρθe3 (35.24)

Now, calculating the unit vector velocity, we get

dr̂
dt

= e3e3ρee3ρθθ̇ + e1e1e2 sin θeiφφ̇

= ρee3ρθ
(
θ̇ + e−e3ρθρ sin θe−iφe2φ̇

)
=

(
θ̇ + e2 sin θeiφφ̇ρee3ρθ

)
e−e3ρθρ

(35.25)
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The last two lines above factor the ρ vector and the ee3ρθ quaternion to the left and to the right
in preparation for squaring this to calculate the magnitude.

(
dr̂
dt

)2

=

〈(
dr̂
dt

)2〉
=

〈(
θ̇ + e2 sin θeiφφ̇ρee3ρθ

) (
θ̇ + e−e3ρθρ sin θe−iφe2φ̇

)〉
= θ̇2 + sin2 θφ̇2 + sin θφ̇θ̇

〈
e2eiφρee3ρθ + e−e3ρθρe−iφe2

〉 (35.26)

This last term (∈ span{ρe1, ρe2, e1e3, e2e3}) has only grade two components, so the scalar part
is zero. We are left with the line element

(
d(rr̂)

dt

)2

= r2
(
θ̇2 + sin2 θφ̇2

)
(35.27)

In retrospect, at least once one sees the answer, it seems obvious. Keeping θ constant the
length increment moving in the plane is ds = sin θdφ, and keeping φ constant, we have ds = dθ.
Since these are perpendicular directions we can add the lengths using the Pythagorean theorem.

35.6.1 Line element using an angle and unit bivector parameterization

Parameterizing using scalar angles is not the only approach that we can take to calculate the line
element on the unit sphere. Proceding directly with a alternate polar representation, utilizing a
unit bivector j, and scalar angle θ is

x = re3e jθ (35.28)

For this product to be a vector j must contain e3 as a factor ( j = e3 ∧m for some vector m.)
Setting r = 1 for now, the deriviate of x is

ẋ = e3
d
dt

(cos θ + j sin θ)

= e3θ̇ (− sin θ + j cos θ) + e3
d j
dt

sin θ

= e3θ̇ j ( j sin θ + cos θ) + e3
d j
dt

sin θ

(35.29)

This is

ẋ = e3

(
dθ
dt

je jθ +
d j
dt

sin θ
)

(35.30)
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Alternately, we can take derivatives of x = re− jθe3, for
Or

ẋ = −

(
dθ
dt

je− jθ +
d j
dt

sin θ
)

e3 (35.31)

Together with eq. (35.30), the line element for position change on the unit sphere is then

ẋ2 =

〈
−

(
dθ
dt

je− jθ +
d j
dt

sin θ
)

e3e3

(
dθ
dt

je jθ +
d j
dt

sin θ
)〉

=

〈
−

(
dθ
dt

je− jθ +
d j
dt

sin θ
) (

dθ
dt

je jθ +
d j
dt

sin θ
)〉

=

(
dθ
dt

)2

−

(
d j
dt

)2

sin2 θ −
dθ
dt

sin θ
〈

d j
dt

je jθ + je− jθ d j
dt

〉 (35.32)

Starting with cyclic reordering of the last term, we get zero

〈
d j
dt

je jθ + je− jθ d j
dt

〉
=

〈
d j
dt

j
(
e jθ + e− jθ

)〉
=

〈
d j
dt

j2 j sin θ
〉

= −2 sin θ
d
dt
〈 j〉

= 0

(35.33)

The line element (for constant r) is therefore

ẋ2 = r2

θ̇2 −

(
d j
dt

)2

sin2 θ

 (35.34)

This is essentially the same result as we got starting with an explicit r, θ, φ. Repeating for
comparision that was

ẋ2 = r2
(
θ̇2 + sin2 θφ̇2

)
(35.35)

The bivector that we have used this time encodes the orientation of the plane of rotation
from the polar axis down to the position on the sphere corresponds to the angle φ in the scalar
parameterization. The negation in sign is expected due to the negative bivector square.
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Also comparing to previous results it is notable that we can explicitly express this bivector in
terms of the scalar angle if desired as

ρ = e1ee1e2φ = e1 cos φ + e2 sin φ

j = e3 ∧ ρ = e3ρ
(35.36)

The inverse mapping, expressing the scalar angle using the bivector representation is also
possible, but not unique. The principle angle for that inverse mapping is

φ = −e1e2 ln(e1e3 j) (35.37)

35.6.2 Allowing the magnitude to vary

Writing a vector in polar form

x = rr̂ (35.38)

and also allowing r to vary, we have

(
dx
dt

)2

=

(
dr
dt

r̂ + r
dr̂
dt

)2

=

(
dr
dt

)2

+ r2
(
dr̂
dt

)2

+ 2r
dr
dt

r̂ ·
dr̂
dt

(35.39)

The squared unit vector derivative was previously calculated to be

(
dr̂
dt

)2

= θ̇2 + sin2 θφ̇2 (35.40)

Picturing the geometry is enough to know that ˙̂r · r̂ = 0 since ˙̂r is always tangential to the
sphere. It should also be possible to algebraically show this, but without going through the effort
we at least now know the general line element

ẋ2 = ṙ2 + r2
(
θ̇2 + sin2 θφ̇2

)
(35.41)
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I N F I N I T E S I M A L ROTAT I O N S

36.1 motivation

In a classical mechanics lecture (which I audited) Prof. Poppitz made the claim that an infinites-
imal rotation in direction n̂ of magnitude δφ has the form

x→ x + δφ × x, (36.1)

where

δφ = n̂δφ. (36.2)

I believe he expressed things in terms of the differential displacement

δx = δφ × x (36.3)

This was verified for the special case n̂ = ẑ and x = xx̂. Let us derive this in the general case
too.

36.2 with geometric algebra

Let us temporarily dispense with the normal notation and introduce two perpendicular unit
vectors û, and v̂ in the plane of the rotation. Relate these to the unit normal with

n̂ = û × v̂. (36.4)

A rotation through an angle φ (infinitesimal or otherwise) is then

x→ e−ûv̂φ/2xeûv̂φ/2. (36.5)
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274 infinitesimal rotations

Suppose that we decompose x into components in the plane and in the direction of the normal
n̂. We have

x = xuû + xvv̂ + xnn̂. (36.6)

The exponentials commute with the n̂ vector, and anticommute otherwise, leaving us with

x→ xnn̂ + (xuû + xvv̂)eûv̂φ

= xnn̂ + (xuû + xvv̂)(cos φ + ûv̂ sin φ)

= xnn̂ + û(xu cos φ − xv sin φ) + v̂(xv cos φ + xu sin φ).

(36.7)

In the last line we use û2 = 1 and ûv̂ = −v̂û. Making the angle infinitesimal φ→ δφ we have

x→ xnn̂ + û(xu − xvδφ) + v̂(xv + xuδφ)

= x + δφ(xuv̂ − xvû)
(36.8)

We have only to confirm that this matches the assumed cross product representation

n̂ × x =

∣∣∣∣∣∣∣∣∣∣∣
û v̂ n̂
0 0 1

xu xv xn

∣∣∣∣∣∣∣∣∣∣∣
= −ûxv + v̂xu

(36.9)

Taking the two last computations we find

δx = δφn̂ × x = δφ × x, (36.10)

as desired.
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36.3 without geometric algebra

We have also done the setup above to verify this result without GA. Here we wish to apply the
rotation to the coordinate vector of x in the {û, v̂, n̂} basis which gives us


xu

xv

xn

→

cos δφ − sin δφ 0

sin δφ cos δφ 0

0 0 1



xu

xv

xn


≈


1 −δφ 0

δφ 1 0

0 0 1



xu

xv

xn


=


xu

xv

xn

 +


0 −δφ 0

δφ 0 0

0 0 0



xu

xv

xn


=


xu

xv

xn

 + δφ


−xv

xu

0



(36.11)

But as we have shown, this last coordinate vector is just n̂ × x, and we get our desired result
using plain old fashioned matrix algebra as well.

Really the only difference between this and what was done in class is that there is no assump-
tion here that x = xx̂.
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37
D E V E L O P I N G S O M E I N T U I T I O N F O R M U LT I VA R I A B L E A N D
M U LT I V E C T O R TAY L O R S E R I E S

The book [10] uses Geometric Calculus heavily in its Lagrangian treatment. In particular it is
used in some incomprehensible seeming ways in the stress energy tensor treatment.

In the treatment of transformation of the dependent variables (not the field variables them-
selves) of field Lagrangians, there is one bit that appears to be the first order linear term from a
multivariable Taylor series expansion. Play with multivariable Taylor series here a bit to develop
some intuition with it.

37.1 single variable case , and generalization of it

For the single variable case, Taylor series takes the form

f (x) =
∑ xk

k!
dk f (x)

dxk

∣∣∣∣∣∣
x=0

(37.1)

or

f (x0 + ε) =
∑ εk

k!
dk f (x)

dxk

∣∣∣∣∣∣
x=x0

(37.2)

As pointed out in [5], this can (as they demonstrated for polynomials) be put into exponential
operator form

f (x0 + ε) = eεd/dx f (x)
∣∣∣
x=x0

(37.3)

Without proof, the multivector generalization of this is

f (x0 + ε) = eε·∇ f (x)
∣∣∣
x=x0

(37.4)

Or in full,

f (x0 + ε) =
∑ 1

k!
(ε · ∇)k f (x)

∣∣∣
x=x0

(37.5)

Let us work with this, and develop some comfort with what it means, then revisit the proof.
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37.2 directional derivatives

First a definition of directional derivative is required.
In standard two variable vector calculus the directional derivative is defined in one of the

following ways

∇u f (x, y) = lim
h→0

f (x + ah, y + bh) − f (x, y)
h

u = (a, b)
(37.6)

Or in a more general vector form as

∇u f (x) = lim
h→0

f (x + hu) − f (x)
h

(37.7)

Or in terms of the gradient as

∇u f (x) =
u
|u|
·∇ f (37.8)

Each of these was for a vector parametrized scalar function, although the wikipedia article
does mention a vector valued form that is identical to that use by [10]. Specifically, that is

(ε · ∇) f (x) = lim
h→0

f (x + hε) − f (x)
h

=
∂ f (x + hε)

∂h

∣∣∣∣∣
h=0

(37.9)

Observe that this definition as a limit avoids the requirement to define the gradient upfront.
That definition is not necessarily obvious especially for multivector valued functions.

37.3 work some examples

37.3.1 First order linear vector polynomial

Let

f (x) = a + x (37.10)

http://tutorial.math.lamar.edu/Classes/CalcIII/DirectionalDeriv.aspx
http://en.wikipedia.org/wiki/Directional_derivative
http://mathworld.wolfram.com/DirectionalDerivative.html
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For this simplest of vector valued vector parametrized functions we have

∂ f (x + hε)
∂h

=
∂

∂h
(a + x + hε)

= ε

= (ε · ∇) f

(37.11)

with no requirement to evaluate at h = 0 to complete the directional derivative computation.
The Taylor series expansion about 0 is thus

f (ε) = (ε · ∇)0 f
∣∣∣
x=0 + (ε · ∇)1 f

∣∣∣
x=0

= a + ε
(37.12)

Nothing else could be expected.

37.3.2 Second order vector parametrized multivector polynomial

Now, step up the complexity slightly, and introduce a multivector valued second degree polyno-
mial, say,

f (x) = α + a + xy + wx + cx2 + dxe + xgx (37.13)

Here α is a scalar, and all the other variables are vectors, so we have grades ≤ 3.
For the first order partial we have

∂ f (x + hε)
∂h

=
∂

∂h
(α + a + (x + hε)y + w(x + hε) + c(x + hε)2 + d(x + hε)e + (x + hε)g(x + hε))

= εy + wε + cε(x + hε) + c(x + hε)ε + cε + dεe + εg(x + hε) + (x + hε)gε

(37.14)

Evaluation at h = 0 we have

(ε · ∇) f = εy + wε + cεx + cxε + cε + dεe + εgx + xgε (37.15)

By inspection we have

(ε · ∇)2 f = +2cε2 + 2εgε (37.16)
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Combining things forming the Taylor series expansion about the origin we should recover
our function

f (ε) =
1
0!

(ε · ∇)0 f
∣∣∣
x=0 +

1
1!

(ε · ∇)1 f
∣∣∣
x=0 +

1
2

(ε · ∇)2 f
∣∣∣
x=0

=
1
1

(α + a) +
1
1

(εy + wε + cε + dεe) +
1
2

(2cε2 + 2εgε)

= α + a + εy + wε + cε + dεe + cε2 + εgε

(37.17)

This should match eq. (37.13), with an x = ε substitution, and does. With the vector factors in
these functions commutativity assumptions could not be made. These calculations help provide
a small verification that this form of Taylor series does in fact work out fine with such non-
commutative variables.

Observe as well that there was really no requirement in this example that x or any of the other
factors to be vectors. If they were all bivectors or trivectors or some mix the calculations would
have had the same results.

37.4 proof of the multivector taylor expansion

A peek back into [19] shows that eq. (37.5) was in fact proved, but it was done in a very sneaky
and clever way. Rather than try to prove treat the multivector parameters explicitly, the following
scalar parametrized hybrid function was created

G(τ) = F(x0 + τa) (37.18)

The scalar parametrized function G(τ) can be Taylor expanded about the origin, and then
evaluated at 1 resulting in eq. (37.5) in terms of powers of (a · ∇). I will not reproduce or try to
enhance that proof for myself here since it is actually quite clear in the text. Obviously the trick
is non-intuitive enough that when thinking about how to prove this myself it did not occur to
me.

37.5 explicit expansion for a scalar function

Now, despite the a · ∇ notation being unfamiliar seeming, the end result is not. Explicit expan-
sion of this for a vector to scalar mapping will show this. In fact this will also account for the
Hessian matrix, as in

y = f (x + ∆x) ≈ f (x) + J(x)∆x (37.19)

http://en.wikipedia.org/wiki/Hessian_matrix
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providing not only the background on where this comes from, but also the so often omitted
third order and higher generalizations (most often referred to as · · ·). Poking around a bit I see
that the wikipedia Taylor Series does explicitly define the higher order case, but if I had seen
that before the connection to the Hessian was not obvious.

37.5.1 Two variable case

Rather than start with the general case, the expansion of the first few powers of (a ·∇) f for the
two variable case is enough to show the pattern. How to further generalize this scalar function
case will be clear from inspection.

Starting with the first order term, writing a = (a, b) we have

(a ·∇) f (x, y) =
∂

∂τ
f (x + aτ, y + bτ)

∣∣∣∣∣
τ=0

=

(
∂

∂x + aτ
f (x + aτ, y + bτ)

∂(x + aτ)
∂τ

)∣∣∣∣∣∣
τ=0

+

(
∂

∂y + bτ
f (x + aτ, y + bτ)

∂(y + bτ)
∂τ

)∣∣∣∣∣∣
τ=0

= a
∂ f
∂x

+ b
∂ f
∂y

= a · (∇ f )

(37.20)

For the second derivative operation we have

(a ·∇)2 f (x, y) = (a ·∇) ((a ·∇) f (x, y))

= (a ·∇)
(
a
∂ f
∂x

+ b
∂ f
∂y

)
=

∂

∂τ

(
a
∂ f
∂x

(x + aτ, y + bτ) + b
∂ f
∂y

(x + aτ, y + bτ)
)∣∣∣∣∣∣
τ=0

(37.21)

Especially if one makes a temporary substitution of the partials for some other named vari-
ables, it is clear this follows as before, and one gets

(a ·∇)2 f (x, y) = a2 ∂
2 f
∂x2 + ba

∂2 f
∂y∂x

+ ab
∂2 f
∂x∂y

+ b2 ∂
2 f
∂y2

(37.22)

http://en.wikipedia.org/wiki/Taylor_expansion
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Similarly the third order derivative operator gives us

(a ·∇)3 f (x, y) = aaa
∂

∂x
∂

∂x
∂

∂x
f + aba

∂

∂x
∂

∂y
∂

∂x
f

+ aab
∂

∂x
∂

∂y
∂

∂x
f + abb

∂

∂x
∂

∂y
∂

∂y
f

+ baa
∂

∂y
∂

∂x
∂

∂x
f + bba

∂

∂y
∂

∂y
∂

∂x
f

+ bab
∂

∂y
∂

∂y
∂

∂x
f + bbb

∂

∂y
∂

∂y
∂

∂y
f

= a3 ∂
3 f
∂x3 + 3a2b

∂2

∂x2

∂ f
∂y

+ 3ab2 ∂

∂x
∂2 f
∂y2 + b3 ∂

3 f
∂y3

(37.23)

We no longer have the notational nicety of being able to use the gradient notation as was
done for the first derivative term. For the first and second order derivative operations, one has
the option of using the gradient and Hessian matrix notations

(a ·∇) f (x, y) = aT

 fx

fy


(a ·∇)2 f (x, y) = aT

 fxx fxy

fyx fyy

 a

(37.24)

But this will not be helpful past the second derivative.
Additionally, if we continue to restrict oneself to the two variable case, it is clear that we have

(a ·∇)n f (x, y) =

n∑
k=0

(
n
k

)
an−kbk

(
∂

∂x

)n−k (
∂

∂y

)k

f (x, y) (37.25)

But it is also clear that if we switch to more than two variables, a binomial series expansion of
derivative powers in this fashion will no longer work. For example for three (or more) variables,
writing for example a = (a1, a2, a3), we have

(a ·∇) f (x) =
∑

i

(
ai
∂

∂xi

)
f (x)

(a ·∇)2 f (x) =
∑

i j

(
ai
∂

∂xi

) (
a j

∂

∂x j

)
f (x)

(a ·∇)3 f (x) =
∑
i jk

(
ai
∂

∂xi

) (
a j

∂

∂x j

) (
ak

∂

∂xk

)
f (x)

(37.26)
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If the partials are all collected into a single indexed object, one really has a tensor. For the
first and second orders we can represent this tensor in matrix form (as the gradient and Hessian
respectively)

37.6 gradient with non-euclidean basis

The directional derivative has been calculated above for a scalar function. There is nothing
intrinsic to that argument that requires an orthonormal basis.

Suppose we have a basis {γµ}, and a reciprocal frame {γµ}. Let

x = xµγµ = xµγµ

a = aµγµ = aµγµ
(37.27)

The first order directional derivative is then

(a · ∇) f (x) =
∂ f
∂τ

(x + τa)
∣∣∣∣∣
τ=0

(37.28)

This is

(a · ∇) f (x) =
∑
µ

aµ
∂ f
∂xµ

(x) (37.29)

Now, we are used to ∇ as a standalone object, and want that operator defined such that we
can also write eq. (37.29) as

a · (∇ f (x)) = (aµγµ) · (∇ f (x)) (37.30)

Comparing these we see that our partials in eq. (37.29) do the job provided that we form the
vector operator

∇ =
∑
µ

γµ
∂

∂xµ (37.31)

The text [10] defines ∇ in this fashion, but has no logical motivation of this idea. One sees
quickly enough that this definition works, and is the required form, but building up to the con-
struction in a way that builds on previously established ideas is still desirable. We see here
that this reciprocal frame definition of the gradient follows inevitably from the definition of
the directional derivative. Additionally this is a definition with how the directional derivative is
defined in a standard Euclidean space with an orthonormal basis.
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37.7 work out gradient for a few specific multivector spaces

The directional derivative result expressed in eq. (37.29) holds for arbitrarily parametrized mul-
tivector spaces, and the image space can also be a generalized one. However, the corresponding
result eq. (37.31) for the gradient itself is good only when the parameters are vectors. These
vector parameters may be non-orthonormal, and the function this is applied to does not have to
be a scalar function.

If we switch to functions parametrized by multivector spaces the vector dot gradient notation
also becomes misleading. The natural generalization of the Taylor expansion for such a function,
instead of eq. (37.4), or eq. (37.5) should instead be

f (x0 + ε) = e〈ε∇〉 f (x)
∣∣∣
x=x0

(37.32)

Or in full,

f (x0 + ε) =
∑ 1

k!
〈ε∇〉k f (x)

∣∣∣
x=x0

(37.33)

One could alternately express this in a notationally less different form using the scalar product
operator instead of grade selection, if one writes

ε∗∇ ≡ 〈ε∇〉 (37.34)

However, regardless of the notation used, the fundamental definition is still going to be the
same (and the same as in the vector case), which operationally is

ε∗∇ f (x) = 〈ε∇〉 f (x) =
∂ f (x + hε)

∂h

∣∣∣∣∣
h=0

(37.35)

37.7.1 Complex numbers

The simplest grade mixed multivector space is that of the complex numbers. Let us write out
the directional derivative and gradient in this space explicitly. Writing

z0 = u + iv

z = x + iy
(37.36)
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So we have

〈z0∇〉 f (z) = u
∂ f
∂x

+ v
∂ f
∂y

= u
∂ f
∂x

+ iv
1
i
∂ f
∂y

=

〈
z0

(
∂

∂x
+

1
i
∂

∂y

)〉
f (z)

(37.37)

and we can therefore identify the gradient operator as

∇0,2 =
∂

∂x
+

1
i
∂

∂y
(37.38)

Observe the similarity here between the vector gradient for a 2D Euclidean space, where we
can form complex numbers by (left) factoring out a unit vector, as in

x = e1x + e2y

= e1(x + e1e2y)

= e1(x + iy)

= e1z

(37.39)

It appears that we can form this complex gradient, by (right) factoring out of the same unit
vector from the vector gradient

e1
∂

∂x
+ e2

∂

∂y
=

(
∂

∂x
+ e2e1

∂

∂y

)
e1

=

(
∂

∂x
+

1
i
∂

∂y

)
e1

= ∇0,2e1

(37.40)

So, if we write ∇ as the R2 vector gradient, with x = e1x + e2y = e1z as above, we have

∇x = ∇0,2e1e1z

= ∇0,2z
(37.41)

This is a rather curious equivalence between 2D vectors and complex numbers.
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37.7.1.1 Comparison of contour integral and directional derivative Taylor series

Having a complex gradient is not familiar from standard complex variable theory. Then again,
neither is a non-contour integral formulation of complex Taylor series. The two of these ought to
be equivalent, which seems to imply there is a contour integral representation of the gradient in a
complex number space too (one of the Hestenes paper’s mentioned this but I did not understand
the notation).

Let us do an initial comparison of the two. We need a reminder of the contour integral form
of the complex derivative. For a function f (z) and its derivatives regular in a neighborhood of a
point z0, we can evaluate

�
f (z)dz

(z − z0)k = −
1

k − 1

�
f (z)dz

(
1

(z − z0)k−1

)′
=

1
k − 1

�
f ′(z)dz

(
1

(z − z0)k−1

)
=

1
(k − 1)(k − 2)

�
f 2(z)dz

(
1

(z − z0)k−2

)
=

1
(k − 1)(k − 2) · · · (k − n)

�
f n(z)dz

(
1

(z − z0)k−n

)
=

1
(k − 1)(k − 2) · · · (1)

�
f k−1(z)dz

z − z0

=
2πi

(k − 1)!
f k−1(z0)

(37.42)

So we have

dk

dzk f (z)

∣∣∣∣∣∣
z0

=
k!

2πi

�
f (z)dz

(z − z0)k+1 (37.43)

Given this we now have a few alternate forms of complex Taylor series

f (z0 + ε) =
∑ 1

k!
〈ε∇〉k f (z)

∣∣∣
z=z0

=
∑ 1

k!
εk dk

dzk f (z)

∣∣∣∣∣∣
z0

=
1

2πi

∑
εk

�
f (z)dz

(z − z0)k+1

(37.44)

Observe that the the 0, 2 subscript for the gradient has been dropped above (ie: this is the
complex gradient, not the vector form).
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37.7.1.2 Complex gradient compared to the derivative

A gradient operator has been identified by factoring it out of the directional derivative. Let us
compare this to a plain old complex derivative.

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

(37.45)

In particular, evaluating this limit for z = z0 + h, approaching z0 along the x-axis, we have

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

= lim
h→0

f (z0 + h) − f (z0)
h

=
∂ f
∂x

(z0)

(37.46)

Evaluating this limit for z = z0 + ih, approaching z0 along the y-axis, we have

f ′(z0) = lim
h→0

f (z0 + ih) − f (z0)
ih

= −i
∂ f
∂y

(z0)
(37.47)

We have the Cauchy equations by equating these, and if the derivative exists (ie: independent
of path) we require at least

∂ f
∂x

(z0) = −i
∂ f
∂y

(z0) (37.48)

Or

0 =
∂ f
∂x

(z0) + i
∂ f
∂y

(z0)

= ∇̃ f (z0)
(37.49)

Premultiplying by ∇ produces the harmonic equation

∇∇̃ f =

(
∂2

∂x2 +
∂2

∂y2

)
f (37.50)
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37.7.1.3 First order expansion around a point

The above, while interesting or curious, does not provide a way to express the differential oper-
ator directly in terms of the gradient.

We can write

〈ε∇〉 f (z)|z0
=

ε

2πi

�
f (z)dz

(z − z0)2

= ε f ′(z0)
(37.51)

One can probably integrate this in some circumstances (perhaps when f(z) is regular along
the straight path from z0 to z = z0 + ε). If so, then we have

ε

∫ z

s=z0

f ′(s)ds =

∫ z

s=z0

〈ε∇〉 f (z)|z=s ds (37.52)

Or

f (z) = f (z0) +

∫ z

s=z0

1
ε
〈ε∇〉 f (z)

∣∣∣∣∣
z=s

ds (37.53)

Is there any validity to doing this? The idea here is to play with some circumstances where
we could see where the multivector gradient may show up. Much more play is required, some
of which for discovery and the rest to do things more rigorously.

37.7.2 4D scalar plus bivector space

Suppose we form a scalar, bivector space by factoring out the unit time vector in a Dirac vector
representation

x = xµγµ

=
(
x0 + xkγkγ0

)
γ0

=
(
x0 + xkσk

)
γ0

= qγ0

(37.54)

This q has the structure of a quaternion-like object (scalar, plus bivector), but the bivectors
all have positive square. Our directional derivative, for multivector direction Q = Q0 + Qkσk is

〈Q∇〉 f (q) = Q0 ∂ f
∂x0 +

∑
k

Qk ∂ f
∂xk (37.55)
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So, we can write

∇ =
∂

∂x0 +
∑

k

σk
∂

∂xk (37.56)

We can do something similar for an Euclidean four vector space

x = xµeµ

=
(
x0 + xkeke0

)
e0

=
(
x0 + xkik

)
e0

= qe0

(37.57)

Here each of the bivectors ik have a negative square, much more quaternion-like (and could
easily be defined in an isomorphic fashion). This time we have

∇ =
∂

∂x0 +
∑

k

1
ik

∂

∂xk (37.58)





38
E X T E R I O R D E R I VAT I V E A N D C H A I N RU L E C O M P O N E N T S O F T H E
G R A D I E N T

38.1 gradient formulation in terms of reciprocal frames

We have seen how to calculate reciprocal frames as a method to find components of a vector
with respect to an arbitrary basis (does not have to be orthogonal).

This can be applied to any vector:

x =
∑

ai(ai · x) =
∑

ai(ai · x) (38.1)

so why not the gradient operator too.

∇ =
∑

ai(ai · ∇) =
∑

ai(ai · ∇) (38.2)

The dot product part:

(a · ∇) f (u) = lim
τ→0

f (u + aτ) − f (u)
τ

(38.3)

we know how to calculate explicitly (from NFCM) and is the direction derivative.
So this gives us an explicit factorization of the gradient into components in some arbitrary

set of directions, all weighted appropriately.

38.2 allowing the basis to vary according to a parametrization

Now, if one allows the vector basis ai to vary along a curve, it is interesting to observe the con-
sequences of this to the gradient expressed as a component along the curve and perpendicular
components.

Suppose that one has a parametrization φ(u1, u2, · · · , un−1) ∈ Rn, defining a generalized sur-
face of degree one less than the space.

Provided these surface direction vectors are linearly independent and non zero, we can writ-
ing φui =

∂φ
∂ui

, and form a basis for the space by extension with a reciprocal frame vector:

{φu1 ,φu2 , · · · ,φun−1 , (φu1 ∧ φu2 · · · ∧ φun−1)
1
In
} (38.4)

293
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38.2.1 Try it with the simplest case

Let us calculate ∇ in this basis. Intuition says this will produce something like the exterior
derivative from differential forms for the component that is normal to the surface.

To make things easy, consider the absolutely simplest case, a curve in R2, with parametriza-
tion r = φ(t). The basis associated with this curve at some point is

{a1, a2} = {φt, Iφt} (38.5)

with a reciprocal basis of:

{a1, a2} = {
1
φt
,−

1
φt

I} (38.6)

In terms of this components, the gradient along the curve at the specified point is:

∇ f =
(
a1a1 · ∇ + a2a2 · ∇

)
f

=

(
1
φt
φt · ∇ +

(
I

1
φt

)
(Iφt) · ∇

)
f

=
1
φt

(φt · ∇ − I (I · φt) · ∇) f

=
1
φt

(φt · ∇ − I (I · (φt ∧∇))) f

=
1
φt

(φt · ∇ − I (I (φt ∧∇))) f

=
1
φt

(φt · ∇ + φt ∧∇) f

(38.7)

Lo and behold, we come full circle through a mass of identities back to the geometric product.
As with many things in math, knowing the answer we can be clever and start from the answer
going backwards. This would have allowed the standard factorization of the gradient vector into
orthogonal components in the usual fashion:

∇ =
1
φt

(φt∇) =
1
φt

(φt · ∇ + φt ∧∇) (38.8)

Let us continue writing φ(t) = x(t)e1 + y(t)e2. Then

φ′ = x′e1 + y′e2 (38.9)
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φ′ · ∇ =
dx
dt

∂

∂x
+

dy
dt

∂

∂y
(38.10)

φ′ ∧∇ = I
(
dx
dt

∂

∂y
−

dy
dt

∂

∂x

)
(38.11)

Combining these and inserting back into eq. (38.8) we have

∇ =
φ′

(φ′)2 (φ′ · ∇ + φ′ ∧∇)

=
1

(x′)2 + (y′)2 (x′, y′)
(
dx
dt

∂

∂x
+

dy
dt

∂

∂y

)
+ (−y′, x′)

(
dx
dt

∂

∂y
−

dy
dt

∂

∂x

) (38.12)

Now, here it is worth pointing out that the choice of the parametrization can break some of the
assumptions made. In particular the curve can be completely continuous, but the parametrization
could allow it to be zero for some interval since (x(t), y(t)) can be picked to be constant for a
“time” before continuing.

This problem is eliminated by picking an arc length parametrization. Provided the curve is not
degenerate (ie: a point), then we have at least one of dx/ds , 0, or dy/ds , 0. Additionally, by
parametrization using arc length we have (dx/ds)2 + (dy/ds)2 = (ds/ds)2 = 1. This eliminates
the denominator leaving the following decomposition of the R2 gradient

∇ = (x′, y′)

Unit tangent vector(
dx
ds

∂

∂x
+

dy
ds

∂

∂y

)
Chain Rule in operator form.

+ (−y′, x′)

Unit normal vector(
dx
ds

∂

∂y
−

dy
ds

∂

∂x

)
Exterior derivative operator.

(38.13)

Thus, loosely speaking we have the chain rule as the scalar component of the unit tangent
vector along a parametrized curve, and we have the exterior derivative as the component of the
gradient that lies colinear to a unit normal to the curve (believe this is the unit normal that points
inwards to the curvature if there is any).
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38.2.2 Extension to higher dimensional curves

In R3 or above we can perform the same calculation. The result is similar and straightforward
to derive:

∇ =

(
dx1

ds
,

dx2

ds
, · · · ,

dxn

ds

)Unit tangent.
n∑

i=1

dxi

ds
∂

∂xi
+

∑
1≤i< j≤n

(
e j

dxi

ds
− ei

dx j

ds

)Normal to unit tangent.(
dxi

ds
∂

∂x j
−

dx j

ds
∂

∂xi

)
(38.14)

Here we have a set of normals to the unit tangent. For R3, we have i j = {12, 13, 23}. One of
these unit normals must be linearly dependent on the other two (or zero). The exterior scalar fac-
tors here loose some of their resemblance to the exterior derivative here. Perhaps a parametrized
(hyper-)surface is required to get the familiar form for R3 or above.
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S P H E R I C A L A N D H Y P E R S P H E R I C A L PA R A M E T R I Z AT I O N

39.1 motivation

In 118 a 4D Fourier transform solution of Maxwell’s equation yielded a Green’s function of the
form

G(x) =

&
eikµxµ

kνkν
dk1dk2dk3dk4 (39.1)

To attempt to “evaluate” this integral, as done in 114 to produce the retarded time potentials,
a hypervolume equivalent to spherical polar coordinate parametrization is probably desirable.

Before attempting to tackle the problem of interest, the basic question of how to do volume
and weighted volume integrals over a hemispherical volumes must be considered. Doing this
for both Euclidean and Minkowski metrics will have to be covered.

39.2 euclidean n-volume

39.2.1 Parametrization

The wikipedia article on n-volumes gives a parametrization, which I will write out explicitly for
the first few dimensions

• 1-sphere (circle)

x1 = r cos φ1

x2 = r sin φ1
(39.2)

• 2-sphere (sphere)

x1 = r cos φ1

x2 = r sin φ1 cos φ2

x3 = r sin φ1 sin φ2

(39.3)
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• 3-sphere (hypersphere)

x1 = r cos φ1

x2 = r sin φ1 cos φ2

x3 = r sin φ1 sin φ2 cos φ3

x4 = r sin φ1 sin φ2 sin φ3

(39.4)

By inspection one can see that we have the desired r2 =
∑

i(xi)2 relation. Each of these can
be vectorized to produce a parametrized vector that can trace out all the possible points on the
volume

r = σkxk (39.5)

39.2.2 Volume elements

We can form a parallelogram area (or parallelepiped volume, ...) element for any parametrized
surface by taking wedge products, as in fig. 39.1. This can also be done for this spherical
parametrization too.

Figure 39.1: Tangent vector along curves of parametrized vector
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For example for the circle we have

dVR2 =
∂r
∂r
∧
∂r
∂φ1

drdφ1

=

(
∂

∂r
r(cos φ1, sin φ1)

)
∧

(
∂

∂φ1
r(cos φ1, sin φ1)

)
drdφ1

= (cos φ1, sin φ1)∧ (− sin φ1, cos φ1)rdrdφ1

= (cos2 φ1σ1σ2 − sin2 φ1σ2σ1)rdrdφ1

= rdrdφ1σ1σ2

(39.6)

And for the sphere

dVR3 =
∂r
∂r
∧
∂r
∂φ1
∧
∂r
∂φ2

drdφ1dφ2

= (cos φ1, sin φ1 cos φ2, sin φ1 sin φ2)

∧ (− sin φ1, cos φ1 cos φ2, cos φ1 sin φ2)

∧ (0,− sin φ1 sin φ2, sin φ1 cos φ2)r2drdφ1dφ2

=

∣∣∣∣∣∣∣∣∣∣∣
cos φ1 sin φ1 cos φ2 sin φ1 sin φ2

− sin φ1 cos φ1 cos φ2 cos φ1 sin φ2

0 − sin φ1 sin φ2 sin φ1 cos φ2

∣∣∣∣∣∣∣∣∣∣∣ r
2drdφ1dφ2σ1σ2σ3

= r2dr sin φ1dφ1dφ2σ1σ2σ3

(39.7)

And finally for the hypersphere

dVR4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos φ1 sin φ1 cos φ2 sin φ1 sin φ2 cos φ3 sin φ1 sin φ2 sin φ3

− sin φ1 cos φ1 cos φ2 cos φ1 sin φ2 cos φ3 cos φ1 sin φ2 sin φ3

0 − sin φ1 sin φ2 sin φ1 cos φ2 cos φ3 sin φ1 cos φ2 sin φ3

0 0 − sin φ1 sin φ2 sin φ3 sin φ1 sin φ2 cos φ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r3drdφ1dφ2dφ3σ1σ2σ3σ4

= r3dr sin2 φ1dφ1 sin φ2dφ2dφ3σ1σ2σ3σ4

(39.8)

Each of these is consistent with the result in the wiki page.

39.2.3 Some volume computations

Let us apply the above results to compute the corresponding n-volume’s.
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• 1-sphere (circle)

VR2 = 4
∫ R

0
rdr

∫ π/2

0
dφ1

= πR2
(39.9)

• 2-sphere (sphere)

VR3 = 8
∫ R

0
r2dr

∫ π/2

0
sin φ1dφ1

∫ π/2

0
dφ2

= 8
1
3

R3
(
− cos φ1|

π/2
0

) π
2

=
4πR3

3

(39.10)

Okay, so far so good.

• 3-sphere (hypersphere)

VR3 = 16
∫ R

0
r3dr

∫ π/2

0
sin2 φ1dφ1

∫ π/2

0
sin φ2dφ2

∫ π/2

0
dφ3

= 2πR4
∫ π/2

0
sin2 φ1dφ1

= πR4
(
φ1 − cos φ1 sin φ1|

π/2
0

)
=
π2R4

2

(39.11)

This is also consistent with the formula supplied in the wiki article.

39.2.4 Range determination

What I have done here though it integrate over only one of the quadrants, and multiply by 2n.
This avoided the more tricky issue of what exact range of angles is required for a complete and
non-overlapping cover of the surface.

The wiki article says that the range is [0, 2π] for the last angle and [0, π] for the others.
Reevaluating the integrals above shows that this does work, but that is a bit of a cheat, and it is
not obvious to me past R3 that this should be the case.

How can this be rationalized?



39.2 euclidean n-volume 301

• circle For the case of the circle what are the end points in each of the quadrants? These
are (with r = 1)

(cos φ1, sin φ1)φ1=0 = (1, 0) = σ1

(cos φ1, sin φ1)φ1=π/2 = (0, 1) = σ2

(cos φ1, sin φ1)φ1=π = (−1, 0) = −σ1

(cos φ1, sin φ1)φ1=3π/2 = (0,−1) = −σ2

(39.12)

As expected, each of the π/2 increments traces out the points in successive quadrants.

• sphere

Again with r = 1, some representative points on the circle are

φ1 φ2 (cos φ1, sin φ1 cos φ2, sin φ1 sin φ2) r
0 0 (1, 0, 0) σ1

0 π/2 (1, 0, 0) σ1

0 π (1, 0, 0) σ1

0 3π/2 (1, 0, 0) σ1

π/2 0 (0, 1, 0) σ2

π/2 π/2 (0, 0, 1) σ3

π/2 π (0,−1, 0) −σ2

π/2 3π/2 (0, 0,−1) −σ3

π 0 (−1, 0, 0) −σ1

π π/2 (−1, 0, 0) −σ1

π π (−1, 0, 0) −σ1

π 3π/2 (−1, 0, 0) −σ1

The most informative of these is for φ1 = π/2, where we had r = (0, cos φ2, sin φ2), and
our points trace out a path along the unit circle of the y, z plane. At φ1 = 0 our point
r = σ1 did not move, and at φ1 = π we are at the other end of the sphere, also fixed. A
reasonable guess is that at each φ1 we trace out a different circle in the y, z plane.

We can write, with σ23 = σ1 ∧σ2 = σ1σ2,

r = cos φ1σ1 + sin φ1(cos φ2σ2 + sin φ2σ3)

= cos φ1σ1 + sin φ1σ2(cos φ2 + sin φ2σ2σ3)
(39.13)



302 spherical and hyperspherical parametrization

Or, in exponential form

r = cos φ1σ1 + sin φ1σ2 exp(σ23φ2) (39.14)

Put this way the effects of the parametrization is clear. For each fixed φ1, the exponential
traces out a circle in the y, z plane, starting at the point r = cos φ1σ1 + sin φ1σ2. φ1 traces
out a semi-circle in the x, y plane.

FIXME: picture.

This would have been easy enough to understand if starting from a picture and construct-
ing the parametrization. Seeing what the geometry is from the algebra requires a bit more
(or different) work. Having done it, are we now prepared to understand the geometry of
the hypersphere parametrization.

• hypersphere.

The vector form in the spherical case was convenient for extracting geometric properties.
Can we do that here too?

r = σ1 cos φ1 +σ2 sin φ1 cos φ2 +σ3 sin φ1 sin φ2 cos φ3 +σ4 sin φ1 sin φ2 sin φ3

= σ1 cos φ1 +σ2 sin φ1 cos φ2 +σ3 sin φ1 sin φ2(cos φ3 +σ34 sin φ3)

= σ1 cos φ1 +σ2 sin φ1 cos φ2 +σ3 sin φ1 sin φ2 exp(σ34φ3)

= σ1 cos φ1 +σ2 sin φ1(cos φ2 +σ23 sin φ2 exp(σ34φ3))

(39.15)

Observe that if φ3 = 0 we have

r = σ1 cos φ1 +σ2 sin φ1 exp(σ23φ2) (39.16)

Which is exactly the parametrization of a half sphere (φ2 ∈ [0, π]). Contrast this to the
semi-circle that φ1 traced out in the spherical case.

In the spherical case, the points φ1 = π/2 were nicely representative. For the hypersphere
those points are

r = σ2 cos φ2 +σ3 sin φ2 exp(σ34φ3) (39.17)

We saw above that this is the parametrization of a sphere.
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Also like the spherical case, we have r = ±σ1 at φ1 = 0, and φ1 = π respectively.

The geometrical conclusion is that for each φ1 ∈ [0, π/2] range the points r trace out
increasingly larger spheres, and after that decreasing sized spheres until we get to a point
again at φ1 = π.

39.3 minkowski metric sphere

39.3.1 2D hyperbola

Our 1-sphere equation was all the points on the curve

x2 + y2 = r2 (39.18)

The hyperbolic equivalent to this is

x2 − y2 = r2 (39.19)

Although this is not a closed curve like the circle. To put this in a more natural physical
context, lets write (with c = 1)

r = γ0t + γ1x (39.20)

So the equation of the 1-hyperboloid becomes

r2 = t2 − x2 = r2 (39.21)

We can parametrize this with complex angles iφ

r = r(γ0 cosh φ + γ1 sinh φ) (39.22)

This gives us

r2 = r2(cosh2 φ − sinh2 φ) = r2 (39.23)

as desired. Like the circle, writing γ01 = γ0 ∧ γ1, an exponential form also works nicely

r = rγ0 exp(γ01φ) (39.24)
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Here the square is

r2 = r2γ0 exp(γ01φ)γ0 exp(γ01φ)

= r2 exp(−γ01φ)(γ0)2 exp(γ01φ)

= r2 exp(−γ01φ) exp(γ01φ)

= r2

(39.25)

Again as desired.

39.3.2 3D hyperbola

Unlike the circle, a pure hyperbolic parametrization does not work to construct a Minkowski
square signature. Consider for example

r = cosh φγ0 + γ1 sinh φ coshψ + γ2 sinh φ sinhψ (39.26)

Squaring this we have

r2 = cosh2 φ − sinh2 φ(cosh2 ψ + sinh2 ψ) (39.27)

We would get the desired result if we chop off the h in all the ψ hyperbolic functions. This
shows that an appropriate parametrization is instead

r = cosh φγ0 + γ1 sinh φ cosψ + γ2 sinh φ sinψ (39.28)

This now squares to 1. To see how to extend this to higher dimensions (of which we only
need one more) we can factor out a γ0

r = γ0(cosh φ − sinh φ( σ1 cosψ +σ2 sinψ

spatial vector parametrization of circle

))
(39.29)

Now to extend this to three dimensions we have just to substituted the spherical parametriza-
tion from eq. (39.14)

r = rγ0(cosh φ0 − sinh φ0(cos φ1σ1 + sin φ1σ2 exp(σ23φ2)))

= r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2)))
(39.30)



39.3 minkowski metric sphere 305

39.3.3 Summarizing the hyperbolic vector parametrization

Our parametrization in two, three, and four dimensions, respectively, are

r2 = r(γ0 cosh φ0 + sinh φ0γ1)

r3 = r(γ0 cosh φ0 + sinh φ0γ1 exp(γ21φ1))

r4 = r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2)))

(39.31)

39.3.4 Volume elements

What are our volume elements using this parametrization can be calculated as above.

39.3.4.1 For one spatial dimension we have

dV2γ0γ1 =

∣∣∣∣∣∣∣cosh φ0 sinh φ0

sinh φ0 cosh φ0

∣∣∣∣∣∣∣ rdrdφ0

= rdrdφ0

(39.32)

39.3.4.2 For two spatial dimensions we have

r3 = r(γ0 cosh φ0 + γ1 sinh φ0 cos φ1 + γ2 sinh φ0 sin φ2) (39.33)

The derivatives are

∂r3

∂r
= γ0 cosh φ0 + γ1 sinh φ0 cos φ1 + γ2 sinh φ0 sin φ1

1
r
∂r3

∂φ0
= γ0 sinh φ0 + γ1 cosh φ0 cos φ1 + γ2 cosh φ0 sin φ1

1
r
∂r3

∂φ1
= −γ1 sinh φ0 sin φ1 + γ2 sinh φ0 cos φ1

(39.34)

Or

∂r3

∂r
= γ0 cosh φ0 + γ1 sinh φ0 exp(γ21φ1)

1
r
∂r3

∂φ0
= γ0 sinh φ0 + cosh φ0 exp(−γ21φ1)γ1

1
r
∂r3

∂φ1
= sinh φ0γ2 exp(γ21φ1)

(39.35)
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Multiplying this out, discarding non-grade three terms we have

(γ10 sinh2 φ0 exp(γ21φ1) + γ01 cosh2 φ0 exp(γ21φ1)) sinh φ0γ2 exp(γ21φ1)

= γ01 exp(γ21φ1) sinh φ0 exp(−γ21φ1)γ2

= γ01 sinh φ0γ2

(39.36)

This gives us

dV3 = r2 sinh φ0drdφ0dφ1 (39.37)

39.3.4.3 For three spatial dimensions we have

r4 = r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2))) (39.38)

So our derivatives are

∂r4

∂r
= γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2))

1
r
∂r4

∂φ0
= γ0 sinh φ0 + cosh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2))

1
r
∂r4

∂φ1
= sinh φ0(− sin φ1γ1 + cos φ1γ2 exp(γ32φ2))

1
r
∂r4

∂φ2
= sinh φ0 sin φ1γ3 exp(γ32φ2)

(39.39)

In shorthand, writing C and S for the trig and hyperbolic functions as appropriate, we have

γ0C0 + S 0C1γ1 + S 0S 1γ2 exp(γ32φ2)

γ0S 0 + C0C1γ1 + C0S 1γ2 exp(γ32φ2)

−S 0S 1γ1 + S 0C1γ2 exp(γ32φ2)

S 0S 1γ3 exp(γ32φ2)

(39.40)

Multiplying these out and dropping terms that will not contribute grade four bits is needed to
calculate the volume element. The full product for the first two derivatives is

γ0C0γ0S 0 + γ0C0C0C1γ1 + γ0C0C0S 1γ2 exp(γ32φ2)

+ S 0C1γ1γ0S 0 + S 0C1γ1C0C1γ1 + S 0C1γ1C0S 1γ2 exp(γ32φ2)

+ S 0S 1γ2 exp(γ32φ2)γ0S 0 + S 0S 1γ2 exp(γ32φ2)C0C1γ1 + S 0S 1γ2 exp(γ32φ2)C0S 1γ2 exp(γ32φ2)
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(39.41)

We can discard the scalar terms:

γ0C0γ0S 0 + S 0C1γ1C0C1γ1 + S 0S 1γ2 exp(γ32φ2)C0S 1 exp(−γ32φ2)γ2 (39.42)

Two of these terms cancel out

S 0C0C1S 1γ12 exp(γ32φ2) + S 0C0C1S 1γ21 exp(γ32φ2) (39.43)

and we are left with two bivector contributors to the eventual four-pseudoscalar

γ01C1 + γ02S 1 exp(γ32φ2) (39.44)

Multiplying out the last two derivatives we have

−S 2
0S 2

1γ13 exp(γ32φ2) + S 2
0C1S 1γ23 (39.45)

Almost there. A final multiplication of these sets of products gives

− γ01C1S 2
0S 2

1γ13 exp(γ32φ2) − γ02S 1 exp(γ32φ2)S 2
0S 2

1γ13 exp(γ32φ2)

+ γ01C1S 2
0C1S 1γ23 + γ02S 1 exp(γ32φ2)S 2

0C1S 1γ23

= γ03C1S 2
0S 2

1 exp(γ32φ2) − γ02 exp(γ32φ2)S 2
0S 3

1 exp(−γ32φ2)γ13

+ γ0123C2
1S 2

0S 1 − γ03 exp(γ32φ2)S 2
0C1S 2

1

= γ03C1S 2
0S 2

1 exp(γ32φ2) + γ0123S 2
0S 1(S 2

1 + C2
1) − γ03 exp(γ32φ2)S 2

0C1S 2
1

= γ03C1S 2
1(S 2

0 − S 2
0) exp(γ32φ2) + γ0123S 2

0S 1

(39.46)

Therefore our final result is

dV4 = sinh2 φ0 sin φ1r3drdφ0dφ1dφ2 (39.47)

39.4 summary

39.4.1 Vector parametrization

N-Spherical parametrization

r2 = σ1 exp(σ12φ1)

r3 = cos φ1σ1 + sin φ1σ2 exp(σ23φ2)

r4 = σ1 cos φ1 +σ2 sin φ1(cos φ2 +σ23 sin φ2 exp(σ34φ3))

(39.48)
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N-Hypersphere parametrization

r2 = r(γ0 cosh φ0 + sinh φ0γ1)

r3 = r(γ0 cosh φ0 + sinh φ0γ1 exp(γ21φ1))

r4 = r(γ0 cosh φ0 + sinh φ0(cos φ1γ1 + sin φ1γ2 exp(γ32φ2)))

(39.49)

39.4.2 Volume elements

To summarize the mess of algebra we have shown that our hyperbolic volume elements are
given by

dV2 = (rdr) dφ0

dV3 =
(
r2dr

)
(sinh φ0dφ0) dφ1

dV4 =
(
r3dr

) (
sinh2 φ0dφ0

)
(sin φ1dφ1) dφ2

(39.50)

Compare this to the volume elements for the n-spheres

dV2 = (rdr) dφ1

dV3 =
(
r2dr

)
(sin φ1dφ1) dφ2

dV4 =
(
r3dr

) (
sin2 φ1dφ1

)
(sin φ2dφ2) dφ3

(39.51)

Besides labeling variations the only difference in the form is a switch from trig to hyperbolic
functions for the first angle (which has an implied range difference as well).
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V E C T O R D I F F E R E N T I A L I D E N T I T I E S

40.1 some identities

[12] electrodynamics chapter II lists a number of differential vector identities.

1. ∇ · (∇T ) = ∇2T = a scalar field

2. ∇ × (∇T ) = 0

3. ∇(∇ · h) = a vector field

4. ∇ · (∇ × h) = 0

5. ∇ × (∇ × h) = ∇(∇ · h) −∇2h

6. (∇ ·∇)h = a vector field

Let us see how all these translate to GA form.

40.1.1 Divergence of a gradient

This one has the same form, but expanding it can be evaluated by grade selection

∇ · (∇T ) = 〈∇∇T 〉

= (∇2)T
(40.1)

A less sneaky expansion would be by coordinates

∇ · (∇T ) =
∑
k, j

(σk∂k) · (σ j∂ jT )

=

〈∑
k, j

(σk∂k)(σ j∂ jT )
〉

=

〈∑
k, j

σk∂kσ j∂ j

 T
〉

=
〈
∇

2T
〉

= ∇2T

(40.2)

309
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40.1.2 Curl of a gradient is zero

The duality analogue of this is

∇ × (∇T ) = −i(∇∧ (∇T )) (40.3)

Let us verify that this bivector curl is zero. This can also be done by grade selection

∇∧ (∇T ) = 〈∇(∇T )〉2
= 〈(∇∇)T 〉2
= (∇∧∇)T

= 0

(40.4)

Again, this is sneaky and side steps the continuity requirement for mixed partial equality.
Again by coordinates is better

∇∧ (∇T ) =

〈∑
k, j

σk∂k(σ j∂ jT )
〉

2

=

〈∑
k< j

σkσ j(∂k∂ j − ∂ j∂k)T
〉

2

=
∑
k< j

σk ∧σ j(∂k∂ j − ∂ j∂k)T

(40.5)

So provided the mixed partials are zero the curl of a gradient is zero.

40.1.3 Gradient of a divergence

Nothing more to say about this one.

40.1.4 Divergence of curl

This one looks like it will have a dual form using bivectors.

∇ · (∇ × h) = ∇ · (−i(∇∧ h))

= 〈∇(−i(∇∧ h))〉

= 〈−i∇(∇∧ h)〉

= −(i∇) · (∇∧ h)

(40.6)
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Is this any better than the cross product relationship?
I do not really think so. They both say the same thing, and only possible value to this duality

form is if more than three dimensions are required (in which case the sign of the pseudoscalar
i has to be dealt with more carefully). Geometrically one has the dual of the gradient (a plane
normal to the vector itself) dotted with the plane formed by the gradient and the vector operated
on. The corresponding statement for the cross product form is that we have a dot product of a
vector with a vector normal to it, so also intuitively expect a zero. In either case, because we
are talking about operators here just saying this is zero because of geometrical arguments is not
necessarily convincing. Let us evaluate this explicitly in coordinates to verify

(i∇) · (∇∧ h) = 〈i∇(∇∧ h)〉

=

〈
i
∑
k, j,l

σk∂k
(
(σ j ∧σl)∂ jhl

)〉

= −i
∑

l

σl ∧

∑
k< j

(σk ∧σ j)(∂k∂ j − ∂ j∂k)hl


(40.7)

This inner quantity is zero, again by equality of mixed partials. While the dual form of this
identity was not really any better than the cross product form, there is nothing in this zero
equality proof that was tied to the dimension of the vectors involved, so we do have a more
general form than can be expressed by the cross product, which could be of value in Minkowski
space later.

40.1.5 Curl of a curl

This will also have a dual form. That is

∇ × (∇ × h) = −i(∇∧ (∇ × h))

= −i(∇∧ (−i(∇∧ h)))

= −i〈∇(−i(∇∧ h))〉2
= i〈i∇(∇∧ h)〉2
= i2∇ · (∇∧ h)

= −∇ · (∇∧ h)

(40.8)

Now, let us expand this quantity

∇ · (∇∧ h) (40.9)
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If the gradient could be treated as a plain old vector we could just do

a · (a∧ h) = a2h − a(a · h) (40.10)

With the gradient substituted this is exactly the desired identity (with the expected sign dif-
ference)

∇ · (∇∧ h) = ∇2h −∇(∇ · h) (40.11)

A coordinate expansion to truly verify that this is valid is logically still required, but having
done the others above, it is clear how this would work out.

40.1.6 Laplacian of a vector

This one is not interesting seeming.

40.2 two more theorems

Two theorems without proof are mentioned in the text.

40.2.1 Zero curl implies gradient solution

Theorem was

If ∇ ×A = 0

there is a ψ

such that A = ∇ψ

This appears to be half of an if and only if theorem. The unstated part is if one has a gradient
then the curl is zero

A = ∇ψ

=⇒

∇ ×A = ∇ ×∇ψ = 0

(40.12)

This last was proven above, and follows from the assumed mixed partial equality. Now, the
real problem here is to find ψ given A. First note that we can remove the three dimensionality
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of the theorem by duality writing ∇×A = −i(∇∧A). In one sense changing the theorem to use
the wedge instead of cross makes the problem harder since the wedge product is defined not
just for R3. However, this also allows starting with the simpler R2 case, so let us do that one
first.

Write

A = σ1A1 +σ2A2 = σ1(∂1ψ) +σ2(∂2ψ) (40.13)

The gradient is

∇ = σ1∂1 +σ2∂2 (40.14)

Our curl is then

(σ1∂1 +σ2∂2)∧ (σ1A1 +σ2A2) = (σ1 ∧σ2)(∂1A2 − ∂2A1) (40.15)

So we have

∂1A2 = ∂2A1 (40.16)

Now from eq. (40.13) this means we must have

∂1∂2ψ = ∂2∂1ψ (40.17)

This is just a statement of mixed partial equality, and does not look particularly useful for
solving for ψ. It really shows that the is redundancy in the problem, and instead of substituting
for both of A1 and A2 in eq. (40.16), we can use one or the other.

Doing so we have two equations, either of which we can solve for

∂2∂1ψ = ∂1A2

∂1∂2ψ = ∂2A1
(40.18)

Integrating once gives

∂1ψ =

∫
∂1A2dy + B(x)

∂2ψ =

∫
∂2A1dx + C(y)

(40.19)
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And a second time produces solutions for ψ in terms of the vector coordinates

ψ =

"
∂A2

∂x
dydx +

∫
B(x)dx + D(y)

ψ =

"
∂A1

∂y
dxdy +

∫
C(y)dy + E(x)

(40.20)

Is there a natural way to merge these so that ψ can be expressed more symmetrically in terms
of both coordinates? Looking at eq. (40.20) I am led to guess that its possible to combine these
into a single equation expressing ψ in terms of both A1 and A2. One way to do so is perhaps just
to average the two as in

ψ = α

"
∂A2

∂x
dydx + (1 − α)

"
∂A1

∂y
dxdy +

∫
C(y)dy + E(x) +

∫
B(x)dx + D(y)

(40.21)

But that seems pretty arbitrary. Perhaps that is the point?
FIXME: work some examples.
FIXME: look at more than the R2 case.

40.2.2 Zero divergence implies curl solution

Theorem was

If ∇ ·D = 0

there is a C
such that D = ∇ ×C

As above, if D = ∇ ×C, then we have

∇ ·D = ∇ · (∇ ×C) (40.22)

and this has already been shown to be zero. So the problem becomes find C given D.
Also, as before an equivalent generalized (or de-generalized) problem can be expressed.
That is

∇ ·D = 〈∇D〉
= 〈∇(∇ ×C)〉

= 〈∇ − i(∇∧C)〉

= −〈i∇ · (∇∧C)〉 − 〈i∇∧ (∇∧C)〉

= −〈i∇ · (∇∧C)〉

(40.23)
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So if ∇ ·D it is also true that ∇ · (∇∧C) = 0
Thus the (de)generalized theorem to prove is

If ∇ · D = 0

there is a C

such that D = ∇∧C

In the R3 case, to prove the original theorem we want a bivector D = −iD, and seek a vector
C such that D = ∇∧C (D = −i(∇∧C)).

∇ · D = ∇ · (∇∧C)

= (σk∂k) · (σi ∧σ j∂iC j)

= σk · (σi ∧σ j)∂k∂iC j

= (σ jδki −σiδk j)∂k∂iC j

= σ j∂i∂iC j −σ
i∂ j∂iC j

= σ j∂i(∂iC j − ∂ jCi)

(40.24)

If this is to equal zero we must have the following constraint on C

∂iiC j = ∂i jCi (40.25)

If the following equality was also true

∂iC j = ∂ jCi (40.26)

Then this would also work, but would also mean D equals zero so that is not an interesting
solution. So, we must go back to eq. (40.25) and solve for Ck in terms of D.

Suppose we have D explicitly in terms of coordinates

D = Di jσ
i ∧σ j

=
∑
i< j

(Di j − D ji)σi ∧σ j (40.27)

compare this to ∇∧C

C = (∂iC j)σi ∧σ j

=
∑
i< j

(∂iC j − ∂ jCi)σi ∧σ j (40.28)
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With the identity

∂iC j = Di j (40.29)

Equation (40.25) becomes

∂i jCi = ∂iDi j

=⇒

∂ jCi = Di j + αi j(xk,i)

(40.30)

Where αi j(xk,i) is some function of all the xk , xi.
Integrating once more we have

Ci =

∫ (
Di j + αi j(xk,i)

)
dx j + βi j(xk, j) (40.31)



41
WA S P RO F E S S O R D M I T R E V S K Y R I G H T A B O U T I N S I S T I N G T H E
L A P L AC I A N I S N OT G E N E R A L LY ∇ · ∇

41.1 dedication

To all tyrannical old Professors driven to cruelty by an unending barrage of increasingly ill
prepared students.

41.2 motivation

The text [5] has an excellent general derivation of a number of forms of the gradient, divergence,
curl and Laplacian.

This is actually done, not starting with the usual Cartesian forms, but more general defini-
tions.

(grad φ ) i = l i m
d s i→ 0

φ ( q i + d q i ) − φ ( q i )
d s i

div V = l i m
∆ τ→ 0

1
∆ τ

∫
σ

V · dσ

(curl V ) · n = l i m
∆σ→ 0

1
∆σ

∮
λ

V · d λ

Laplacian φ = div(grad φ ) .

(41.1)

These are then shown to imply the usual Cartesian definitions, plus provide the means to
calculate the general relationships in whatever coordinate system you like. All in all one can
not beat this approach, and I am not going to try to replicate it, because I can not improve it in
any way by doing so.

Given that, what do I have to say on this topic? Well, way way back in first year electricity
and magnetism, my dictator of a prof, the intimidating but diminutive Dmitrevsky, yelled at
us repeatedly that one cannot just dot the gradient to form the Laplacian. As far as he was
concerned one can only say

Laplacian φ = div(grad φ ) , (41.2)

317
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and never never never, the busted way

Laplacian φ = (∇ · ∇ )φ . (41.3)

Because “this only works in Cartesian coordinates”. He probably backed up this assertion
with a heartwarming and encouraging statement like “back in the days when University of
Toronto was a real school you would have learned this in kindergarten”.

This detail is actually something that has bugged me ever since, because my assumption was
that, provided one was careful, why would a change to an alternate coordinate system matter?
The gradient is still the gradient, so it seems to me that this ought to be a general way to calculate
things.

Here we explore the validity of the dictatorial comments of Prof Dmitrevsky. The key to
reconciling intuition and his statement turns out to lie with the fact that one has to let the
gradient operate on the unit vectors in the non Cartesian representation as well as the partials,
something that was not clear as a first year student. Provided that this is done, the plain old dot
product procedure yields the expected results.

This exploration will utilize a two dimensional space as a starting point, transforming from
Cartesian to polar form representation. I will also utilize a geometric algebra representation of
the polar unit vectors.

41.3 the gradient in polar form

Lets start off with a calculation of the gradient in polar form starting with the Cartesian form.
Writing ∂x = ∂/∂x, ∂y = ∂/∂y, ∂r = ∂/∂r, and ∂θ = ∂/∂θ, we want to map

∇ = e1∂1 + e2∂2 =
[
e1 e2

] ∂1

∂2

 , (41.4)

into the same form using r̂, θ̂, ∂r, and ∂θ. With i = e1e2 we have

e1

e2

 = eiθ

r̂
θ̂

 . (41.5)

Next we need to do a chain rule expansion of the partial operators to change variables. In
matrix form that is

 ∂∂x
∂
∂y

 =

 ∂r
∂x

∂θ
∂x

∂r
∂y

∂θ
∂y


 ∂∂r
∂
∂θ

 . (41.6)
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To calculate these partials we drop back to coordinates

x2 + y2 = r2

y
x

= tan θ
x
y

= cot θ.

(41.7)

From this we calculate

∂r
∂x

= cos θ

∂r
∂y

= sin θ

1
r cos θ

=
∂θ

∂y
1

cos2 θ

1
r sin θ

= −
∂θ

∂x
1

sin2 θ
,

(41.8)

for

 ∂∂x
∂
∂y

 =

cos θ − sin θ/r

sin θ cos θ/r


 ∂∂r
∂
∂θ

 . (41.9)

We can now write down the gradient in polar form, prior to final simplification

∇ = eiθ
[
r̂ θ̂

] cos θ − sin θ/r

sin θ cos θ/r


 ∂∂r
∂
∂θ

 . (41.10)

Observe that we can factor a unit vector

[
r̂ θ̂

]
= r̂

[
1 i

]
=

[
i 1

]
θ̂ (41.11)

so the 1, 1 element of the matrix product in the interior is

[
r̂ θ̂

] cos θ

sin θ

 = r̂eiθ = e−iθr̂. (41.12)



320 was professor dmitrevsky right about insisting the laplacian is not generally ∇ · ∇

Similarly, the 1, 2 element of the matrix product in the interior is

[
r̂ θ̂

] − sin θ/r

cos θ/r

 =
1
r

e−iθθ̂. (41.13)

The exponentials cancel nicely, leaving after a final multiplication with the polar form for the
gradient

∇ = r̂∂r + θ̂
1
r
∂θ (41.14)

That was a fun way to get the result, although we could have just looked it up. We want to
use this now to calculate the Laplacian.

41.4 polar form laplacian for the plane

We are now ready to look at the Laplacian. First let us do it the first year electricity and mag-
netism course way. We look up the formula for polar form divergence, the one we were supposed
to have memorized in kindergarten, and find it to be

div A = ∂rAr +
1
r

Ar +
1
r
∂θAθ (41.15)

We can now apply this to the gradient vector in polar form which has components ∇r = ∂r,
and ∇θ = (1/r)∂θ, and get

div grad = ∂rr +
1
r
∂r +

1
r
∂θθ (41.16)

This is the expected result, and what we should get by performing ∇ ·∇ in polar form. Now,
let us do it the wrong way, dotting our gradient with itself.

∇ ·∇ =

(
∂r,

1
r
∂θ

)
·

(
∂r,

1
r
∂θ

)
= ∂rr +

1
r
∂θ

(
1
r
∂θ

)
= ∂rr +

1
r2 ∂θθ

(41.17)
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This is wrong! So is Dmitrevsky right that this procedure is flawed, or do you spot the mis-
take? I have also cruelly written this out in a way that obscures the error and highlights the
source of the confusion.

The problem is that our unit vectors are functions, and they must also be included in the
application of our partials. Using the coordinate polar form without explicitly putting in the
unit vectors is how we go wrong. Here is the right way

∇ ·∇ =

(
r̂∂r + θ̂

1
r
∂θ

)
·

(
r̂∂r + θ̂

1
r
∂θ

)
= r̂ · ∂r (r̂∂r) + r̂ · ∂r

(
θ̂

1
r
∂θ

)
+ θ̂ ·

1
r
∂θ (r̂∂r) + θ̂ ·

1
r
∂θ

(
θ̂

1
r
∂θ

) (41.18)

Now we need the derivatives of our unit vectors. The ∂r derivatives are zero since these have
no radial dependence, but we do have θ partials

∂θr̂ = ∂θ
(
e1eiθ

)
= e1e1e2eiθ

= e2eiθ

= θ̂,

(41.19)

and

∂θθ̂ = ∂θ
(
e2eiθ

)
= e2e1e2eiθ

= −e1eiθ

= −r̂.

(41.20)

(One should be able to get the same results if these unit vectors were written out in full as
r̂ = e1 cos θ+ e2 sin θ, and θ̂ = e2 cos θ− e1 sin θ, instead of using the obscure geometric algebra
quaterionic rotation exponential operators.)

Having calculated these partials we now have

(∇ ·∇) = ∂rr +
1
r
∂r +

1
r2 ∂θθ (41.21)

Exactly what it should be, and what we got with the coordinate form of the divergence oper-
ator when applying the “Laplacian equals the divergence of the gradient” rule blindly. We see
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that the expectation that ∇ · ∇ is the Laplacian in more than the Cartesian coordinate system
is not invalid, but that care is required to apply the chain rule to all functions. We also see that
expressing a vector in coordinate form when the basis vectors are position dependent is also a
path to danger.

Is this anything that our electricity and magnetism prof did not know? Unlikely. Is this some-
thing that our prof felt that could not be explained to a mob of first year students? Probably.
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D E R I VAT I O N O F T H E S P H E R I C A L P O L A R L A P L AC I A N

42.1 motivation

In 41 was a Geometric Algebra derivation of the 2D polar Laplacian by squaring the gradient.
In 35 was a factorization of the spherical polar unit vectors in a tidy compact form. Here both
these ideas are utilized to derive the spherical polar form for the Laplacian, an operation that is
strictly algebraic (squaring the gradient) provided we operate on the unit vectors correctly.

42.2 our rotation multivector

Our starting point is a pair of rotations. We rotate first in the x, y plane by φ

x→ x′ = R̃φxRφ
i ≡ e1e2

Rφ = eiφ/2

(42.1a)

Then apply a rotation in the e3 ∧ (R̃φe1Rφ) = R̃φe3e1Rφ plane

x′ → x′′ = R̃θx′Rθ
Rθ = eR̃φe3e1Rφθ/2 = R̃φee3e1θ/2Rφ

(42.2a)

The composition of rotations now gives us

x→ x′′ = R̃θR̃φxRφRθ = R̃xR

R = RφRθ = ee3e1θ/2ee1e2φ/2.
(42.3)

42.3 expressions for the unit vectors

The unit vectors in the rotated frame can now be calculated. With I = e1e2e3 we can calculate

φ̂ = R̃e2R

r̂ = R̃e3R

θ̂ = R̃e1R

(42.4a)
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Performing these we get

φ̂ = e−e1e2φ/2e−e3e1θ/2e2ee3e1θ/2ee1e2φ/2

= e2eiφ,
(42.5)

and

r̂ = e−e1e2φ/2e−e3e1θ/2e3ee3e1θ/2ee1e2φ/2

= e−e1e2φ/2(e3 cos θ + e1 sin θ)ee1e2φ/2

= e3 cos θ + e1 sin θee1e2φ

= e3(cos θ + e3e1 sin θee1e2φ)

= e3eIφ̂θ,

(42.6)

and

θ̂ = e−e1e2φ/2e−e3e1θ/2e1ee3e1θ/2ee1e2φ/2

= e−e1e2φ/2(e1 cos θ − e3 sin θ)ee1e2φ/2

= e1 cos θee1e2φ/2 − e3 sin θ

= iφ̂ cos θ − e3 sin θ

= iφ̂(cos θ + φ̂ie3 sin θ)

= iφ̂eIφ̂θ.

(42.7)

Summarizing these are

φ̂ = e2eiφ

r̂ = e3eIφ̂θ

θ̂ = iφ̂eIφ̂θ.

(42.8a)
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42.4 derivatives of the unit vectors

We will need the partials. Most of these can be computed from eq. (42.8) by inspection, and are

∂rφ̂ = 0

∂rr̂ = 0

∂rθ̂ = 0

∂θφ̂ = 0

∂θr̂ = r̂Iφ̂

∂θθ̂ = θ̂Iφ̂

∂φφ̂ = φ̂i

∂φr̂ = φ̂ sin θ

∂φθ̂ = φ̂ cos θ

(42.9a)

42.5 expanding the laplacian

We note that the line element is ds = dr + rdθ + r sin θdφ, so our gradient in spherical coordi-
nates is

∇ = r̂∂r +
θ̂

r
∂θ +

φ̂

r sin θ
∂φ. (42.10)

We can now evaluate the Laplacian

∇
2 =

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
. (42.11)

Evaluating these one set at a time we have

r̂∂r ·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
= ∂rr, (42.12)

and

1
r
θ̂∂θ ·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
=

1
r

〈
θ̂

(
r̂Iφ̂∂r + r̂∂θr +

θ̂

r
∂θθ +

1
r
θ̂Iφ̂∂θ + φ̂∂θ

1
r sin θ

∂φ

)〉
=

1
r
∂r +

1
r2 ∂θθ,
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(42.13)

and

φ̂

r sin θ
∂φ ·

(
r̂∂r +

θ̂

r
∂θ +

φ̂

r sin θ
∂φ

)
=

1
r sin θ

〈
φ̂

(
φ̂ sin θ∂r + r̂∂φr + φ̂ cos θ

1
r
∂θ +

θ̂

r
∂φθ + φ̂i

1
r sin θ

∂φ + φ̂
1

r sin θ
∂φφ

)〉
=

1
r
∂r +

cot θ
r2 ∂θ +

1
r2 sin2 θ

∂φφ

(42.14)

Summing these we have

∇
2 = ∂rr +

2
r
∂r +

1
r2 ∂θθ +

cot θ
r2 ∂θ +

1
r2 sin2 θ

∂φφ (42.15)

This is often written with a chain rule trick to consolidate the r and θ partials

∇
2Ψ =

1
r
∂rr(rΨ) +

1
r2 sin θ

∂θ (sin θ∂θΨ) +
1

r2 sin2 θ
∂ψψΨ (42.16)

It is simple to verify that this is identical to eq. (42.15).



43
TA N G E N T P L A N E S A N D N O R M A L S I N T H R E E A N D F O U R
D I M E N S I O N S

43.1 motivation

I was reviewing the method of Lagrange in my old first year calculus book [38] and found that
I needed a review of some of the geometry ideas associated with the gradient (that it is normal
to the surface). The approach in the text used 3D level surfaces f (x, y, z) = c, which is general
but not the most intuitive.

If we define a surface in the simpler explicit form z = f (x, y), then how would you show this
normal property? Here we explore this in 3D and 4D, using geometric and wedge products to
express the tangent planes and tangent volumes respectively.

In the 4D approach, with a vector x defined by coordinates xµ and basis {γµ} so that

(43.1)x = γµxµ,

the reciprocal basis γµ is defined implicitly by the dot product relations

(43.2)γµ · γν = δµν.

Assuming such a basis makes the result general enough that the 4D (or a trivial generalization
to N dimensions) holds for both Euclidean spaces as well as mixed metric (i.e. Minkowski)
spaces, and avoids having to detail the specific metric in question.

43.2 3d surface

We start by considering fig. 43.1. We wish to determine the bivector for the tangent plane in the
neighborhood of the point p

(43.3)p = (x, y, f (x, y)),

then using a duality transformation (multiplication by the pseudoscalar for the space) deter-
mine the normal vector to that plane at this point. Holding either of the two free parameters
constant, we find the tangent vectors on that surface to be

(43.4a)
p1 =

(
dx, 0,

∂ f
∂x

dx
)

∝

(
1, 0,

∂ f
∂x

)
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Figure 43.1: A portion of a surface in 3D

(43.4b)
p2 =

(
0, dy,

∂ f
∂y

dy
)

∝

(
0, 1,

∂ f
∂y

)
The tangent plane is then

(43.5)

p1 ∧ p2 =

(
1, 0,

∂ f
∂x

)
∧

(
0, 1,

∂ f
∂y

)
=

(
e1 + e3

∂ f
∂x

)
∧

(
e2 + e3

∂ f
∂y

)
= e1e2 + e1e3

∂ f
∂y

+ e3e2
∂ f
∂x
.

We can factor out the pseudoscalar 3D volume element I = e1e2e3, assuming a Euclidean
space for which e2

k = 1. That is

(43.6)p1 ∧ p2 = e1e2e3

(
e3 − e2

∂ f
∂y
− e1

∂ f
∂x

)
Multiplying through by the volume element I we find that the normal to the surface at this

point is

(43.7)
n ∝ −I(p1 ∧ p2)

= e3 − e1
∂ f
∂x
− e2

∂ f
∂y
.
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Observe that we can write this as

n = ∇(z − f (x, y)). (43.8)

Let’s see how this works in 4D, so that we know how to handle the Minkowski spaces we
find in special relativity.

43.3 4d surface

Now, let’s move up to one additional direction, with

(43.9)x3 = f (x0, x1, x2).

the differential of this is

dx3 =

2∑
k=0

∂ f
∂xk dxk =

2∑
k=0

∂k f dxk. (43.10)

We are going to look at the 3-surface in the neighborhood of the point

p =
(
x0, x1, x2, x3

)
, (43.11)

so that the tangent vectors in the neighborhood of this point are in the span of

dp =

x0, x1, x2,

2∑
k=0

∂kdxk

 . (43.12)

In particular, in each of the directions we have

p0 ∝ (1, 0, 0, d0 f ) (43.13a)

p1 ∝ (0, 1, 0, d1 f ) (43.13b)

p2 ∝ (0, 0, 1, d2 f ) (43.13c)
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Our tangent volume in this neighborhood is

(43.14)
p0 ∧ p1 ∧ p2 = (γ0 + γ3∂0 f ) ∧ (γ1 + γ3∂1 f ) ∧ (γ2 + γ3∂2 f )

= (γ0γ1 + γ0γ3∂1 f + γ3γ1∂0 f ) ∧ (γ2 + γ3∂2 f )
= γ012 − γ023∂1 f + γ123∂0 f + γ013∂2 f .

Here the shorthand γi jk = γiγ jγk has been used. Can we factor out a 4D pseudoscalar from
this and end up with a coherent result? We have

γ0123γ
3 = γ012 (43.15a)

γ0123γ
1 = γ023 (43.15b)

γ0123γ
0 = −γ123 (43.15c)

γ0123γ
2 = −γ013. (43.15d)

This gives us

d3 p = p0 ∧ p1 ∧ p2 = γ0123
(
γ3 − γ1∂1 f − γ0∂0 f − γ2∂2 f

)
. (43.16)

With the usual 4d gradient definition (sum implied)

(43.17)∇ = γµ∂µ,

we have

(43.18)
∇x3 = γµ∂µx3

= γµδµ
3

= γ3,

so we can write

(43.19)d3 p = γ0123∇
(
x3 − f (x0, x1, x2)

)
,

so, finally, the “normal” to this surface volume element at this point is
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n = ∇
(
x3 − f (x0, x1, x2)

)
. (43.20)

This is just like the 3D Euclidean result, with the exception that we need to look at the dual
of a 3-volume “surface” instead of our normal 2D surface.

It may seem curious that we had to specify an Euclidean metric for the 3D case, but did not
here. That doesn’t mean this is a metric free result. Instead, the metric choice is built into the
definition of the gradient eq. (43.17) and its associated reciprocal basis. For example with a 1, 3
metric where γ2

0 = 1, γ2
k = −1, we have γ0 = γ0 and γk = −γk.
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The subject of differential forms is one way to obtain an understanding of how to apply Stokes
theorem to higher dimensional spaces, non-Euclidean metrics, and curvilinear coordinate sys-
tems. The formalism of differential forms requires reexpressing physical quantities as “forms”.
A notable example, as given in [13], introduces a two-form for the Faraday field

(44.1)α =
(
E1dx1 + E2dx2 + E3dx3

)
∧ (cdt) +

(
H1dx2 ∧ dx3H2dx3 ∧ dx1H3dx1 ∧ dx2

)
.

With a metric for which (cdt, cdt) = −1, and a cooresponding notion of duality (*), Maxwell’s
equations for freespace become

dα = 0

d∗α = 0.
(44.2)

These are equivalent to the usual pair of tensor equations

∂iFi j = 0

εi jkl∂ jFkl = 0
, (44.3)

or the Geometric Algebra equation

(44.4)∇F = 0.

An aspect of differential forms that I found unintuitive, is that all physical quantities have to
be expressed as forms, even when we have no pressing desire to integrate them. It also seemed
to me that it ought to be possible to express volume and area elements in parameterized spaces
directly as wedge products. For example, given a two parameter surface of all the points that
can be traced out on x(u, v), we can express the (oriented) area of a patch of that surface directly
as

(44.5)dA =

(
du
∂x
∂u

)
∧

(
dv
∂x
∂v

)
.

With such a capability is the abstract notion of a form really required? Can we stick with the
vector notation that we are comfortable with, perhaps just generalizing slightly? How would
something like Stokes theorem, a basic tool needed to tackle so many problems in electromag-
netism, be expressed so that it acted on vectors directly?

An answer to this question was found in Denker’s straight wire treatment [8], which states
that the geometric algebra formulation of Stokes theorem has the form

∫
S
∇∧ F =

∫
∂S

F. (44.6)
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This looks simple enough, but there are some important details left out. In particular the
grades do not match, so there must be some sort of implied projection or dot product opera-
tions too. We also need to understand how to express the hypervolume and hypersurfaces when
evaluating these integrals, especially when we want to use curvilinear coordinates.

If one restricts attention to the special case where the dimension of the integration volume
also equaled the dimension of the vector space, so that the grade of the curl matches the grade
of the space (i.e. integration of a two form

∫
d2x · (∇∧ f) in a two dimensional space), then

some of those important details are not too hard to work out.
To treat a more general case, such as the same two form

∫
d2x · (∇∧ f) in a space of dimension

greater than two, we need to introduce the notion of tangent space. That concept can also be
found in differential forms, but can also be expressed directly in vector algebra. Suppose, for
example, that x(u, v,w) parameterizes a subspace, the the tangent space at the point of evaluation
is the space that is spanned by {∂x/∂u, ∂x/∂v, ∂x/∂w}. Stokes theorem is expressed not in terms
of the gradient ∇, but the projection of the gradient onto the tangent space, which will be
denoted by ∂ and called the vector derivative. The concept of tangent space and and vector
derivative are covered thoroughly in [31], which also introduces Stokes theorem as a special
case of a more fundamental theorem for integration of geometric algebraic objects.

The objective of this chapter is to detail the Geometric algebra form of Stokes theorem, and
not the fundamental theorem of geometric calculus. We wish to cover the generalization of
Stokes theorem to higher dimensional spaces and non-Euclidean metrics (i.e. especially those
used for special relativity and electromagnetism), and understanding how to properly deal with
curvilinear coordinates. This generalization has the form

Theorem 44.1: Stokes’ Theorem

For blades F ∈
∧s, and m volume element dkx, s < k,

∫
V

dkx · (∂∧ F) =

∫
∂V

dk−1x · F.

Here the volume integral is over a m dimensional surface (manifold), ∂ is the projection
of the gradient onto the tangent space of the manifold, and ∂V indicates integration over
the boundary of V .

It takes some work to give this more concrete meaning. I will attempt to do so in a gradual
fashion, and provide a number of examples that illustrate some of the relevant details.
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44.1 curvilinear coordinates

A finite vector space, not necessarily Euclidean, with basis {e1, e2, · · ·} will be assumed to be
the generator of the geometric algebra. A dual or reciprocal basis

{
e1, e2, · · ·

}
for this basis can

be calculated, defined by the property

ei · e j = δi
j. (44.7)

This is an Euclidean space when ei = ei,∀i.
For our purposes a manifold can be loosely defined as a parameterized surface. For example,

a 2D manifold can be considered a surface in an n dimensional vector space, parameterized by
two variables

x = x(a, b) = x(u1, u2). (44.8)

Note that the indices here do not represent exponentiation. We can construct a basis for the
manifold as

xi =
∂x
∂ui . (44.9)

On the manifold we can calculate a reciprocal basis
{
xi
}
, defined by requiring, at each point

on the surface

xi · x j = δi
j. (44.10)

Associated implicitly with this basis is a curvilinear coordinate representation defined by the
projection operation

x = xixi, (44.11)

(sums over mixed indices are implied). These coordinates can be calculated by taking dot
products with the reciprocal frame vectors

(44.12)
x · xi = x jx j · xi

= x jδ j
i

= xi.
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In this document all coordinates are with respect to a specific curvilinear basis , and not with
respect to the standard basis {ei} or its dual basis unless otherwise noted.

Similar to the usual notation for derivatives with respect to the standard basis coordinates we
form a lower index partial derivative operator

(44.13)
∂

∂ui ≡ ∂i,

so that when the complete vector space is spanned by {xi} the gradient has the curvilinear
representation

(44.14)∇ = xi ∂

∂ui .

When the basis {xi} does not span the space, the projection of the gradient onto the tangent
space at the point of evaluation is

∂ = xi∂i =
∑

i

xi
∂

∂ui . (44.15)

This is called the vector derivative.

44.2 green’s theorem

Given a two parameter (u, v) surface parameterization, the curvilinear coordinate representation
of a vector f has the form

(44.16)f = fuxu + fvxv + f⊥x⊥.

We assume that the vector space is of dimension two or greater but otherwise unrestricted,
and need not have an Euclidean basis. Here f⊥x⊥ denotes the rejection of f from the tangent
space at the point of evaluation. Green’s theorem relates the integral around a closed curve to
an “area” integral on that surface

Theorem 44.2: Green’s Theorem

�
f · dl =

" (
−
∂ fu
∂v

+
∂ fv
∂u

)
dudv
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Figure 44.1: Infinitesimal loop integral

Following the arguments used in [39] for Stokes theorem in three dimensions, we first evalu-
ate the loop integral along the differential element of the surface at the point x(u0, v0) evaluated
over the range (du, dv), as shown in the infinitesimal loop of fig. 44.1.

Over the infinitesimal area, the loop integral decomposes into

(44.17)
�

f · dl =

∫
f · dx1 +

∫
f · dx2 +

∫
f · dx3 +

∫
f · dx4,

where the differentials along the curve are

(44.18)

dx1 =
∂x
∂u

∣∣∣∣∣
v=v0

du

dx2 =
∂x
∂v

∣∣∣∣∣
u=u0+du

dv

dx3 = −
∂x
∂u

∣∣∣∣∣
v=v0+dv

du

dx4 = −
∂x
∂v

∣∣∣∣∣
u=u0

dv.

It is assumed that the parameterization change (du, dv) is small enough that this loop integral
can be considered planar (regardless of the dimension of the vector space). Making use of the
fact that x⊥ · xα = 0 for α ∈ {u, v}, the loop integral is�

f · dl =

∫ (
fuxu + fvxv + f⊥x⊥

)
·(xu(u, v0)du−xu(u, v0 +dv)du+xv(u0 +du, v)dv−xv(u0, v)dv)

=

∫
fu(u, v0)du − fu(u, v0 + dv)du + fv(u0 + du, v)dv − fv(u0, v)dv

(44.19)

With the distances being infinitesimal, these differences can be rewritten as partial differen-
tials
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(44.20)
�

f · dl =

" (
−
∂ fu
∂v

+
∂ fv
∂u

)
dudv.

We can now sum over a larger area as in fig. 44.2

Figure 44.2: Sum of infinitesimal loops

All the opposing oriented loop elements cancel, so the integral around the complete boundary
of the surface x(u, v) is given by the u, v area integral of the partials difference.

We will see that Green’s theorem is a special case of the Stokes theorem. This observation
will also provide a geometric interpretation of the right hand side area integral of theorem 44.2,
and allow for a coordinate free representation.

Special case: An important special case of Green’s theorem is for a Euclidean two dimen-
sional space where the vector function is

(44.21)f = Pe1 + Qe2.

Here Green’s theorem takes the form

�
Pdx + Qdy =

" (
∂Q
∂x
−
∂P
∂y

)
dxdy. (44.22)

44.3 stokes theorem , two volume vector field

Having examined the right hand side of theorem 44.1 for the very simplest geometric object f,
let’s look at the right hand side, the area integral in more detail. We restrict our attention for
now to vectors f still defined by eq. (44.16).

First we need to assign a meaning to d2x. By this, we mean the wedge products of the two
differential elements. With
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(44.23)dxi = dui ∂x
∂ui

= duixi,

that area element is

d2x = dx1 ∧ dx2 = du1du2x1 ∧ x2. (44.24)

This is the oriented area element that lies in the tangent plane at the point of evaluation, and
has the magnitude of the area of that segment of the surface, as depicted in fig. 44.3.

Figure 44.3: Oriented area element tiling of a surface

Observe that we have no requirement to introduce a normal to the surface to describe the
direction of the plane. The wedge product provides the information about the orientation of the
place in the space, even when the vector space that our vector lies in has dimension greater than
three.

Proceeding with the expansion of the dot product of the area element with the curl, using ??,
??, and ??, and a scalar selection operation, we have
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(44.25)

d2x · (∂ ∧ f) =
〈
d2x (∂ ∧ f)

〉
=

〈
d2x

1
2

(
→

∂f − f
←

∂
)〉

=
1
2

〈
d2x

(
xi (∂if) − (∂if) xi

)〉
=

1
2

〈
(∂if) d2xxi − (∂if) xid2x

〉
=

〈
(∂if)

(
d2x · xi

)〉
= ∂if ·

(
d2x · xi

)
.

Let’s proceed to expand the inner dot product

(44.26)

d2x · xi = du1du2 (x1 ∧ x2) · xi

= du1du2
(
x2 · xix1 − x1 · xix2

)
= du1du2

(
δ2

ix1 − δ1
ix2

)
.

The complete curl term is thus

(44.27)d2x · (∂ ∧ f) = du1du2
(
∂f
∂u2 · x1 −

∂f
∂u1 · x2

)
This almost has the form of eq. (44.20), although that is not immediately obvious. Working

backwards, using the shorthand u = u1, v = u2, we can show that this coordinate representation
can be eliminated

(44.28)

−dudv
(
∂ fv
∂u
−
∂ fu
∂v

)
= dudv

(
∂

∂v
(f · xu) −

∂

∂u
(f · xv)

)
= dudv

(
∂f
∂v
· xu −

∂f
∂u
· xv + f ·

(
∂xu

∂v
−
∂xv

∂u

))
= dudv

(
∂f
∂v
· xu −

∂f
∂u
· xv + f ·

(
∂2x
∂v∂u

−
∂2x
∂u∂v

))
= dudv

(
∂f
∂v
· xu −

∂f
∂u
· xv

)
= d2x · (∂ ∧ f) .

This relates the two parameter surface integral of the curl to the loop integral over its bound-
ary
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∫
d2x · (∂∧ f) =


f · dl. (44.29)

This is the very simplest special case of Stokes theorem. When written in the general form of
Stokes theorem 44.1

∫
A

d2x · (∂∧ f) =

∫
∂A

d1x · f =

∫
∂A

(dx1 − dx2) · f, (44.30)

we must remember (the ∂A is to remind us of this) that it is implied that both the vector f and
the differential elements are evaluated on the boundaries of the integration ranges respectively.
A more exact statement is

∫
∂A

d1x · f =

∫
f · dx1|∆u2 − f · dx2|∆u1 =

∫
f1|∆u2du1 − f2|∆u1du2. (44.31)

Expanded out in full this is

∫
f · dx1|u2(1) − f · dx1|u2(0) + f · dx2|u1(0) − f · dx2|u1(1), (44.32)

which can be cross checked against fig. 44.4 to demonstrate that this specifies a clockwise
orientation. For the surface with oriented area dx1 ∧ dx2, the clockwise loop is designated with
line elements (1)-(4), we see that the contributions around this loop (in boxes) match eq. (44.32).

Example 44.1: Green’s theorem, a 2D Cartesian parameterization for a Euclidean space

For a Cartesian 2D Euclidean parameterization of a vector field and the integration space,
Stokes theorem should be equivalent to Green’s theorem eq. (44.22). Let’s expand both
sides of eq. (44.29) independently to verify equality. The parameterization is

(44.33)x(x, y) = xe1 + ye2.

Here the dual basis is the basis, and the projection onto the tangent space is just the
gradient

∂ = ∇ = e1
∂

∂x
+ e2

∂

∂y
. (44.34)
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Figure 44.4: Clockwise loop

The volume element is an area weighted pseudoscalar for the space

d2x = dxdy
∂x
∂x
∧
∂x
∂y

= dxdye1e2, (44.35)

and the curl of a vector f = f1e1 + f2e2 is

(44.36)
∂ ∧ f =

(
e1
∂

∂x
+ e2

∂

∂y

)
∧ ( f1e1 + f2e2)

= e1e2

(
∂ f2
∂x
−
∂ f1
∂y

)
.

So, the LHS of Stokes theorem takes the coordinate form

(44.37)
∫

d2x · (∂ ∧ f) =

"
dxdy 〈e1e2e1e2〉

= −1 (
∂ f2
∂x
−
∂ f1
∂y

)
.

For the RHS, following fig. 44.5, we have

(44.38)


f · dx = f2(x0, y)dy + f1(x, y1)dx − f2(x1, y)dy − f1(x, y0)dx

=

∫
dx ( f1(x, y1) − f1(x, y0)) −

∫
dy ( f2(x1, y) − f2(x0, y)) .
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As expected, we can also obtain this by integrating eq. (44.37).

Figure 44.5: Euclidean 2D loop

Example 44.2: Cylindrical parameterization

Let’s now consider a cylindrical parameterization of a 4D space with Euclidean metric
+ + ++ or Minkowski metric + + +−. For such a space let’s do a brute force expansion of
both sides of Stokes theorem to gain some confidence that all is well.

With κ = e3e4, such a space is conveniently parameterized as illustrated in fig. 44.6 as

(44.39)x(ρ, θ, h) = xe1 + ye2 + ρe3eκθ.

Figure 44.6: Cylindrical polar parameterization

Note that the Euclidean case where (e4)
2

= 1 rejection of the non-axial components of
x expands to

(44.40)
(
(x ∧ e1 ∧ e2) · e2

)
· e1 = ρ (e3 cos θ + e4 sin θ) ,

whereas for the Minkowski case where (e4)
2

= −1 we have a hyperbolic expansion

(44.41)
(
(x ∧ e1 ∧ e2) · e2

)
· e1 = ρ (e3 cosh θ + e4 sinh θ) .

Within such a space consider the surface along x = c, y = d, for which the vectors are
parameterized by
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(44.42)x(ρ, θ) = ce1 + de2 + ρe3eκθ.

The tangent space unit vectors are

(44.43)xρ =
∂x
∂ρ

= e3eκθ,

and

(44.44)
xθ =

∂x
∂θ

= ρe3e3e4eκθ

= ρe4eκθ.

Observe that both of these vectors have their origin at the point of evaluation, and aren’t
relative to the absolute origin used to parameterize the complete space.

We wish to compute the volume element for the tangent plane. Noting that e3 and e4

both anticommute with κ we have for a ∈ span {e3, e4}

(44.45)aeκθ = e−κθa,

so

(44.46)
xθ ∧ xρ =

〈
e3eκθρe4eκθ

〉
2

= ρ
〈
e3eκθe−κθe4

〉
2

= ρe3e4.

The tangent space volume element is thus

(44.47)d2x = ρdρdθe3e4.

With the tangent plane vectors both perpendicular we don’t need the general theo-
rem B.6 to compute the reciprocal basis, but can do so by inspection

xρ = e−κθe3, (44.48)
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and

xθ = e−κθe4 1
ρ
. (44.49)

Observe that the latter depends on the metric signature.
The vector derivative, the projection of the gradient on the tangent space, is

(44.50)
∂ = xρ

∂

∂ρ
+ xθ

∂

∂θ

= e−κθ
(
e3∂ρ +

e4

ρ
∂θ

)
.

From this we see that acting with the vector derivative on a scalar radial only dependent
function f (ρ) is a vector function that has a radial direction, whereas the action of the vector
derivative on an azimuthal only dependent function g(θ) is a vector function that has only
an azimuthal direction. The interpretation of the geometric product action of the vector
derivative on a vector function is not as simple since the product will be a multivector.

Expanding the curl in coordinates is messier, but yields in the end when tackled with
sufficient care

(44.51)

∂ ∧ f =

〈
e−κθ

(
e3∂ρ +

e4

ρ
∂θ

) (
��e1x +��e2y + e3eκθ fρ +

e4

ρ
eκθ fθ

)〉
2

=
((((

(((
(((〈

e−κθe3∂ρ
(
e3eκθ fρ

)〉
2

+

〈
��e−κθe3∂ρ

(
e4

ρ
��eκθ fθ

)〉
2

+

〈
e−κθ

e4

ρ
∂θ

(
e3eκθ fρ

)〉
2

+

〈
e−κθ

e4

ρ
∂θ

(
e4

ρ
eκθ fθ

)〉
2

= e3e4
(
−

fθ
ρ2 +

1
ρ
∂ρ fθ −

1
ρ
∂θ fρ

)
+

1
ρ2

〈
e−κθ

(
e4

)2
(e3e4 fθ +�

��∂θ fθ) eκθ
〉

2

= e3e4
(
−

fθ
ρ2 +

1
ρ
∂ρ fθ −

1
ρ
∂θ fρ

)
+

1
ρ2

〈
��e−κθe3e4 fθ��eκθ

〉
2

=
e3e4

ρ

(
∂ρ fθ − ∂θ fρ

)
.

After all this reduction, we can now state in coordinates the LHS of Stokes theorem
explicitly
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(44.52)

∫
d2x · (∂ ∧ f) =

∫
ρdρdθ

〈
e3e4e3e4

〉 1
ρ

(
∂ρ fθ − ∂θ fρ

)
=

∫
dρdθ

(
∂θ fρ − ∂ρ fθ

)
=

∫
dρ fρ

∣∣∣
∆θ −

∫
dθ fθ|∆ρ.

Now compare this to the direct evaluation of the loop integral portion of Stokes theorem.
Expressing this using eq. (44.31), we have the same result

∫
d2x · (∂∧ f) =

∫
fρ
∣∣∣
∆θdρ − fθ|∆ρdθ (44.53)

This example highlights some of the power of Stokes theorem, since the reduction of the
volume element differential form was seen to be quite a chore (and easy to make mistakes
doing.)

Example 44.3: Composition of boost and rotation

Working in a
∧1,3 space with basis {γ0, γ1, γ2, γ3} where (γ0)

2
= 1 and (γk)

2
= −1, k ∈

{1, 2, 3}, an active composition of boost and rotation has the form

x′ = eiα/2x0e−iα/2

x′′ = e− jθ/2x′e jθ/2 , (44.54)

where i is a bivector of a timelike unit vector and perpendicular spacelike unit vector,
and j is a bivector of two perpendicular spacelike unit vectors. For example, i = γ0γ1 and
j = γ1γ2. For such i, j the respective Lorentz transformation matrices are


x0

x1

x2

x3



′

=


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


, (44.55)
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and


x0

x1

x2

x3



′′

=


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1




x0

x1

x2

x3



′

. (44.56)

Let’s calculate the tangent space vectors for this parameterization, assuming that the
particle is at an initial spacetime position of x0. That is

x = e− jθ/2eiα/2x0e−iα/2e jθ/2. (44.57)

To calculate the tangent space vectors for this subspace we note that

∂x′

∂α
=

i
2

x0 − x0
i
2

= i · x0, (44.58)

and

∂x′′

∂θ
= −

j
2

x′ + x′
j
2

= x′ · j. (44.59)

The tangent space vectors are therefore

xα = e− jθ/2 (i · x0) e jθ/2

xθ =
(
eiα/2x0e−iα/2

)
· j.

(44.60)

Continuing a specific example where i = γ0γ1, j = γ1γ2 let’s also pick x0 = γ0, the
spacetime position of a particle at the origin of a frame at that frame’s ct = 1. The tangent
space vectors for the subspace parameterized by this transformation and this initial position
is then reduced to

(44.61)xα = −γ1e jθ

= γ1 sin θ + γ2 cos θ,
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and

(44.62)

xθ =
(
γ0e−iα

)
· j

= (γ0 (coshα − γ0γ1 sinhα)) · (γ1γ2)
= 〈(γ0 coshα − γ1 sinhα) γ1γ2〉1
= γ2 sinhα.

By inspection the dual basis for this parameterization is

xα = γ1e jθ

xθ =
γ2

sinhα

(44.63)

So, Stokes theorem, applied to a spacetime vector f, for this subspace is

∫
dαdθ sinhα sin θ (γ1γ2) ·

((
γ1e jθ∂α +

γ2

sinhα
∂θ

)
∧ f

)
=

∫
dα f · (γ1e jθ)

∣∣∣θ1

θ0
−

∫
dθ f · (γ2 sinhα)

∣∣∣α1

α0
.

(44.64)

Since the point is to avoid the curl integral, we did not actually have to state it explicitly,
nor was there any actual need to calculate the dual basis.

Example 44.4: Dual representation in three dimensions

It’s clear that there is a projective nature to the differential form d2x · (∂∧ f). This projec-
tive nature allows us, in three dimensions, to re-express Stokes theorem using the gradient
instead of the vector derivative, and to utilize the cross product and a normal direction to
the plane.

When we parameterize a normal direction to the tangent space, so that for a 2D tangent
space spanned by curvilinear coordinates x1 and x2 the vector x3 is normal to both, we can
write our vector as

f = f1x1 + f2x2 + f3x3, (44.65)
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and express the orientation of the tangent space area element in terms of a pseudoscalar
that includes this normal direction

x1 ∧ x2 = x3 · (x1 ∧ x2 ∧ x3) = x3 (x1 ∧ x2 ∧ x3) . (44.66)

Inserting this into an expansion of the curl form we have

(44.67)
d2x · (∂ ∧ f) = du1du2

〈
x3 (x1 ∧ x2 ∧ x3)


∑

i=1,2

xi∂i

 ∧ f

〉
= du1du2x3 ·

(
(x1 ∧ x2 ∧ x3) · (∇ ∧ f) − (x1 ∧ x2 ∧ x3) ·

(
x3∂3 ∧ f

))
.

Observe that this last term, the contribution of the component of the gradient perpendic-
ular to the tangent space, has no x3 components

(44.68)

(x1 ∧ x2 ∧ x3) ·
(
x3∂3 ∧ f

)
= (x1 ∧ x2 ∧ x3) ·

(
x3 ∧ ∂3f

)
=

(
(x1 ∧ x2 ∧ x3) · x3

)
· ∂3f

= (x1 ∧ x2) · ∂3f
= x1 (x2 · ∂3f) − x2 (x1 · ∂3f) ,

leaving

(44.69)d2x · (∂ ∧ f) = du1du2x3 · ((x1 ∧ x2 ∧ x3) · (∇ ∧ f)) .

Now scale the normal vector and its dual to have unit norm as follows

x3 = αx̂3

x3 =
1
α

x̂3,
(44.70)

so that for β > 0, the volume element can be

(44.71)x1 ∧ x2 ∧ x̂3 = βI.

This scaling choice is illustrated in fig. 44.7, and represents the “outwards” normal. With
such a scaling choice we have
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Figure 44.7: Outwards normal

(44.72)βdu1du2 = dA,

and almost have the desired cross product representation

(44.73)d2x · (∂ ∧ f) = dAx̂3 · (I · (∇ ∧ f))
= dAx̂3 · (I (∇ ∧ f)) .

With the duality identity a∧ b = I (a × b), we have the traditional 3D representation of
Stokes theorem

∫
d2x · (∂∧ f) = −

∫
dAx̂3 · (∇ × f) =


f · dl. (44.74)

Note that the orientation of the loop integral in the traditional statement of the 3D Stokes
theorem is counterclockwise instead of clockwise, as written here.

44.4 stokes theorem , three variable volume element parameterization

We can restate the identity of theorem 44.1 in an equivalent dot product form.

∫
V

(
dkx · xi

)
· ∂iF =

∫
∂V

dk−1x · F. (44.75)

Here dk−1x =
∑

i dkx · xi, with the implicit assumption that it and the blade F that it is dotted
with, are both evaluated at the end points of integration variable ui that has been integrated
against.

We’ve seen one specific example of this above in the expansions of eq. (44.25), and eq. (44.26),
however, the equivalent result of eq. (44.75), somewhat magically, applies to any degree blade
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and volume element provided the degree of the blade is less than that of the volume element
(i.e. s < k). That magic follows directly from theorem B.1.

As an expositional example, consider a three variable volume element parameterization, and
a vector blade f

(44.76)

d3x · (∂ ∧ f) =
(
d3x · xi

)
· ∂if

= du1du2du3
(
(x1 ∧ x2 ∧ x3) · xi

)
· ∂if

= du1du2du3
(
(x1 ∧ x2) δ3

i − (x1 ∧ x3) δ2
i + (x2 ∧ x3) δ1

i
)
· ∂if

= du1du2du3 ((x1 ∧ x2) · ∂3f − (x1 ∧ x3) · ∂2f + (x2 ∧ x3) · ∂1f) .

It should not be surprising that this has the structure found in the theory of differential forms.
Using the differentials for each of the parameterization “directions”, we can write this dot prod-
uct expansion as

(44.77)d3x · (∂ ∧ f) =
(
du3 (dx1 ∧ dx2) · ∂3f − du2 (dx1 ∧ dx3) · ∂2f + du1 (dx2 ∧ dx3) · ∂1f

)
.

Observe that the sign changes with each element of dx1 ∧ dx2 ∧ dx3 that is skipped. In dif-
ferential forms, the wedge product composition of 1-forms is an abstract quantity. Here the
differentials are just vectors, and their wedge product represents an oriented volume element.
This interpretation is likely available in the theory of differential forms too, but is arguably less
obvious.

As was the case with the loop integral, we expect that the coordinate representation has a
representation that can be expressed as a number of antisymmetric terms. A bit of experi-
mentation shows that such a sum, after dropping the parameter space volume element factor,
is

(44.78)

x1 (−∂2 f3 + ∂3 f2) + x2 (−∂3 f1 + ∂1 f3) + x3 (−∂1 f2 + ∂2 f1)
= x1 (−∂2f · x3 + ∂3f · x2) + x2 (−∂3f · x1 + ∂1f · x3) + x3 (−∂1f · x2 + ∂2f · x1)
= (x1∂3f · x2 − x2∂3f · x1) + (x3∂2f · x1 − x1∂2f · x3) + (x2∂1f · x3 − x3∂1f · x2)
= (x1 ∧ x2) · ∂3f + (x3 ∧ x1) · ∂2f + (x2 ∧ x3) · ∂1f.

Digression

To proceed with the integration, we must again consider an infinitesimal volume element, for
which the partial can be evaluated as the difference of the endpoints, with all else held constant.
For this three variable parameterization, say, (u, v,w), let’s delimit such an infinitesimal volume
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element by the parameterization ranges [u0, u0 + du], [v0, v0 + dv], [w0,w0 + dw]. The integral
is

∫ u0+du

u=u0

∫ v0+dv

v=v0

∫ w0+dw

w=w0

d3x · (∂∧ f) =

∫ u0+du

u=u0

du
∫ v0+dv

v=v0

dv ((xu ∧ xv) · f)
∣∣∣w0+dw
w=w0

−

∫ u0+du

u=u0

du
∫ w0+dw

w=w0

dw ((xu ∧ xw) · f)
∣∣∣v0+dv
v=v0

+

∫ v0+dv

v=v0

dv
∫ w0+dw

w=w0

dw ((xv ∧ xw) · f)
∣∣∣u0+du
u=u0

.

(44.79)

Extending this over the ranges [u0, u0 + ∆u], [v0, v0 + ∆v], [w0,w0 + ∆w], we have proved
Stokes theorem 44.1 for vectors and a three parameter volume element, provided we have a
surface element of the form

(44.80)d2x = (dxu ∧ dxv)
∣∣∣w1

w=w0
− (dxu ∧ dxw)

∣∣∣v1

v=v0
+ (dxv ∧ xw)

∣∣∣u1

u=u0
,

where the evaluation of the dot products with f are also evaluated at the same points.

Example 44.5: Euclidean spherical polar parameterization of 3D subspace

Consider an Euclidean space where a 3D subspace is parameterized using spherical coor-
dinates , as in

x(x, ρ, θ, φ) = e1x + e4ρ exp
(
e4e2ee2e3φθ

)
= (x, ρ sin θ cos φ, ρ sin θ sin φ, ρ cos θ) . (44.81)

The tangent space basis for the subspace situated at some fixed x = x0, is easy to calcu-
late, and is found to be

xρ = (0, sin θ cos φ, sin θ sin φ, cos θ) = e4 exp
(
e4e2ee2e3φθ

)
xθ = ρ (0, cos θ cos φ, cos θ sin φ,− sin θ) = ρe2ee2e3φ exp

(
e4e2ee2e3φθ

)
xφ = ρ (0,− sin θ sin φ, sin θ cos φ, 0) = ρ sin θe3ee2e3φ.

(44.82)

While we can use the general relation of theorem B.7 to compute the reciprocal basis.
That is

a∗ = (b∧ c)
1

a∧ b∧ c
. (44.83)
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However, a naive attempt at applying this without algebraic software is a route that
requires a lot of care, and is easy to make mistakes doing. In this case it is really not
necessary since the tangent space basis only requires scaling to orthonormalize, satisfying
for i, j ∈ {ρ, θ, φ}

xi · x j =


1 0 0

0 ρ2 0

0 0 ρ2 sin2 θ

 . (44.84)

This allows us to read off the dual basis for the tangent volume by inspection

xρ = e4 exp
(
e4e2ee2e3φθ

)
xθ =

1
ρ

e2ee2e3φ exp
(
e4e2ee2e3φθ

)
xφ =

1
ρ sin θ

e3ee2e3φ.

(44.85)

Should we wish to explicitly calculate the curl on the tangent space, we would need
these. The area and volume elements are also messy to calculate manually. This expansion
can be found in the Mathematica notebook sphericalSurfaceAndVolumeElements.nb ,
and is

xθ ∧ xφ = ρ2 sin θ (e4e2 sin θ sin φ + e2e3 cos θ + e3e4 sin θ cos φ)

xφ ∧ xρ = ρ sin θ (−e2e3 sin θ − e2e4 cos θ sin φ + e3e4 cos θ cos φ)

xρ ∧ xθ = −e4ρ (e2 cos φ + e3 sin φ)

xρ ∧ xθ ∧ xφ = e2e3e4ρ
2 sin θ

(44.86)

Those area elements have a Geometric algebra factorization that are perhaps useful

xθ ∧ xφ = −ρ2 sin θe2e3 exp
(
−e4e2ee2e3φθ

)
xφ ∧ xρ = ρ sin θe3e4ee2e3φ exp

(
e4e2ee2e3φθ

)
xρ ∧ xθ = −ρe4e2ee2e3φ

. (44.87)

One of the beauties of Stokes theorem is that we don’t actually have to calculate the
dual basis on the tangent space to proceed with the integration. For that calculation above,



44.4 stokes theorem , three variable volume element parameterization 355

where we had a normal tangent basis, I still used software was used as an aid, so it is clear
that this can generally get pretty messy.

To apply Stokes theorem to a vector field we can use eq. (44.80) to write down the
integral directly

(44.88)

∫
V

d3x · (∂ ∧ f) =

∫
∂V

d2x · f

=

∫ (
xθ ∧ xφ

)
· f

∣∣∣∣ρ1

ρ=ρ0
dθdφ

+

∫ (
xφ ∧ xρ

)
· f

∣∣∣∣θ1

θ=θ0
dφdρ +

∫ (
xρ ∧ xθ

)
· f

∣∣∣∣φ1

φ=φ0
dρdθ.

Observe that eq. (44.88) is a vector valued integral that expands to

∫
(xθ fφ − xφ fθ)

∣∣∣ρ1

ρ=ρ0
dθdφ+

∫
(xφ fρ − xρ fφ)

∣∣∣θ1

θ=θ0
dφdρ+

∫
(xρ fθ − xθ fρ)

∣∣∣φ1

φ=φ0
dρdθ.

(44.89)

This could easily be a difficult integral to evaluate since the vectors xi evaluated at the
endpoints are still functions of two parameters. An easier integral would result from the
application of Stokes theorem to a bivector valued field, say B, for which we have

(44.90)

∫
V

d3x · (∂ ∧ B) =

∫
∂V

d2x · B

=

∫ (
xθ ∧ xφ

)
· B

∣∣∣∣ρ1

ρ=ρ0
dθdφ

+

∫ (
xφ ∧ xρ

)
· B

∣∣∣∣θ1

θ=θ0
dφdρ +

∫ (
xρ ∧ xθ

)
· B

∣∣∣∣φ1

φ=φ0
dρdθ

=

∫
Bφθ

∣∣∣ρ1

ρ=ρ0
dθdφ +

∫
Bρφ

∣∣∣θ1

θ=θ0
dφdρ +

∫
Bθρ

∣∣∣φ1

φ=φ0
dρdθ.

There is a geometric interpretation to these oriented area integrals, especially when writ-
ten out explicitly in terms of the differentials along the parameterization directions. Pulling
out a sign explicitly to match the geometry (as we had to also do for the line integrals in
the two parameter volume element case), we can write this as

∫
∂V

d2x ·B = −

∫
(dxφ ∧ dxθ) · B

∣∣∣ρ1

ρ=ρ0
−

∫
(dxρ ∧ dxφ) · B

∣∣∣θ1

θ=θ0
−

∫
(dxθ ∧ dxρ) · B

∣∣∣φ1

φ=φ0
.

(44.91)
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When written out in this differential form, each of the respective area elements is an
oriented area along one of the faces of the parameterization volume, much like the line in-
tegral that results from a two parameter volume curl integral. This is visualized in fig. 44.8.
In this figure, faces (1) and (3) are “top faces”, those with signs matching the tops of the
evaluation ranges eq. (44.91), whereas face (2) is a bottom face with a sign that is corre-
spondingly reversed.

Figure 44.8: Boundary faces of a spherical parameterization region

Example 44.6: Minkowski hyperbolic-spherical polar parameterization of 3D subspace

Working with a three parameter volume element in a Minkowski space does not change
much. For example in a 4D space with (e4)

2
= −1, we can employ a hyperbolic-spherical

parameterization similar to that used above for the 4D Euclidean space

x(x, ρ, α, φ) = {x, ρ sinhα cos φ, ρ sinhα sin φ, ρ coshα} = e1x + e4ρ exp
(
e4e2ee2e3φα

)
.

(44.92)

This has tangent space basis elements

xρ = sinhα (cos φe2 + sin φe3) + coshαe4 = e4 exp
(
e4e2ee2e3φα

)
xα = ρ coshα (cos φe2 + sin φe3) + ρ sinhαe4 = ρe2ee2e3φ exp

(
−e4e2ee2e3φα

)
xφ = ρ sinhα (e3 cos φ − e2 sin φ) = ρ sinhαe3ee2e3φ.

(44.93)
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This is a normal basis, but again not orthonormal. Specifically, for i, j ∈ {ρ, θ, φ}we have

xi · x j =


−1 0 0

0 ρ2 0

0 0 ρ2 sinh2 α

 , (44.94)

where we see that the radial vector xρ is timelike. We can form the dual basis again by
inspection

xρ = −e4 exp
(
e4e2ee2e3φα

)
xα =

1
ρ

e2ee2e3φ exp
(
−e4e2ee2e3φα

)
xφ =

1
ρ sinhα

e3ee2e3φ.

(44.95)

The area elements are

xα ∧ xφ = ρ2 sinhα (−e4e3 sinhα cos φ + coshαe2e3 + sinhα sin φe2e4)

xφ ∧ xρ = ρ sinhα (−e2e3 sinhα − e2e4 coshα sin φ + coshα cos φe3e4)

xρ ∧ xα = −e4ρ (cos φe2 + sin φe3) ,

(44.96)

or

xα ∧ xφ = ρ2 sinhαe2e3 exp
(
e4e2e−e2e3φα

)
xφ ∧ xρ = ρ sinhαe3e4ee2e3φ exp

(
e4e2ee2e3φα

)
xρ ∧ xα = −e4e2ρee2e3φ.

(44.97)

The volume element also reduces nicely, and is

xρ ∧ xα ∧ xφ = e2e3e4ρ
2 sinhα. (44.98)

The area and volume element reductions were once again messy, done in software us-
ing sphericalSurfaceAndVolumeElementsMinkowski.nb . However, we really only need
eq. (44.93) to perform the Stokes integration.
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44.5 stokes theorem , four variable volume element parameterization

Volume elements for up to four parameters are likely of physical interest, with the four volume
elements of interest for relativistic physics in

∧3,1 spaces. For example, we may wish to use a
parameterization u1 = x, u2 = y, u3 = z, u4 = τ = ct, with a four volume

(44.99)d4x = dxx ∧ dxy ∧ dxz ∧ dxτ,

We follow the same procedure to calculate the corresponding boundary surface “area” ele-
ment (with dimensions of volume in this case). This is

d4x · (∂ ∧ f) =
(
d4x · xi

)
· ∂if

= du1du2du3du4
(
(x1 ∧ x2 ∧ x3 ∧ x4) · xi

)
· ∂if

= du1du2du3du4
(
(x1 ∧ x2

∧ x3) δ4
i − (x1 ∧ x2 ∧ x4) δ3

i + (x1 ∧ x3 ∧ x4) δ2
i − (x2 ∧ x3 ∧ x4) δ1

i
)
· ∂if

= du1du2du3du4 ((x1 ∧ x2 ∧ x3) · ∂4f
− (x1 ∧ x2 ∧ x4) · ∂3f + (x1 ∧ x3 ∧ x4) · ∂2f − (x2 ∧ x3 ∧ x4) · ∂1f) .

(44.100)

Our boundary value surface element is therefore

(44.101)d3x = x1 ∧ x2 ∧ x3 − x1 ∧ x2 ∧ x4 + x1 ∧ x3 ∧ x4 − x2 ∧ x3 ∧ x4.

where it is implied that this (and the dot products with f) are evaluated on the boundaries of
the integration ranges of the omitted index. This same boundary form can be used for vector,
bivector and trivector variations of Stokes theorem.

44.6 duality and its relation to the pseudoscalar .

Looking to eq. (B.24) of theorem B.6, and scaling the wedge product a ∧ b by its absolute
magnitude, we can express duality using that scaled bivector as a pseudoscalar for the plane
that spans {a,b}. Let’s introduce a subscript notation for such scaled blades

(44.102)Iab =
a ∧ b
|a ∧ b|

.

This allows us to express the unit vector in the direction of a∗ as

â∗ = b̂
|a∧ b|
a∧ b

= b̂
1

Iab
. (44.103)
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Following the pattern of eq. (B.24), it is clear how to express the dual vectors for higher
dimensional subspaces. For example

or for the unit vector in the direction of a∗,

â∗ = Ibc
1

Iabc
.

44.7 divergence theorem .

When the curl integral is a scalar result we are able to apply duality relationships to obtain the
divergence theorem for the corresponding space. We will be able to show that a relationship of
the following form holds

∫
V

dV∇ · f =

∫
∂V

dAin̂i · f. (44.104)

Here f is a vector, n̂i is normal to the boundary surface, and dAi is the area of this bounding
surface element. We wish to quantify these more precisely, especially because the orientation of
the normal vectors are metric dependent. Working a few specific examples will show the pattern
nicely, but it is helpful to first consider some aspects of the general case.

First note that, for a scalar Stokes integral we are integrating the vector derivative curl of
a blade F ∈

∧k−1 over a k-parameter volume element. Because the dimension of the space
matches the number of parameters, the projection of the gradient onto the tangent space is
exactly that gradient

∫
V

dkx · (∂∧ F) =

∫
V

dkx · (∇∧ F). (44.105)

Multiplication of F by the pseudoscalar will always produce a vector. With the introduction
of such a dual vector, as in

(44.106)F = If,

Stokes theorem takes the form

(44.107)
∫

V
dkx · 〈∇If〉k =

∫
∂V

〈
dk−1xIf

〉
,

or

(44.108)
∫

V

〈
dkx∇If

〉
=

∫
∂V

(
dk−1xI

)
· f,
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where we will see that the vector dk−1xI can roughly be characterized as a normal to the
boundary surface. Using primes to indicate the scope of the action of the gradient, cyclic per-
mutation within the scalar selection operator can be used to factor out the pseudoscalar

(44.109)

∫
V

〈
dkx∇If

〉
=

∫
V

〈
f′dkx∇′I

〉
=

∫
V

〈
f′dkx∇′

〉
k
I

=

∫
V

(−1)k+1dkx (∇ · f) I

= (−1)k+1I2
∫

V
dV (∇ · f) .

The second last step uses theorem B.8, and the last writes dkx = I2
∣∣∣dkx

∣∣∣ = I2dV , where we
have assumed (without loss of generality) that dkx has the same orientation as the pseudoscalar
for the space. We also assume that the parameterization is non-degenerate over the integration
volume (i.e. no dxi = 0), so the sign of this product cannot change.

Let’s now return to the normal vector dk−1xI. With dk−1ui = du1du2 · · · dui−1dui+1 · · · duk (the
i indexed differential omitted), and Iab···c = (xa ∧ xb ∧ · · · ∧ xc)/|xa ∧ xb ∧ · · · ∧ xc|, we have

dk−1xI = dk−1ui (x1 ∧ x2 ∧ · · · ∧ xk) · xiI

= I12···(k−1)I|dx1 ∧ dx2 ∧ · · · ∧ dxk−1|

− I1···(k−2)kI|dx1 ∧ · · · ∧ dxk−2 ∧ dxk| + · · ·

(44.110)

We’ve seen in eq. (44.103) and theorem B.7 that the dual of vector a with respect to the unit
pseudoscalar Ib···cd in a subspace spanned by {a, · · · c,d} is

â∗ = Ib···cd
1

Ia···cd
, (44.111)

or

â∗I2
a···cd = Ib···cd. (44.112)

This allows us to write

dk−1xI = I2
∑

i

x̂idA′i (44.113)
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where dA′i = ±dAi, and dAi is the area of the boundary area element normal to xi. Note that
the I2 term will now cancel cleanly from both sides of the divergence equation, taking both the
metric and the orientation specific dependencies with it.

This leaves us with

∫
V

dV∇ · f = (−1)k+1
∫
∂V

dA′ix̂i · f. (44.114)

To spell out the details, we have to be very careful with the signs. However, that is a job best
left for specific examples.

Example 44.7: 2D divergence theorem

Let’s start back at

(44.115)
∫

A

〈
d2x∇If

〉
=

∫
∂A

(
d1xI

)
· f.

On the left our integral can be rewritten as

(44.116)

∫
A

〈
d2x∇If

〉
= −

∫
A

〈
d2xI∇f

〉
= −

∫
A

d2xI (∇ · f)

= −I2
∫

A
dA∇ · f,

where d2x = IdA and we pick the pseudoscalar with the same orientation as the volume
(area in this case) element I = (x1 ∧ x2)/|x1 ∧ x2|.

For the boundary form we have

(44.117)d1x = du2 (x1 ∧ x2) · x1 + du1 (x1 ∧ x2) · x2

= −du2x2 + du1x1.

The duality relations for the tangent space are

x2 = x1
1

x2 ∧ x1

x1 = x2
1

x1 ∧ x2

, (44.118)
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or

x̂2 = −x̂1
1
I

x̂1 = x̂2
1
I

. (44.119)

Back substitution into the line element gives

(44.120)d1x = −du2|x2|x̂2 + du1|x1|x̂1

= −du2|x2|x̂1I − du1|x1|x̂2I.

Writing (no sum) dui|xi| = dsi, we have

(44.121)d1xI = −

(
ds2x̂1 + ds1x̂2

)
I2.

This provides us a divergence and normal relationship, with −I2 terms on each side that
can be canceled. Restoring explicit range evaluation, that is

(44.122)

∫
A

dA∇ · f =

∫
∆u2

ds2x̂1 · f
∣∣∣∣
∆u1

+

∫
∆u1

ds1x̂2 · f
∣∣∣∣
∆u2

=

∫
∆u2

ds2x̂1 · f
∣∣∣∣
u1(1)
−

∫
∆u2

ds2x̂1 · f
∣∣∣∣
u1(0)

+

∫
∆u1

ds1x̂2 · f
∣∣∣∣
u2(0)
−

∫
∆u1

ds1x̂2 · f
∣∣∣∣
u2(0)

.

Let’s consider this graphically for an Euclidean metric as illustrated in fig. 44.9.

Figure 44.9: Normals on area element
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We see that

• along u2(0) the outwards normal is −x̂2,

• along u2(1) the outwards normal is x̂2,

• along u1(0) the outwards normal is −x̂1, and

• along u1(1) the outwards normal is x̂2.

Writing that outwards normal as n̂, we have

∫
A

dA∇ · f =

�
dsn̂ · f. (44.123)

Note that we can use the same algebraic notion of outward normal for non-Euclidean
spaces, although cannot expect the geometry to look anything like that of the figure.

Example 44.8: 3D divergence theorem

As with the 2D example, let’s start back with

(44.124)
∫

V

〈
d3x∇If

〉
=

∫
∂V

(
d2xI

)
· f.

In a 3D space, the pseudoscalar commutes with all grades, so we have

(44.125)

∫
V

〈
d3x∇If

〉
=

∫
V

(
d3xI

)
∇ · f

= I2
∫

V
dV∇ · f,

where d3xI = dVI2, and we have used a pseudoscalar with the same orientation as the
volume element

I = x̂123

x123 = x1 ∧ x2 ∧ x3.
(44.126)

In the boundary integral our dual two form is
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(44.127)
d2xI = du1du2x1 ∧ x2 + du3du1x3 ∧ x1 + du2du3x2 ∧ x3

=

(
dA3x̂12

1
I

+ dA2x̂31
1
I

+ dA1x̂23
1
I

)
I2,

where xi j = xi ∧ x j, and

dA1 = |dx2 ∧ dx3|

dA2 = |dx3 ∧ dx1|

dA3 = |dx1 ∧ dx2|.

(44.128)

Observe that we can do a cyclic permutation of a 3 blade without any change of sign,
for example

x1 ∧ x2 ∧ x3 = −x2 ∧ x1 ∧ x3 = x2 ∧ x3 ∧ x1. (44.129)

Because of this we can write the dual two form as we expressed the normals in theo-
rem B.7

(44.130)

d2xI =

(
dA1x̂23

1
x̂123

+ dA2x̂31
1

x̂231
+ dA3x̂12

1
x̂312

)
I2

=

(
dA1x̂1 + dA2x̂2 + dA3x̂3

)
I2.

We can now state the 3D divergence theorem, canceling out the metric and orientation
dependent term I2 on both sides

∫
V

dV∇ · f =

∫
dAn̂ · f, (44.131)

where (sums implied)

dAn̂ = dAix̂i, (44.132)
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and

n̂|ui=ui(1) = x̂i

n̂|ui=ui(0) = −x̂i
. (44.133)

The outwards normals at the upper integration ranges of a three parameter surface are
depicted in fig. 44.10.

Figure 44.10: Outwards normals on volume at upper integration ranges.

This sign alternation originates with the two form elements (dxi ∧ dx j) · F from the
Stokes boundary integral, which were explicitly evaluated at the endpoints of the integral.
That is, for k , i, j,

∫
∂V

(dxi ∧ dx j) · F ≡
∫

∆ui

∫
∆u j

((dxi ∧ dx j) · F)
∣∣∣
uk=uk(1) − ((dxi ∧ dx j) · F)

∣∣∣
uk=uk(0)

(44.134)

In the context of the divergence theorem, this means that we are implicitly requiring the
dot products x̂k · f to be evaluated specifically at the end points of the integration where
uk = uk(1), uk = uk(0), accounting for the alternation of sign required to describe the
normals as uniformly outwards.

Example 44.9: 4D divergence theorem

Applying Stokes theorem to a trivector T = If in the 4D case we find
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(44.135)−I2
∫

V
d4x∇ · f =

∫
∂V

(
d3xI

)
· f.

Here the pseudoscalar has been picked to have the same orientation as the hypervolume
element d4x = Id4x. Writing xi j···k = xi ∧ x j ∧ · · · xk the dual of the three form is

d3xI =
(
du1du2du3x123 − du1du2du4x124 + du1du3du4x134 − du2du3du4x234

)
I

=
(
dA123x̂123 − dA124x̂124 + dA134x̂134 − dA234x̂234

)
I

=

(
dA123x̂123

1
x̂1234

− dA124x̂124
1

x̂1234
+ dA134x̂134

1
x̂1234

− dA234x̂234
1

x̂1234

)
I2

= −

(
dA123x̂123

1
x̂4123

+ dA124x̂124
1

x̂3412
+ dA134x̂134

1
x̂2341

+ dA234x̂234
1

x̂1234

)
I2

= −

(
dA123x̂123

1
x̂4123

+ dA124x̂412
1

x̂3412
+ dA134x̂341

1
x̂2341

+ dA234x̂234
1

x̂1234

)
I2

= −

(
dA123x̂4 + dA124x̂3 + dA134x̂2 + dA234x̂1

)
I2

(44.136)

Here, we’ve written

(44.137)dAi jk =
∣∣∣dxi ∧ dx j ∧ dxk

∣∣∣.
Observe that the dual representation nicely removes the alternation of sign that we had

in the Stokes theorem boundary integral, since each alternation of the wedged vectors in
the pseudoscalar changes the sign once.

As before, we define the outwards normals as n̂ = ±x̂i on the upper and lower integration
ranges respectively. The scalar area elements on these faces can be written in a dual form

dA4 = dA123

dA3 = dA124

dA2 = dA134

dA1 = dA234

, (44.138)

so that the 4D divergence theorem looks just like the 2D and 3D cases

∫
V

d4x∇ · f =

∫
∂V

d3xn̂ · f. (44.139)
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Here we define the volume scaled normal as

d3xn̂ = dAix̂i. (44.140)

As before, we have made use of the implicit fact that the three form (and it’s dot product
with f) was evaluated on the boundaries of the integration region, with a toggling of sign
on the lower limit of that evaluation that is now reflected in what we have defined as the
outwards normal.

We also obtain explicit instructions from this formalism how to compute the “outwards”
normal for this surface in a 4D space (unit scaling of the dual basis elements), something
that we cannot compute using any sort of geometrical intuition. For free we’ve obtained a
result that applies to both Euclidean and Minkowski (or other non-Euclidean) spaces.

44.8 volume integral coordinate representations

It may be useful to formulate the curl integrals in tensor form. For vectors f, and bivectors B,
the coordinate representations of those differential forms (exercise 44.1) are

d2x · (∂∧ f) = −d2uεab∂a fb (44.141a)

d3x · (∂∧ f) = −d3uεabcxa∂b fc (44.141b)

d4x · (∂∧ f) = −
1
2

d4uεabcdxa ∧ xb∂c fd (44.141c)

d3x · (∂∧ B) = −
1
2

d3uεabc∂aBbc (44.141d)

d4x · (∂∧ B) = −
1
2

d4uεabcdxa∂bBcd (44.141e)

d4x · (∂∧ T ) = −d4u (∂4T123 − ∂3T124 + ∂2T134 − ∂1T234) . (44.141f)
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Here the bivector B and trivector T is expressed in terms of their curvilinear components on
the tangent space

B =
1
2

xi ∧ x jBi j + B⊥ (44.142a)

T =
1
3!

xi ∧ x j ∧ xkTi jk + T⊥, (44.142b)

where

Bi j = x j · (xi · B) = −B ji. (44.143a)

Ti jk = xk · (x j · (xi · B)) . (44.143b)

For the trivector components are also antisymmetric, changing sign with any interchange of
indices.

Note that eq. (44.141d) and eq. (44.141f) appear much different on the surface, but both have
the same structure. This can be seen by writing for former as

(44.144)d3x · (∂ ∧ B) = −d3u (∂1B23 + ∂2B31 + ∂3B12)
= −d3u (∂3B12 − ∂2B13 + ∂1B23) .

In both of these we have an alternation of sign, where the tensor index skips one of the volume
element indices is sequence. We’ve seen in the 4D divergence theorem that this alternation of
sign can be related to a duality transformation.

In integral form (no sum over indexes i in dui terms), these are

∫
d2x · (∂∧ f) = −εab

∫
dub fb

∣∣∣
∆ua (44.145a)

∫
d3x · (∂∧ f) = −εabc

∫
duaduc xa fc|∆ub (44.145b)

∫
d4x · (∂∧ f) = −

1
2
εabcd

∫
duadubdud xa ∧ xb fd |∆uc (44.145c)
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∫
d3x · (∂∧ B) = −

1
2
εabc

∫
dubduc Bbc|∆ua (44.145d)

∫
d4x · (∂∧ B) = −

1
2
εabcd

∫
duaducdud xaBcd |∆ub (44.145e)

∫
d4x · (∂∧ T ) = −

∫ (
du1du2du3 T123|∆u4 − du1du2du4 T124|∆u3 + du1du3du4 T134|∆u2 − du2du3du4 T234|∆u1

)
.

(44.145f)

Of these, I suspect that only eq. (44.145a) and eq. (44.145d) are of use.

44.9 final remarks

Because we have used curvilinear coordinates from the get go, we have arrived naturally at a for-
mulation that works for both Euclidean and non-Euclidean geometries, and have demonstrated
that Stokes (and the divergence theorem) holds regardless of the geometry or the parameteriza-
tion. We also know explicitly how to formulate both theorems for any parameterization that we
choose, something much more valuable than knowledge that this is possible.

For the divergence theorem we have introduced the concept of outwards normal (for example
in 3D, eq. (44.133)), which still holds for non-Euclidean geometries. We may not be able to form
intuitive geometrical interpretations for these normals, but do have an algebraic description of
them.

44.10 problems

Exercise 44.1 Expand volume elements in coordinates
Show that the coordinate representation for the volume element dotted with the curl can be
represented as a sum of antisymmetric terms. That is

1. Prove eq. (44.141a)

2. Prove eq. (44.141b)

3. Prove eq. (44.141c)

4. Prove eq. (44.141d)

5. Prove eq. (44.141e)

6. Prove eq. (44.141f)
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45
A N G U L A R V E L O C I T Y A N D AC C E L E R AT I O N ( AG A I N )

A more coherent derivation of angular velocity and acceleration than my initial attempt while
first learning geometric algebra.

45.1 angular velocity

The goal is to take first and second derivatives of a vector expressed radially:

r = rr̂. (45.1)

The velocity is the derivative of our position vector, which in terms of radial components is:

v = r′ = r′r̂ + rr̂′. (45.2)

We can also calculate the projection and rejection of the velocity by multiplication by 1 = r̂2,
and expanding this product in an alternate order taking advantage of the associativity of the
geometric product:

v = r̂r̂v
= r̂ (r̂ · v + r̂∧ v)

(45.3)

Since r̂∧ (r̂∧ v) = 0, the total velocity in terms of radial components is:

v = r̂ (r̂ · v) + r̂ · (r̂∧ v) . (45.4)

Here the first component above is the projection of the vector in the radial direction:

Projr(v) = r̂ (r̂ · v) (45.5)

This projective term can also be rewritten in terms of magnitude:

(
r2

)′
= 2rr′ = (r · r)′ = 2r · v. (45.6)
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So the magnitude variation can be expressed the radial coordinate of the velocity:

r′ = r̂ · v (45.7)

The remainder is the rejection of the radial component from the velocity, leaving just the part
portion perpendicular to the radial direction.

Rejr(v) = r̂ · (r̂∧ v) (45.8)

It is traditional to introduce an angular velocity vector normal to the plane of rotation that
describes this rejective component using a triple cross product. With the formulation above, one
can see that it is more natural to directly use an angular velocity bivector instead:

Ω =
r∧ v

r2 (45.9)

This bivector encodes the angular velocity as a plane directly. The product of a vector with the
bivector that contains it produces another vector in the plane. That product is a scaled and rotated
by 90 degrees, much like the multiplication by a unit complex imaginary. That is no coincidence
since the square of a bivector is negative and directly encodes this complex structure of an
arbitrarily oriented plane.

Using this angular velocity bivector we have the following radial expression for velocity:

v = r̂r′ + r ·Ω. (45.10)

A little thought will show that r̂′ is also entirely perpendicular to r̂. The r̂ vector describes
a path traced out on the unit sphere, and any variation of that vector must be tangential to the
sphere. It is thus not surprising that we can also express r̂′ using the rejective term of equation
eq. (45.4). Using the angular velocity bivector this is:

r̂′ = r̂ ·Ω. (45.11)

This identity will be useful below for the calculation of angular acceleration.
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45.2 angular acceleration

Next we want the second derivatives of position

a = r′′

= r′′r̂ + 2r′r̂′ + rr̂′′

= r′′r̂ +
1
r

(
r2r̂′

)′ (45.12)

This last step I found scribbled in a margin note in my old mechanics book. It is a trick that
somebody clever once noticed and it simplifies this derivation to use it since it avoids the gen-
eration of a number of terms that will just cancel out anyways after more tedious manipulation
(see examples section).

Expanding just this last derivative:

(
r2r̂′

)′
=

(
r2r̂ ·Ω

)′
= (r̂ · (r∧ v))′

= (r̂ · (r∧ v))′

= r̂′ · (r∧ v) + r̂ · ( v∧ v

= 0

) + r̂ · (r∧ a)

(45.13)

Thus the acceleration is:

a = r′′r̂ + (r ·Ω) ·Ω + r̂ · (r̂∧ a)

Note that the action of taking two successive dot products with the plane bivector Ω just acts
to rotate the vector by 180 degrees (as well as scale it).

One can verify this explicitly using grade selection operators. This allows the total accelera-
tion to be expressed in the final form:

a = r′′r̂ + rΩ2 + r̂ · (r̂∧ a)

Note that the squared bivector Ω2 is a negative scalar, so the first two terms are radially
directed. The last term is perpendicular to the acceleration, in the plane formed by the vector
and its second derivative.
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Given the acceleration, the force on a particle is thus:

F = ma = mr̂r′′ + mrΩ2 +
r
r2 (r∧ p)′ (45.14)

Writing the angular momentum as:

L = r∧ p = mr2Ω (45.15)

the force is thus:

F = ma = mr̂r′′ + mrΩ2 +
1
r
·

dL
dt

(45.16)

The derivative of the angular momentum is called the torque τ, also a bivector:

τ =
dL
dt

(45.17)

When r is constant this has the radial arm times force form that we expect of torque:

τ = r∧
dp
dt

= r∧ F (45.18)

We can also write the equation of motion in terms of torque, in which case we have:

F = mr̂r′′ + mrΩ2 +
1
r
· τ (45.19)

As with all these plane quantities (angular velocity, momentum, acceleration), the torque as
well is a bivector as it is natural to express this as a planar quantity. This makes more sense in
many ways than a cross product, since all of these quantities should be perfectly well defined in
a plane (or in spaces of degree greater than three), whereas the cross product is a strictly three
dimensional entity.

45.3 expressing these using traditional form (cross product)

To compare with traditional results to see if I got things right, remove the geometric algebra
constructs (wedge products and bivector/vector products) in favor of cross products. Do this by
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using the duality relationships, multiplication by the three dimensional pseudoscalar i = e1e2e3,
to convert bivectors to vectors and wedge products to cross and dot products (u∧ v = u × vi).

First define some vector quantities in terms of the corresponding bivectors:

ω = Ω/i =
r∧ v
r2i

=
r × v

r2 (45.20)

r ·Ω =
1
2

(rωi −ωir) = r∧ωi = ω × r (45.21)

Thus the velocity is:

v = r̂r′ +ω × r. (45.22)

In the same way, write the angular momentum vector as the dual of the angular momentum
bivector:

l = L/i = r × p = mr2ω (45.23)

And the torque vector N as the dual of the torque bivector τ

N = τ/i =
dl
dt

=
d
dt

(r × p) (45.24)

The equation of motion for a single particle then becomes:

F = mr̂r′′ −mr‖ω‖2 + N ×
r
r2 (45.25)
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45.4 examples (perhaps future exercises?)

45.4.1 Unit vector derivative

Demonstrate by direct calculation the result of eq. (45.11).

r̂′ =

(r
r

)′
=

r′

r
−

rr′

r2

=
1
r
(v − r̂ (r̂ · v))

=
r̂
r
(r̂v − r̂ · v)

=
r̂
r
(r̂∧ v)

(45.26)

45.4.2 Direct calculation of acceleration

It is more natural to calculate this acceleration directly by taking derivatives of eq. (45.10), but
as noted above this is messier. Here is exactly that calculation for comparison.

Taking second derivatives of the velocity we have:

v′ = a =

(
r̂r′ +

r
r2 (r∧ v)

)′
(45.27)

a = r̂′r′ + r̂r′′ +
r
r2 (v∧ v)

= 0

+
r
r2 (r∧ a) +

(
r̂
r

)′
(r∧ v)

= r̂r′′ + r̂′
(
r′ +

1
r

r∧ v
)
− r′

r̂
r2 (r∧ v) + r̂ (r̂∧ a)

= r̂r′′ +
1
r3 r (r∧ v)

(
r′ +

1
r

r∧ v
)
− r′

r̂
r2 (r∧ v) + r̂ (r̂∧ a)

(45.28)

The r′ terms cancel out, leaving just:

a = r̂r′′ + rΩ2 + r̂ (r̂∧ a) (45.29)
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45.4.3 Expand the omega omega triple product

(r ·Ω) ·Ω =
〈
(r ·Ω)Ω

〉
1

=
1
2

〈
rΩ2

−ΩrΩ
〉

1

=
1
2

rΩ2
−

1
2
〈ΩrΩ〉1

=
1
2

rΩ2 +
1
2
〈rΩΩ〉1

=
1
2

rΩ2 +
1
2

rΩ2

= rΩ2

(45.30)

Also used above implicitly was the following:

rΩ = r ·Ω + r∧Ω

= 0

= −Ω · r = −Ωr (45.31)

(ie: a vector anticommutes with a bivector describing a plane that contains it).





46
C RO S S P RO D U C T R A D I A L D E C O M P O S I T I O N

We have seen how to use GA constructs to perform a radial decomposition of a velocity and
acceleration vector. Is it that much harder to do this with straight vector algebra. This shows
that the answer is no, but we need to at least assume some additional identities that can take
work to separately prove. Here is a quick demonstration for comparision purposes how a radial
decomposition can be performed entirely without any GA usage.

46.1 starting point

Starting point is taking derivatives of:

r = rr̂ (46.1)

v = r′r̂ + rr̂′ (46.2)

It can be shown without any Geometric Algebra use (see for example [38]) that the unit vector
derivative can be expressed using the cross product:

r̂′ =
1
r

(
r̂ ×

dr
dt

)
× r̂. (46.3)

Now, one can express r′ in terms of r as well as follows:

(r · r)′ = 2v · r = 2rr′. (46.4)

Thus the derivative of the vector magnitude is part of a projective term:

r′ = r̂ · v. (46.5)

Putting this together one has velocity in terms of projective and rejective components along
a radial direction:

v = (r̂ · v) r̂ +

(
r̂ ×

dr
dt

)
× r̂. (46.6)
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Now ω = r×v
r2 term is what we call the angular velocity. The magnitude of this is the rate of

change of the angle between the radial arm and the direction of rotation. The direction of this
cross product is normal to the plane of rotation and encodes both the rotational plane and the
direction of the rotation. Putting these together one has the total velocity expressed radially:

v = (r̂ · v) r̂ +ω × r. (46.7)

46.2 acceleration

Acceleration follows in the same fashion.

v′ = ( (r̂ · v) r̂

r′r̂

)′ + ( ω × r

(r × v) × r
r2

)′

= r′′r̂ + r′
ω × r

r
+ (r̂ × a) × r̂ + ( v × v)

= 0

×
r
r2 + (r × v) ×

( r
r2

)′
(46.8)

That last derivative is

( r
r2

)′
=

(
r̂
r

)′
=

r̂′

r
−

r̂r′

r2

=
ω × r

r2 −
r̂r′

r2 ,

(46.9)

and back substitution gives:

v′ = r′′r̂ + r′
ω × r

r
+ (r̂ × a) × r̂ + (r × v) ×

(
ω × r

r2 −
r̂r′

r2

)
. (46.10)

Canceling terms and collecting we have the final result for acceleration expressed radially:

v′ = a = r′′r̂ +ω × (ω × r) + (r̂ × a) × r̂ (46.11)
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Now, applying the angular velocity via cross product takes the vector back to the original
plane, but inverts it. Thus we can write the acceleration completely in terms of the radially
directed components, and the perpendicular component.

a = r′′r̂ − rω2 + (r̂ × a) × r̂ (46.12)

An alternate way to express this is in terms of radial scalar acceleration:

a · r̂ = r′′ − rω2. (46.13)

This is the acceleration analogue of the scalar radial velocity component demonstrated above:

v · r̂ = r′. (46.14)





47
K I N E T I C E N E R G Y I N ROTAT I O NA L F R A M E

47.1 motivation

Fill in the missing details of the rotational Kinetic Energy derivation in [42] and contrast matrix
and GA approach.

Generalize acceleration in terms of rotating frame coordinates without unproved extrapola-
tion that the z axis result of Tong’s paper is good unconditionally (his cross products are kind
of pulled out of a magic hat and this write up will show a couple ways to see where they come
from).

Given coordinates for a point in a rotating frame r′, the coordinate vector for that point in a
rest frame is:

r = Rr′ (47.1)

Where the rotating frame moves according to the following z-axis rotation matrix:

R =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (47.2)

To compute the Lagrangian we want to re-express the kinetic energy of a particle:

K =
1
2

mṙ2 (47.3)

in terms of the rotating frame coordinate system.

47.2 with matrix formulation

The Tong paper does this for a z axis rotation with θ = ωt. Constant angular frequency is
assumed.

First we calculate our position vector in terms of the rotational frame

r = Rr′ (47.4)
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The rest frame velocity is:

ṙ = Ṙθr′ + Rθṙ′. (47.5)

Taking the matrix time derivative we have:

Ṙθ = −θ̇


sin θ cos θ 0

− cos θ sin θ 0

0 0 0

 . (47.6)

Taking magnitudes of the velocity we have three terms

ṙ2 = (Ṙθr′) · (Ṙθr′) + 2(Ṙθr′) · (Rθṙ′) + (Rθṙ′) · (Rθṙ′)

= r′TṘT
θ Ṙθr′ + 2r′TṘT

θRθṙ′ + ṙ′2
(47.7)

We need to calculate all the intermediate matrix products. The last was identity, and the first
is:

ṘT
θ Ṙθ = θ̇2


sin θ − cos θ 0

cos θ sin θ 0

0 0 0




sin θ cos θ 0

− cos θ sin θ 0

0 0 0

 (47.8)

= θ̇2


1 0 0

0 1 0

0 0 0

 (47.9)

This leaves just the mixed term

ṘT
θRθ = −θ̇


sin θ − cos θ 0

cos θ sin θ 0

0 0 0



cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (47.10)

= −θ̇


0 −1 0

1 0 0

0 0 0

 (47.11)
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With θ̇ = ω, the total magnitude of the velocity is thus

ṙ2 = r′Tω2


1 0 0

0 1 0

0 0 0

 r′ − 2ωr′T


0 −1 0

1 0 0

0 0 0

 ṙ′ + ṙ′2 (47.12)

Tong’s paper presents this expanded out in terms of coordinates:

ṙ2 = ω2
(
x′2 + y′2

)
+ 2ω (x′ẏ′ − y′ ẋ′) +

(
ẋ′2 + ẏ′2 + ż′2

)
(47.13)

Or,

ṙ2 = (−ωy′ + ẋ′)2
+ (ωx′ + ẏ′)2

+ ż′2 (47.14)

He also then goes on to show that this can be written, with ω = ωẑ, as

ṙ2 = (ṙ′ +ω × r′)2 (47.15)

The implication here is that this is a valid result for any rotating coordinate system. How to
prove this in the general rotation case, is shown much later in his treatment of rigid bodies.

47.3 with rotor

The equivalent to eq. (47.1) using a rotor is:

r′ = R†rR (47.16)

Where R = exp(iθ/2).
Unlike the matrix formulation above we are free to pick any constant unit bivector for i if we

want to generalize this to any rotational axis, but if we want an equivalent to the above rotation
matrix we just have to take i = e1 ∧ e2.

We need a double sided inversion to get our unprimed vector:

r = Rr′R† (47.17)

and can then take derivatives:

ṙ = Ṙr′R† + Rr′Ṙ† + Rṙ′R† (47.18)
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= iω
1
2

Rr′R† − Rr′R†iω
1
2

+ Rṙ′R† (47.19)

=⇒ ṙ = ωi · (Rr′R†) + Rṙ′R† (47.20)

One can put this into the traditional cross product form by introducing a normal vector for
the rotational axis in the usual way:

Ω = ωi (47.21)

ω = Ω/I3 (47.22)

We can describe the angular velocity by a scaled normal vector (ω) to the rotational plane, or
by a scaled bivector for the plane itself (Ω).

Ω · (Rr′R†) =
〈
ΩRr′R†

〉
1

=
〈
RΩr′R†

〉
1

= RΩ · r′R†

= R(ωI3) · r′R†

= R(ω × r′)R†

(47.23)

Note that here as before this is valid only when the rotational plane orientation is constant (ie:
no wobble), since only then can we assume i, and thus Ω will commute with the rotor R.

Summarizing, we can write our velocity using rotational frame components as:

ṙ = R (ω × r′ + ṙ′)R† (47.24)

Or

ṙ = R (Ω · r′ + ṙ′)R† (47.25)

Using the result above from eq. (47.24), we can calculate the squared magnitude directly:

ṙ2 =
〈
R (ω × r′ + ṙ′)R†R (ω × r′ + ṙ′)R†

〉
=

〈
R(ω × r′ + ṙ′)2R†

〉
= (ω × r′ + ṙ′)2

(47.26)
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We are able to go straight to the end result this way without the mess of sine and cosine terms
in the rotation matrix. This is something that we can expand by components if desired:

ω × r′ + ṙ′ =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

0 0 ω

x′ y′ z′

∣∣∣∣∣∣∣∣∣∣∣ + ṙ′

=


−ωy′ + ẋ′

ωx′ + ẏ′

ż′


(47.27)

This verifies the second part of Tong’s equation 2.19, also consistent with the derivation of
eq. (47.14).

47.4 acceleration in rotating coordinates

Having calculated velocity in terms of rotational frame coordinates, acceleration is the next
logical step.

The starting point is the velocity

ṙ = R(Ω · r′ + ṙ′)R† (47.28)

Taking derivatives we have

r̈ = iω/2ṙ − ṙiω/2 + R
(
Ω̇ · r′ + Ω · ṙ′ + r̈′

)
R† (47.29)

The first two terms are a bivector vector dot product and we can simplify this as follows

iω/2ṙ − ṙiω/2 = Ω/2ṙ − ṙΩ

= Ω · ṙ

=
〈
ΩR(Ω · r′ + ṙ′)R†

〉
1

=
〈
R(Ω(Ω · r′ + ṙ′))R†

〉
1

= R(Ω · (Ω · r′) + Ω · ṙ′)R†

(47.30)

Thus the total acceleration is

r̈ = R
(
Ω · (Ω · r′) + Ω̇ · r′ + 2Ω · ṙ′ + r̈′

)
R† (47.31)
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Or, in terms of cross products, and angular velocity and acceleration vectors ω, and α respec-
tively, this is

r̈ = R (ω × (ω × r′) + α × r′ + 2ω × ṙ′ + r̈′)R† (47.32)

47.5 allow for a wobble in rotational plane

A calculation similar to this can be found in GAFP, but for strictly rigid motion. It does not
take too much to combine the two for a generalized result that expresses the total acceleration
expressed in rotating frame coordinates, but also allowing for general rotation where the frame
rotation and the angular velocity bivector do not have to be coplanar (ie: commute as above).

Since the primes and dots are kind of cumbersome switch to the GAFP notation where the
position of a particle is expressed in terns of a rotational component x and origin translation x0:

y = RxR† + x0 (47.33)

Taking derivatives for velocity

ẏ = ṘxR† + RxṘ† + RẋR† + ẋ0 (47.34)

Now use the same observation that the derivative of RR† = 1 is zero:

d(RR†)
dt

= ṘR† + RṘ† = 0

=⇒ ṘR† = −RṘ† = −
(
ṘR†

)†
(47.35)

Since R has only grade 0 and 2 terms, so does its derivative. Thus the product of the two
has grade 0, 2, and 4 terms, but eq. (47.35) shows that the product ṘR† has a value that is the
negative of its reverse, so it must have only grade 2 terms (the reverse of the grade 0 and 4 terms
would not change sign).

As in eq. (47.20) we want to write Ṙ as a bivector/rotor product and eq. (47.35) gives us a
means to do so. This would have been clearer in GAFP if they had done the simple example
first with the orientation of the rotational plane fixed.

So, write:

ṘR† =
1
2

Ω (47.36)
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Ṙ =
1
2

ΩR (47.37)

Ṙ† = −
1
2

R†Ω (47.38)

(including the 1/2 here is a bit of a cheat ... it is here because having done the calculation on
paper first one sees that it is natural to do so).

With this we can substitute back into eq. (47.34), writing y0 = y − x0 :

ẏ =
1
2

ΩRxR† −
1
2

RxR†Ω + RẋR† + ẋ0

=
1
2
(Ωy−y0Ω) + RẋR† + ẋ0

= Ω · y0 + RẋR† + ẋ0

(47.39)

We also want to pull in this Ω into the rotor as in the fixed orientation case, but cannot use
commutativity this time since the rotor and angular velocity bivector are not necessarily in the
same plane.

This is where GAFP introduces their body angular velocity, which applies an inverse rotation
to the angular velocity.

Let:

Ω = RΩBR† (47.40)

Computing this bivector dot product with y we have

Ω · y0 = (RΩBR†) · (RxR†)

=
〈
RΩBR†RxR†

〉
1

=
〈
RΩBxR†

〉
1

=
〈
R(ΩB · x + ΩB ∧ x)R†

〉
1

= RΩB · xR†

(47.41)

Thus the total velocity is:

ẏ = R(ΩB · x + ẋ)R† + ẋ0 (47.42)
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Thus given any vector x in the rotating frame coordinate system, we have the relationship for
the inertial frame velocity. We can apply this a second time to compute the inertial (rest frame)
acceleration in terms of rotating coordinates. Write v = ΩB · x + ẋ,

ẏ = RvR† + ẋ0

=⇒ ÿ = R(ΩB · v + v̇)R† + ẍ0

v̇ = Ω̇B · x + ΩB · ẋ + ẍ (47.43)

Combining these we have:

ÿ = R(ΩB · (ΩB · x + ẋ) + Ω̇B · x + ΩB · ẋ + ẍ)R† + ẍ0 (47.44)

=⇒ ÿ = R(ΩB · (ΩB · x) + Ω̇B · x + 2ΩB · ẋ + ẍ)R† + ẍ0 (47.45)

This generalizes eq. (47.32), providing the rest frame acceleration in terms of rotational frame
coordinates, with centrifugal acceleration, Euler force acceleration, and Coriolis force acceler-
ation terms that accompany the plain old acceleration term ẍ. The only requirement for the
generality of allowing the orientation of the rotational plane to potentially vary is the use of the
“body angular velocity” ΩB, replacing the angular velocity as seen from the rest frame Ω.

47.5.1 Body angular acceleration in terms of rest frame

Since we know the relationship between the body angular velocity ΩB with the Rotor (rest
frame) angular velocity bivector, for completeness, lets compute the body angular acceleration
bivector Ω̇B in terms of the rest frame angular acceleration Ω̇.

ΩB = R†ΩR (47.46)

=⇒ Ω̇B = Ṙ†ΩR + R†Ω̇R + R†ΩṘ

= −
1
2

R†Ω2R + R†Ω̇R + R†Ω2R
1
2

=
1
2

(
R†Ω2R − R†Ω2R

)
+ R†Ω̇R

= R†Ω̇R

(47.47)

This shows that the body angular acceleration is just an inverse rotation of the rest frame
angular acceleration like the angular velocities are.
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47.6 revisit general rotation using matrices

Having fully calculated velocity and acceleration in terms of rotating frame coordinates, lets go
back and revisit this with matrices and see how one would do the same for a general rotation.

Following GAFP express the rest frame coordinates for a point y in terms of a rotation applied
to a rotating frame position x (this is easier than the mess of primes and dots used in Tong’s
paper). Also omit the origin translation (that can be added in later if desired easily enough)

y = Rx (47.48)

Thus the derivative is:

ẏ = Ṙx + Rẋ. (47.49)

As in the GA case we want to factor this so that we have a rotation applied to a something
that is completely specified in the rotating frame. This is quite easy with matrices, as we just
have to factor out a rotation matrix from Ṙ:

ẏ = RRTṘx + Rẋ

= R
(
RTṘx + ẋ

) (47.50)

This new product RTṘx we have seen above in the special case of z-axis rotation as a cross
product. In the GA general rotation case, we have seen that this as a bivector-vector dot product.
Both of these are fundamentally antisymmetric operations, so we expect this of the matrix
operator too. Verification of this antisymmetry follows in almost the same fashion as the GA
case, by observing that the derivative of an identity matrix I = RTR is zero:

İ = 0 (47.51)

=⇒ ṘTR + RTṘ = 0 (47.52)

=⇒ RTṘ = −ṘTR = −RTṘ
T

(47.53)
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Thus if one writes:

Ω = RTṘ (47.54)

the antisymmetric property of this matrix can be summarized as:

Ω = −ΩT. (47.55)

Let us write out the form of this matrix in the first few dimensions:

• R2

Ω =

0 −a

a 0

 (47.56)

For some a.

• R3

Ω =


0 −a −b

a 0 −c

b c 0

 (47.57)

For some a, b, c.

• R4

Ω =


0 −a −b −d

a 0 −c −e

b c 0 − f

d e f 0


(47.58)

For some a, b, c, d, e, f .
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For RN we have (N2 − N)/2 degrees of freedom. It is noteworthy to observe that this is
exactly the number of basis elements of a bivector. For example, in R4, such a bivector basis is
e12, e13, e14, e23, e24, e34.

For R3 we have three degrees of freedom and because of the antisymmetry can express this
matrix-vector product using the cross product. Let

(a, b, c) = (ω3,−ω2, ω1) (47.59)

One has:

Ωx =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



x1

x2

x3

 =


−ω3x2 +ω2x3

+ω3x1 −ω1x3

−ω2x1 +ω1x2

 = ω × x (47.60)

Summarizing the velocity result we have, using Ω from eq. (47.54):

ẏ = R (Ωx + ẋ) (47.61)

Or, for R3, we can define a body angular velocity vector

ω =


Ω32

Ω13

Ω21

 (47.62)

and thus write the velocity as:

ẏ = R (ω × x + ẋ) (47.63)

This, like the GA result is good for general rotations. Then do not have to be constant rotation
rates, and it allows for arbitrarily oriented as well as wobbly motion of the rotating frame.

As with the GA general velocity calculation, this general form also allows us to calculate the
squared velocity easily, since the rotation matrices will cancel after transposition:

ẏ2 = (R (ω × x + ẋ)) · (R (ω × x + ẋ)) = (ω × x + ẋ)TRTR (ω × x + ẋ) (47.64)

=⇒ ẏ2 = (ω × x + ẋ)2 (47.65)
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47.7 equations of motion from lagrange partials

TBD. Do this using the Rotor formulation. How?



48
P O L A R V E L O C I T Y A N D AC C E L E R AT I O N

48.1 motivation

Have previously worked out the radial velocity and acceleration components a pile of different
ways in 45, 46, 9, 47, 8, and 7.

So, what is a couple more?
When the motion is strictly restricted to a plane we can get away with doing this either in

complex numbers (used in a number of the Tong Lagrangian solutions), or with a polar form
R2 vector (a polar representation I have not seen since High School).

48.2 with complex numbers

Let

z = reiθ (48.1)

So our velocity is

ż = ṙeiθ + irθ̇eiθ (48.2)

and the acceleration is

z̈ = r̈eiθ + iṙθ̇eiθ + iṙθ̇eiθ + irθ̈eiθ − rθ̇2eiθ

= (r̈ − rθ̇2)eiθ + (2ṙθ̇ + rθ̈)ieiθ (48.3)

48.3 plane vector representation

Also can do this with polar vector representation directly (without involving the complexity of
rotation matrices or anything fancy)

r = r

cos θ

sin θ

 (48.4)
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Velocity is then

v = ṙ

cos θ

sin θ

 + rθ̇

− sin θ

cos θ

 (48.5)

and for acceleration we have

a = r̈

cos θ

sin θ

 + ṙθ̇

− sin θ

cos θ

 + ṙθ̇

− sin θ

cos θ

 + rθ̈

− sin θ

cos θ

 − rθ̇2

cos θ

sin θ


= (r̈ − rθ̇2)

cos θ

sin θ

 + (2ṙθ̇ + rθ̈)

− sin θ

cos θ


(48.6)
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G R A D I E N T A N D T E N S O R N OT E S

49.1 motivation

Some notes on tensors filling in assumed details covered in [10].
Conclude with the solution of problem 6.1 to demonstrate the frame independence of the

vector derivative.
Despite being notes associated with a Geometric Algebra text, there is no GA content. Out-

side of the eventual GA application of the gradient as described in this form, the only GA
connection is the fact that the the reciprocal frame vectors can be thought of as a result of a
duality calculation. That connection is not necessary though since one can just as easily define
the reciprocal frame in terms of matrix operations. As an example, for a Euclidean metric the
reciprocal frame vectors are the columns of F(FTF)−1 where the columns of F are the vectors
in question.

These notes may not stand well on their own without the text, at least as learning material.

49.1.1 Raised and lowered indices. Coordinates of vectors with non-orthonormal frames

Let {ei} represent a frame of not necessarily orthonormal basis vectors for a metric space, and
{ei} represent the reciprocal frame.

The reciprocal frame vectors are defined by the relation:

ei · e j = δi
j. (49.1)

Lets compute the coordinates of a vector x in terms of both frames:

x =
∑

α je j =
∑

β je j (49.2)

Forming x · ei, and x · ei respectively solves for the α, and β coefficients

x · ei =
∑

α je j · ei =
∑

α jδ j
i = αi (49.3)

x · ei =
∑

β je j · ei =
∑

β jδi
j = βi (49.4)
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Thus, the reciprocal frame vectors allow for simple determination of coordinates for an arbi-
trary frame. We can summarize this as follows:

x =
∑

(x · ei)ei =
∑

(x · ei)ei (49.5)

Now, for orthonormal frames, where ei = ei we are used to writing:

x =
∑

xiei, (49.6)

however for non-orthonormal frames the convention is to mix raised and lowered indices as
follows:

x =
∑

xiei =
∑

xiei. (49.7)

Where, as demonstrated above these generalized coordinates have the values, xi = x · ei, and
xi = x · ei. This is a strange seeming notation at first especially since most of linear algebra is
done with always lowered (or always upper for some authors) indices. However one quickly
gets used to it, especially after seeing how powerful the reciprocal frame concept is for dealing
with non-orthonormal frames. The alternative is probably the use of matrices and their inverses
to express the same vector decompositions.

49.1.2 Metric tensor

It is customary in tensor formulations of physics to utilize a metric tensor to express the dot
product.

Compute the dot product using the coordinate vectors

x · y =
(∑

xiei
) (∑

y je j
)

=
∑

xiy j (ei · e j) (49.8)

x · y =
(∑

xiei
) (∑

y je j
)

=
∑

xiy j
(
ei · e j

)
(49.9)

Introducing second rank (symmetric) tensors for the dot product pairs ei · e j = gi j, and gi j =

ei · e j we have

x · y =
∑

xiy jgi j =
∑

xiy jgi j =
∑

xiyi =
∑

xiyi (49.10)
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We see that the metric tensor provides a way to specify the dot product in index notation, and
removes the explicit references to the original frame vectors. Mixed indices also removes the
references to the original frame vectors, but additionally eliminates the need for either of the
metric tensors.

Note that it is also common to see Einstein summation convention employed, which omits
the

∑
:

x · y = xiy jgi j = xiy jgi j = xiyi = xiyi (49.11)

Here summation over all matched upper, lower index pairs is implied.

49.1.3 Metric tensor relations to coordinates

Given a coordinate expression of a vector, we dot that with the frame vectors to observe the
relation between coordinates and the metric tensor:

x · ei =
∑

x je j · ei =
∑

x jgi j (49.12)

x · ei =
∑

x je j · ei =
∑

x jgi j (49.13)

The metric tensors can therefore be used be used to express the relations between the upper
and lower index coordinates:

xi =
∑

gi jx j (49.14)

xi =
∑

gi jx j (49.15)

It is therefore apparent that the matrix of the index lowered metric tensor gi j is the inverse of
the matrix for the raised index metric tensor gi j.

Expressed more exactly,

xi =
∑

i j

gi jx j

=
∑
i jk

gi jg jkxk

=
∑

ik

xk

∑
j

gi jg jk

(49.16)
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Since the left and right hand sides are equal for any xi, xk, we have:

δi
j =

∑
m

gimgm j (49.17)

Demonstration of the inverse property required for summation on other set of indices too for
completeness, but since these functions are symmetric, there is no potential that this would have
a “left” or “right” inverse type of action.

49.1.4 Metric tensor as a Jacobian

The relations of equations eq. (49.14), and eq. (49.15) show that the metric tensor can be ex-
pressed in terms of partial derivatives:

∂xi

∂x j = gi j

∂xi

∂x j
= gi j

(49.18)

Therefore the metric tensors can also be expressed as Jacobian matrices (not Jacobian deter-
minants) :

gi j =
∂(x1, · · · , xn)
∂(x1, · · · , xn)

gi j =
∂(x1, · · · , xn)
∂(x1, · · · , xn)

(49.19)

Will this be useful in any way?

49.1.5 Change of basis

To perform a change of basis from one non-orthonormal basis {ei} to a second { fi}, relations
between the sets of vectors are required. Using Greek indices for the f frame, and English for
the e frame, those are:

ei =
∑

f µei · fµ =
∑

fµei · f µ

fα =
∑

ek fα · ek =
∑

ek fα · ek

ei =
∑

f µei · fµ =
∑

fµei · f µ

f α =
∑

ek f α · ek =
∑

ek f α · ek

(49.20)
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Following GAFP we can write the dot product terms as a second order tensors f (ie: matrix
relation) :

ei =
∑

f µ fiµ =
∑

fµ fiµ

fα =
∑

ek fkα =
∑

ek f k
α

ei =
∑

f µ f i
µ =

∑
fµ f iµ

f α =
∑

ek fkα =
∑

ek f kα

(49.21)

Note that all these various tensors are related to each other using the metric tensors for f and
e. FIXME: show example. Also note that using this notation the metric tensors gi j and gαβ are
two completely different linear functions, and careful use of the index conventions are required
to keep these straight.

49.1.6 Inverse relationships

Looking at these relations in pairs, such as

fα =
∑

ek fkα

ei =
∑

fµ f iµ
(49.22)

and

ei =
∑

f µ fiµ

f α =
∑

ek f kα
(49.23)

It is clear that fiα is the inverse of f iα.
To be more precise

fα =
∑

ek fkα

=
∑

fµ f kµ fkα
(49.24)

Thus∑
k

f kβ fkα = δ
β
α (49.25)
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To verify both “left” and “right” inverse properties we also need:

ei =
∑

fµ f iµ

=
∑

ek fkµ f iµ
(49.26)

which shows that summation on the Greek indices also yields an inverse:

∑
µ

fiµ f jµ = δ
j
i (49.27)

There are also inverse relationships for the mixed index tensors above. Specifically,

xα =
∑

xi f αi

=
∑

xβ f i
β f αi

(49.28)

Thus,∑
i

f i
β f αi = δαβ (49.29)

And,

xi =
∑

xβ f i
β

=
∑

x j f βj f i
β

(49.30)

Thus,∑
α

f αj f i
α = δi

j (49.31)

This completely demonstrates the inverse relationship.

49.1.7 Vector derivative

GAFP exercise 6.1. Show that the vector derivative:

∇ =
∑

ei ∂

∂xi (49.32)

is not frame dependent.
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To show this we will need to utilize the chain rule to rewrite the partials in terms of the
alternate frame:

∂

∂xi =
∑ ∂xα

∂xi

∂

∂xα
(49.33)

To evaluate the first partial here, we write the coordinates of a vector in terms of both, and
take dot products:

(∑
xγ fγ

)
· f α =

(∑
xiei

)
· f α (49.34)

xα =
∑

xi fiα (49.35)

∂xα

∂xi = fiα (49.36)

Similar expressions for the other change of basis tensors is also possible, but not required for
this problem.

With this result we have the partial re-expressed in terms of coordinates in the new frame.

∂

∂xi =
∑

fiα
∂

∂xα
(49.37)

Combine this with the alternate contra-variant frame vector as calculated above:

ei =
∑

f µ f i
µ (49.38)

and we have:

∑
i

ei ∂

∂xi =
∑

i

∑
µ

f µ f i
µ


∑
α

fiα
∂

∂xα


=

∑
µα

(
f µ

∂

∂xα

)∑
i

f i
µ fiα

=
∑
µα

(
f µ

∂

∂xα

)
δµ
α

=
∑
α

f α
∂

∂xα

(49.39)
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49.1.8 Why a preference for index upper vector and coordinates in the gradient?

We can express the gradient in terms of index lower variables and vectors too, as follows:

∂

∂xi =
∑ ∂x j

∂xi

∂

∂x j

Employing the coordinate relations we have:∑
xiei · e j = x j =

∑
xiei · e j =

∑
xigi j (49.40)

and can thus calculate the partials:

∂x j

∂xi = gi j, (49.41)

and can use that to do the change of variables to index lower coordinates:

∂

∂xi =
∑

gi j
∂

∂x j

Now we also can write the reciprocal frame vectors:

ei =
∑

e jei · e j =
∑

e jgi j

Thus the gradient is:

∑
i

ei ∂

∂xi =
∑
i jk

e jgi jgik
∂

∂xk

=
∑

jk

(
e j

∂

∂xk

)∑
i

gi jgik

=
∑

jk

(
e j

∂

∂xk

)
δ

j
k

=
∑

i

ei
∂

∂xi

(49.42)

My conclusion is that there is not any preference for the index upper form of the gradient in
GAFP. Both should be equivalent. That said consistency is likely required. FIXME: To truly get
a feel for why index upper is used in this definition one likely needs to step back and look at the
defining directional derivative relation for the gradient.
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I N E RT I A L T E N S O R

[10] derives the angular momentum for rotational motion in the following form

L = R
(∫

x∧ (x ·ΩB)dm
)

R† (50.1)

and calls the integral part, the inertia tensor

I(B) =

∫
x∧ (x ·ΩB)dm (50.2)

which is a linear mapping from bivectors to bivectors. To understand the form of this I found
it helpful to expanding the wedge product part of this explicitly for the R3 case.

Ignoring the sum in this expansion write

f (B) = x∧ (x · B) (50.3)

And writing ei j = eie j introduce a basis

b = {e1I, e2I, e3I} = {e23, e31, e12} (50.4)

for the R3 bivector product space.
Now calculate f (B) for each of the basis vectors

f (e1I) = x∧ (x · e23)

= (x1e1 + x2e2 + x3e3)∧ (x2e3 − x3e2)
(50.5)

Completing this calculation for each of the unit basic bivectors, we have

f (e1I) = (x2
2 + x2

3)e23 − (x1x2)e31 − (x1x3)e12

f (e2I) = −(x1x2)e23 + (x2
1 + x2

3)e31 − (x2x3)e12

f (e3I) = −(x1x3)e23 − (x2x3)e31 + (x2
1 + x2

2)e12

(50.6)
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Observe that taking dot products with (eiI)† will select just the eiI term of the result, so one
can form the matrix of this linear transformation that maps bivectors in basis b to image vectors
also in basis b as follows

[
I(B)

]b

b
=

[
I(eiI) · (e jI)†

]
i j

=

∫ 
x2

2 + x2
3 −x1x2 −x1x3

−x1x2 x2
1 + x2

3 −x2x3

−x1x3 −x2x3 x2
1 + x2

2

dm (50.7)

Here the notation
[
A
]c

b
is borrowed from [6] for the matrix of a linear transformation that

takes one from basis b to c.
Observe that this (R3 specific expansion) can also be written in a more typical tensor notation

with
[
I
]b

b
=

[
Ii j

]
i j

Ii j = I(eiI) · (e jI)† =

∫
(δi jx2 − xix j)dm (50.8)

Where, as usual for tensors, the meaning of the indices and whether summation is required
is implied. In this case the coordinate transformation matrix for this linear transformation has
components Ii j (and no summation).

50.1 orthogonal decomposition of a function mapping a blade to a blade

Arriving at this result without explicit expansion is also possible by observing that an orthonor-
mal decomposition of a function can be written in terms of an orthogonal basis {σi} as follows:

f (B) =
∑

i

( f (B) ·σi) ·
1
σi

(50.9)

The dot product is required since the general product of two bivectors has grade-0, grade-2,
and grade-4 terms (with a similar mix of higher grade terms for k-blades).

Perhaps unobviously since one is not normally used to seeing a scalar-vector dot product,
this formula is not only true for bivectors, but any grade blade, including vectors. To verify this
recall that the general definition of the dot product is the lowest grade term of the geometric
product of two blades. For example with grade i, j blades a, and b respectively the dot product
is:

a · b = 〈ab〉|i− j| (50.10)
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So, for a scalar-vector dot product is just the scalar product of the two

a · x = 〈ax〉1 = ax (50.11)

The inverse in section 50.1 can be removed by reversion, and for a grade-r blade this sum of
projective terms then becomes:

f (B) = (−1)r(r−1)/2 1

|σi|
2

∑
i

( f (B) ·σi) ·σi (50.12)

For an orthonormal basis we have

σiσ
†

i = |σi|
2 = 1 (50.13)

Which allows for a slightly simpler set of projective terms:

f (B) = (−1)r(r−1)/2
∑

i

( f (B) ·σi) ·σi (50.14)

50.2 coordinate transformation matrix for a couple other linear transforma-
tions

Seeing a function of a bivector for the first time is kind of intriguing. We can form the matrix of
such a linear transformation from a basis of the bivector space to the space spanned by function.
For fun, let us calculate that matrix for the basis b above for the following function:

f (B) = e1 ∧ (e2 · B) (50.15)

For this function operating on R3 bivectors we have:

f (e23) = e1 ∧ (e2 · e23) = −e31

f (e31) = e1 ∧ (e2 · e31) = 0

f (e12) = e1 ∧ (e2 · e12) = 0

(50.16)
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So

[
f
]b

b
=


−1 0 0

0 0 0

0 0 0

 (50.17)

For R4 one orthonormal basis is

b = {e12, e13, e14, e23, e24, e34} (50.18)

A basis for the span of f is b′ = {e13, e14}. Like any other coordinate transformation asso-
ciated with a linear transformation we can write the matrix of the transformation that takes a
coordinate vector in one basis into a coordinate vector for the basis for the image:

[
f (x)

]
b′

=
[
f
]b′

b

[
x
]
b

(50.19)

For this function f and these pair of basis bivectors we have:

[
f
]b′

b
=

0 0 0 1 0 0

0 0 0 0 1 0

 (50.20)

50.3 equation 3.126 details

This statement from GAFP deserves expansion (or at least an exercise):

A · (x∧ (x · B)) = 〈Ax(x · B)〉 = 〈(A · x)xB〉 = B · (x∧ (x · A)) (50.21)

Perhaps this is obvious to the author, but was not to me. To clarify this observe the following
product

x(x · B) = x · (x · B) + x∧ (x · B) (50.22)

By writing B = b∧ c we can show that the dot product part of this product is zero:

x · (x · B) = x · ((x · b)c − (x · c)b)

= (x · c)(x · b) − (x · b)(x · c))

= 0

(50.23)
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This provides the justification for the wedge product removal in the text, since one can write

x∧ (x · B) = x(x · B) (50.24)

Although it was not stated in the text section 50.3, can be used to put this inertia product in a
pure dot product form

A† · (x∧ (x · B)) = −〈Ax(x · B)〉

= 〈(x · A − A∧ x)(x · B)〉
(50.25)

The trivector-vector part of this product has only vector and trivector components

(A∧ x)(x · B) = 〈(A∧ x)(x · B)〉1 + 〈(A∧ x)(x · B)〉3 (50.26)

So 〈(A∧ x)(x · B)〉0 = 0, and one can write

A† · (x∧ (x · B)) = (x · A) · (x · B) (50.27)

As pointed out in the text this is symmetric. That can not be more clear than in section 50.3.

50.4 just for fun . general dimension component expansion of inertia tensor
terms

This triple dot product expansion allows for a more direct component expansion of the compo-
nent form of the inertia tensor. There are three general cases to consider.

• The diagonal terms:

(x ·σi) · (x ·σi) = (x ·σi)2 (50.28)

Writing σi = est where s , t, we have

(x · est)2 = ((x · es)et − (x · et)es)2

= x2
s + x2

t − 2xsxtet · es

= x2
s + x2

t

(50.29)
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• Off diagonal terms where basis bivectors have a line of intersection (always true for R3).

Here, ignoring the potential variation in sign, we can write the two basis bivectors as
σi = esi and σ j = eti, where s , t , i. Computing the products we have

(x ·σi) · (x ·σ j) = (x · esi) · (x · eti)

= ((x · es)ei − (x · ei)es) · ((x · et)ei − (x · ei)et)

= (xsei − xies) · (xtei − xiet)

= xsxt

(50.30)

• Off diagonal terms where basis bivectors have no intersection.

An example from R4 are the two bivectors e1 ∧ e2 and e3 ∧ e4

In general, again ignoring the potential variation in sign, we can write the two basis
bivectors as σi = esu and σ j = etv, where s , t , u , v. Computing the products we have

(x ·σi) · (x ·σ j) = (x · esu) · (x · etv)

= ((x · es)eu − (x · eu)es) · ((x · et)ev − (x · ev)et)

= 0

(50.31)

For example, choosing basis σ = {e12, e13, e14, e23, e24, e34} the coordinate transformation
matrix can be written out

[
f
]σ
σ

=



x2
1 + x2

2 x2x3 x2x4 −x1x3 −x1x4 0

x2x3 x2
1 + x2

3 x3x4 x1x2 0 −x1x4

x2x4 x3x4 x2
1 + x2

4 0 x1x2 x1x3

−x1x3 x1x2 0 x2
2 + x2

3 x3x4 −x2x4

−x1x4 0 x1x2 x3x4 x2
1 + x2

4 x2x3

0 −x1x4 x1x3 −x2x4 x2x3 x2
3 + x2

4


(50.32)
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50.5 example calculation . masses in a line

Pick some points on the x-axis, r(i) with masses mi. The (R3) inertia tensor with respect to basis
{eiI}, is

∑
i


0 0 0

0 (r(i)
1 )2 0

0 0 (r(i)
1 )2

mi =
∑

mir2
i


0 0 0

0 1 0

0 0 1

 (50.33)

Observe that in this case the inertia tensor here only has components in the zx and xy planes
(no component in the yz plane that is perpendicular to the line).

50.6 example calculation . masses in a plane

Let x = reiθe1, where i = e1 ∧ e2 be a set of points in the xy plane, and use σ = {σi = eiI} as the
basis for the R3 bivector space.

We need to compute

x ·σi = r(eiθe1) · (eiI)

= r〈eiθe1eiI〉
(50.34)

Calculation of the inertia tensor components has three cases, depending on the value of i

• i = 1

1
r

(x ·σi) = 〈eiθI〉1

= i sin θI

= −e3 sin θ

(50.35)

• i = 2

1
r

(x ·σi) = 〈eiθe1e2I〉1

= −〈eiθe3〉1

= −e3 cos θ

(50.36)
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• i = 3

1
r

(x ·σi) = 〈eiθe1e3(e3e1e2)〉1

= 〈eiθe2〉1

= eiθe2

(50.37)

Thus for i = {1, 2, 3}, the diagonal terms are

(x ·σi)2 = r2{sin2 θ, cos2 θ, 1} (50.38)

and the non-diagonal terms are

(x ·σ1) · (x ·σ2) = r2 sin θ cos θ (50.39)

(x ·σ1) · (x ·σ3) = 0 (50.40)

(x ·σ2) · (x ·σ3) = 0 (50.41)

Thus, with indices implied (r = ri, θ = θi, and m = mi, the inertia tensor is

[
I
]σ
σ

=
∑

mr2


sin2 θ sin θ cos θ 0

sin θ cos θ cos2 θ 0

0 0 1

 (50.42)

It is notable that this can be put into double angle form

[
I
]σ
σ

=
∑

mr2


1
2 (1 − cos 2θ) 1

2 sin 2θ 0
1
2 sin 2θ 1

2 (1 + cos 2θ) 0

0 0 1


=

1
2

∑
mr2

I +


− cos 2θ sin 2θ 0

sin 2θ cos 2θ 0

0 0 1




(50.43)

So if grouping masses along each distinct line in the plane, those components of the inertia
tensor can be thought of as functions of twice the angle. This is natural in terms of a rotor
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interpretation, which is likely possible since each of these groups of masses in a line can be
diagonalized with a rotation.

It can be verified that the following xy plane rotation diagonalizes all the terms of constant
angle. Writing

Rθ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (50.44)

We have

[
I
]σ
σ

=
∑

mr2R−θ


0 0 0

0 1 0

0 0 1

 Rθ (50.45)





51
S AT E L L I T E T R I A N G U L AT I O N OV E R S P H E R E

51.1 motivation and preparation

Was playing around with what is probably traditionally a spherical trig type problem using
geometric algebra (locate satellite position using angle measurements from two well separated
points). Origin of the problem was just me looking at my Feynman Lectures introduction where
there is a diagram illustrating how triangulation could be used to locate "Sputnik" and thought
I had try such a calculation, but in a way that I thought was more realistic.

Figure 51.1: Satellite location by measuring direction from two points

Figure 51.1 illustrates the problem I attempted to solve. Pick two arbitrary points P1, and
P2 on the globe, separated far enough that the curvature of the earth may be a factor. For this
problem it is assumed that the angles to the satellite will be measured concurrently.

Place a fixed reference frame at the center of the earth. In the figure this is shown translated
to the (0, 0) point (equator and prime meridian intersection). I have picked e1 facing east, e2

facing north, and e3 facing outwards from the core.

417



418 satellite triangulation over sphere

Each point Pi can be located by a rotation along the equatorial plane by angle λi (measured
with an east facing orientation (direction of e1), and a rotation ψi towards the north (directed
towards e2).

To identify a point on the surface we translate our (0, 0) reference frame to that point using
the following rotor equation:

Rψ = exp(−e32ψ/2) = cos(ψ/2) − e32 sin(ψ/2) (51.1)

Rλ = exp(−e31λ/2) = cos(λ/2) − e31 sin(λ/2) (51.2)

R(x) = RψRλxR†λR†ψ (51.3)

To verify that I got the sign of these rotations right, I applied them to the unit vectors using a
π/2 rotation. We want the following for the equatorial plane rotation:

Rλ(π/2)


e1

e2

e3

 Rλ(π/2)† =


−e3

e2

e1


And for the northwards rotation:

Rψ(π/2)


e1

e2

e3

 Rψ(π/2)† =


e1

e2

−e3


Verifying this is simple enough using the explicit sine and cosine expansion of the rotors in

eq. (51.1) and eq. (51.2).
Once we have the ability to translate our reference frame to each point on the Earth, we can

use the inverse rotation to translate our measured unit vector to the satellite at that point back to
the reference frame.

Suppose one calculates a local unit vector α′ towards the satellite by measuring direction
cosines in our local reference frame (ie: angle from gravity opposing (up facing) direction, east,
and north directions at that point). Once that is done, that unit vector α in our reference frame
is obtained by inverse rotation:

α = R†λi
R†ψi

α′RψiRλi (51.4)
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The other place we need this rotation for is to calculate the points Pi in our reference from
(treating this now as being at the core of the earth). This is just:

Pi = RψRλAie3R†λR†ψ (51.5)

Where Ai is the altitude (relative to the center of the earth) at the point of interest.

51.2 solution

Solving for the position of the satellite Ps we have:

Ps = a1α1 + P1 = a2α2 + P2 (51.6)

Solution of this follows directly by taking wedge products. Solve for a1 for example, we
wedge with α2 :

a1α1 ∧ α2 + P1 ∧ α2 = a2 α2 ∧ α2

= 0

+ P2 ∧ α2 (51.7)

Provided the points are far enough apart to get distinct αi measurements, then we have:

a1 =
(P2 − P1)∧ α2

α1 ∧ α2
. (51.8)

Thus the position vector from the core of earth reference frame to the satellite is:

Ps =

(
(P2 − P1)∧ α2

α1 ∧ α2

)
α1 + P1 (51.9)

Notice how all the trigonometry is encoded directly in the rotor equations. If one had to
calculate all this using the spherical trigonometry generalized triangle relations I expect that
you would have an ungodly mess of sine and cosines here.

This demonstrates two very distinct applications of the wedge product. The first was to define
an oriented plane, and was used as a generator of rotations (very much like the unit imaginary).
This second application, to solve linear equations takes advantage of a ∧ a = 0 property of
the wedge product. It was convenient as it allowed simple simultaneous solution of the three
equations (one for each component) and two unknowns problem in this particular case.
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51.3 matrix formulation

Instead of solving with the wedge product one could formulate this as a matrix equation:

[
α1 −α2

] a1

a2

 =
[
P2 − P1

]
(51.10)

This highlights the fact that the equations are over-specified, which is more obvious still when
this is written out in component form:


α11 −α21

α12 −α22

α13 −α23


a1

a2

 =


P21 − P11

P22 − P12

P23 − P13

 (51.11)

We have one more equation than we need to actually solve it, and cannot use matrix inversion
directly (Gaussian elimination or a generalized inverse is required).

Recall the figure in the Feynman lectures when the observation points and the satellite are
all in the same plane. For that all that was needed was two angles, whereas we have measured
six for each of the direction cosines used above, so the fact that our equations can include more
info than required to solve the problem is not unexpected.

We could also generalize this, perhaps to remove measurement error, by utilizing more than
two observation points. This will compound the over-specification of the equations, and makes
it clear that we likely want a least squares approach to solve it. Here is an example of the matrix
to solve for three points:


α1 −α2 0

−α1 0 α3

0 α2 −α3



a1

a2

a3

 =


P2 − P1

P1 − P3

P3 − P2

 (51.12)

Since the αi are vectors, this matrix of rotated direction cosines has dimensions 9 by 3 (just
as eq. (51.10) is a 3 by 2 matrix).

51.4 question . order of latitude and longitude rotors?

Looking at a globe, it initially seemed clear to me that these "perpendicular" (abusing the word)
rotations could be applied in either order, but their rotors definitely do not commute, so I assume
that together the non-commutative bits of the rotors "cancel out".
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Question, is it actually true that the end effect of applying these rotors in either order is the
same?

x′ = RψRλxR†λR†ψ = RλRψxR†ψR†λ (51.13)

Attempting to show this is true or false by direct brute force expansion is not productive
(perhaps would be okay with a symbolic GA calculator). However, such a direct expansion of
just the rotor products in either order allows for a comparison:

RψRλ = (cos(ψ/2) − e32 sin(ψ/2))(cos(λ/2) − e31 sin(λ/2))

= cos(ψ/2) cos(λ/2) − e32 sin(ψ/2) cos(λ/2) − e31 cos(ψ/2) sin(λ/2) − e21 sin(ψ/2) sin(λ/2)
(51.14)

RλRψ = (cos(λ/2) − e31 sin(λ/2))(cos(ψ/2) − e32 sin(ψ/2))

= cos(ψ/2) cos(λ/2)

a0

+ −e32 sin(ψ/2) cos(λ/2) − e31 cos(ψ/2) sin(λ/2)

A

+ e21 sin(ψ/2) sin(λ/2)

B

(51.15)

Observe that these are identical except for an inversion of sign of the e21 term. Using the
shorthand above the respective rotations are:

Rλ,ψ(x) = RψRλxR†λR†ψ = (a0 + A − B)x(a0 − A + B) (51.16)

And

Rψ,λ(x) = RλRψxR†ψR†λ = (a0 + A + B)x(a0 − A − B) (51.17)

And this can be used to disprove the general rotation commutativity. We take the difference
between these two rotation results, and see if it can be shown to equal zero. Taking differences,
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also temporarily writing a = a0 + A, and exploiting a grade one filter since the final result must
be a vector we have:

Rλ,ψ(x) − Rψ,λ(x) =
〈
Rλ,ψ(x) − Rψ,λ(x)

〉
1

=
〈
(a − B)x(a† + B) − (a + B)x(a† − B)

〉
1

=
〈
(axa† − BxB− Bxa† + axB) + (−axa† + BxB + axB− Bxa†)

〉
1

=
〈
(−Bxa† + axB) + (+axB− Bxa†)

〉
1

= 2
〈
−Bxa† + axB

〉
1

= 2〈−Bx(a0 − A) + (a0 + A)xB〉1
= 2a0(−Bx + xB) + 2〈BxA + AxB〉1
= 4a0x · B + 2〈BxA + AxB〉1
= 4a0x · B + 2〈B · xA − AB · x〉1 + 2〈B∧ xA + Ax ∧ B〉1
= 4a0x · B + 4(B · x) · A + 2(B∧ x) · A + 2A · (B∧ x)

= 4a0x · B + 4(B · x) · A + 2(B∧ x) · A − 2(B∧ x) · A

= 4a0x · B + 4(B · x) · A

= 4(B · x) · (−a0 + A)

= −4(B · x) · a†

(51.18)

Evaluate this for x = e1 we do not have zero (a vector with e2 and e3 components), and for
x = e2 this difference has e1, and e3 components. However, for x = e3 this is zero. Thus these
rotations only commute when applied to a vector that is completely normal to the sphere. This
is what messes up the intuition. Rotating a point (represented by a vector) in either order works
fine, but rotating a frame located at the surface back to a different point on the surface, and
maintaining the east and north orientations we have to be careful which orientation to use.

So which order is right? It has to be rotate first in the equatorial plane (λ), then the northwards
rotation, where both are great circle rotations.

A numeric confirmation of this is likely prudent.
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52.1 the problem

Want solutions of

∇ 2 f =
∑

k

∂ 2 f
∂ x k

2 = 0 (52.1)

For real f.

52.1.1 One dimension

Here the problem is easy, just integrate twice:

f = c x + d . (52.2)

52.1.2 Two dimensions

For the two dimensional case we want to solve:

∂ 2 f
∂ x 1 2 +

∂ 2 f
∂ x 2 2 = 0 (52.3)

Using separation of variables one can find solutions of the form f = X ( x 1 ) Y ( x 2 ). Differ-
entiating we have:

X ′ ′ Y + X Y ′ ′ = 0 (52.4)

So, for X , 0, and Y , 0:

X ′ ′

X
= −

Y ′ ′

Y
= k 2 (52.5)

423
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=⇒ X = e k x (52.6)

Y = e k i y (52.7)

=⇒ f = XY = ek(x+iy) (52.8)

Here i is anything that squares to -1. Traditionally this is the complex unit imaginary, but we
are also free to use a geometric product unit bivector such as i = e1 ∧ e2 = e1e2 = e12, or i = e21.

With i = e12 for example we have:

f = XY = ek(x+iy) = ek(x+e12y)

= ek(xe1e1+e12y)

= eke1(xe1+e2y)

(52.9)

Writing x =
∑

xiei, all of the following are solutions of the Laplacian

eke1x

exke1

eke2x

exke2

(52.10)

Now there is not anything special about the use of the x and y axis so it is reasonable to expect
that, given any constant vector k, the following may also be solutions to the two dimensional
Laplacian problem

exk = ex·k+x∧k (52.11)

ekx = ex·k−x∧k (52.12)
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52.1.3 Verifying it is a solution

To verify that equations eq. (52.11) and eq. (52.12) are Laplacian solutions, start with taking
the first order partial with one of the coordinates. Since there are conditions where this form of
solution works in RN , a two dimensional Laplacian will not be assumed here.

∂

∂x j
exk (52.13)

This can be evaluated without any restrictions, but introducing the restriction that the bivector
part of xk is coplanar with its derivative simplifies the result considerably. That is introduce a
restriction:

〈
x∧ k

∂x∧ k
∂x j

〉
2

=
〈
x∧ ke j ∧ k

〉
2

= 0 (52.14)

With such a restriction we have

∂

∂x j
exk = e jkexk = exke jk (52.15)

Now, how does one enforce a restriction of this form in general? Some thought will show that
one way to do so is to require that both x and k have only two components. Say, components j,
and m. Then, summing second partials we have:

∑
u= j,m

∂2

∂xu
2 exk = (e jke jk + emkemk) exk

= (e jk(−ke j + 2k · e j) + emk(−kem + 2em · k)) exk

=
(
−2k2 + 2k2

j + 2kmk je jm + 2k2
m + 2k jkmem j

)
exk

=
(
−2k2 + 2k2 + 2k jkm(em j + e jm)

)
exk

= 0

(52.16)

This proves the result, but essentially just says that this form of solution is only valid when
the constant parametrization vector k and x and its variation are restricted to a specific plane.
That result could have been obtained in much simpler ways, but I learned a lot about bivector
geometry in the approach! (not all listed here since it caused serious digressions)
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52.1.4 Solution for an arbitrarily oriented plane

Because the solution above is coordinate free, one would expect that this works for any solution
that is restricted to the plane with bivector i even when those do not line up with any specific pair
of two coordinates. This can be verified by performing a rotational coordinate transformation
of the Laplacian operator, since one can always pick a pair of mutually orthogonal basis vectors
with corresponding coordinate vectors that lie in the plane defined by such a bivector.

Given two arbitrary vectors in the space when both are projected onto the plane with constant
bivector i their product is:

(
x · i

1
i

) (
1
i
i · k

)
= (x · i)(k · i) (52.17)

Thus one can express the general equation for a planar solution to the homogeneous Laplace
equation in the form

exp((x · i)(k · i)) = exp((x · i) · (k · i) + (x · i)∧ (k · i)) (52.18)

52.1.5 Characterization in real numbers

Now that it has been verified that equations eq. (52.11) and eq. (52.12) are solutions of eq. (52.1)
let us characterize this in terms of real numbers.

If x, and k are colinear, the solution has the form

e±x·k (52.19)

(ie: purely hyperbolic solutions).
Whereas with x and k orthogonal we have can employ the unit bivector for the plane spanned

by these vectors i = x∧k
|x∧k| :

e±x∧k = cos|x∧ k| ± i sin|x∧ k| (52.20)

Or:

e±x∧k = cos
(
x∧ k

i

)
± i sin

(
x∧ k

i

)
(52.21)

(ie: purely trigonometric solutions)
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Provided x, and k are not colinear, the wedge product component of the above can be written
in terms of a unit bivector i = x∧k

|x∧k| :

exk = ex·k+x∧k

= ex·k (cos |x∧ k| + i sin |x∧ k|)

= ex·k
(
cos

(
x∧ k

i

)
+ i sin

(
x∧ k

i

)) (52.22)

And, for the reverse:

(exk)† = ekx = ex·k (cos |x∧ k| − i sin (|x∧ k|))

= ex·k
(
cos

(
x∧ k

i

)
− i sin

(
x∧ k

i

)) (52.23)

This exponential however has both scalar and bivector parts, and we are looking for a strictly
scalar result, so we can use linear combinations of the exponential and its reverse to form a
strictly real sum for the x∧ k , 0 cases:

1
2

(
exk + ekx

)
= ex·k cos

(
x∧ k

i

)
1
2i

(
exk − ekx

)
= ex·k sin

x∧ k
i

(52.24)

Also note that further linear combinations (with positive and negative variations of k) can be
taken, so we can combine equations eq. (52.11) and eq. (52.12) into the following real valued,
coordinate free, form:

cosh(x · k) cos
(
x∧ k

i

)
sinh(x · k) cos

(
x∧ k

i

)
cosh(x · k) sin

(
x∧ k

i

)
sinh(x · k) sin

(
x∧ k

i

)
(52.25)

Observe that the ratio x∧k
i is just a scalar determinant

x∧ k
i

= x jkm − xmk j (52.26)
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So one is free to choose k′ = kme j − k jem, in which case the solution takes the alternate form:

cos(x · k′) cosh
(
x∧ k′

i

)
sin(x · k′) cosh

(
x∧ k′

i

)
cos(x · k′) sinh

(
x∧ k′

i

)
sin(x · k′) sinh

(
x∧ k′

i

)
(52.27)

These sets of equations and the exponential form both remove the explicit reference to the
pair of coordinates used in the original restriction

〈
x∧ ke j ∧ k

〉
2

= 0 (52.28)

that was used in the proof that exk was a solution.
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H Y P E R C O M P L E X N U M B E R S A N D S Y M P L E C T I C S T RU C T U R E

53.1 on 4.2 hermitian norms and unitary groups

These are some rather rough notes filling in some details on the treatment of [28].
Expanding equation 4.17

J = ei ∧ fi
a = uiei + vi fi
b = xiei + yi fi
B = a∧ b + (a · J)∧ (b · J)

(53.1)

a∧ b = (uiei + vi fi)∧ (x je j + y j f j)

= uix jei ∧ e j + uiy jei ∧ f j + vix j fi ∧ e j + viy j fi ∧ f j
(53.2)

a · J = uiei · (e j ∧ f j) + vi fi · (e j ∧ f j)

= u j f j − v je j
(53.3)

Search and replace for b · J gives

b · J = xiei · (e j ∧ f j) + yi fi · (e j ∧ f j)

= x j f j − y je j
(53.4)

So we have

(a · J)∧ (b · J) = (ui fi − viei)∧ (x j f j − y je j)

= uix j fi ∧ f j − uiy j fi ∧ e j − vix jei ∧ f j + viy jei ∧ e j
(53.5)

For

a∧ b + (a · J)∧ (b · J) = (uiy j − vix j)(ei ∧ f j − fi ∧ e j) + (uix j + viy j)(ei ∧ e j + fi ∧ f j)

(53.6)
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This shows why the elements were picked as a basis

ei ∧ f j − fi ∧ e j (53.7)

ei ∧ e j + fi ∧ f j (53.8)

The first of which is a multiple of Ji = ei ∧ fi when i = j, and the second of which is zero if
i = j.

53.2 5.1 conservation theorems and flows

equation 5.10 is

ḟ = ẋ · ∇ f = (∇ f ∧∇H) · J (53.9)

This one is not obvious to me. For ḟ we have

ḟ =
∂ f
∂pi

ṗi +
∂ f
∂qi

q̇i +
∂ f
∂t

= 0
(53.10)

compare to

ẋ · ∇ f = ( ṗiei + q̇i fi) · (e j
∂ f
∂p j

+ f j
∂ f
∂q j

)

= ṗi
∂ f
∂pi

+ q̇i
∂ f
∂qi

(53.11)

Okay, this part matches the first part of (5.10). Writing this in terms of the Hamiltonian
relation (5.9) ẋ = ∇H · J we have

ḟ = (∇H · J) · ∇ f

= ∇ f · (∇H · J)
(53.12)

The relation a · (b · (c∧ d)) = (a∧ b) · (c∧ d), can be used here to factor out the J, we have

ḟ = ∇ f · (∇H · J)

= (∇ f ∧∇H) · J
(53.13)
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which completes (5.10).
Also with f = H since H was also specified as having no explicit time dependence, one has

Ḣ = (∇H ∧∇H) · J = 0 · J = 0 (53.14)





54
N E W T O N ’ S M E T H O D F O R I N T E R S E C T I O N O F C U RV E S I N A
P L A N E

54.1 motivation

Reading the blog post Problem solving, artificial intelligence and computational linear algebra
some variations of Newton’s method for finding local minimums and maximums are given.

While I had seen the Hessian matrix eons ago in the context of back propagation feedback
methods, Newton’s method itself I remember as a first order root finding method. Here I refresh
my memory what that simpler Newton’s method was about, and build on that slightly to find
the form of the solution for the intersection of an arbitrarily oriented line with a curve, and
finally the problem of refining an approximation for the intersection of two curves using the
same technique.

54.2 root finding as the intersection with a horizontal

The essence of Newton’s method for finding roots is following the tangent from the point of first
guess down to the line that one wants to intersect with the curve. This is illustrated in fig. 54.1.

Algebraically, the problem is that of finding the point x1, which is given by the tangent

f (x0) − b
x0 − x1

= f ′(x0). (54.1)

Rearranging and solving for x1, we have

x1 = x0 −
f (x0) − b

f ′(x0)
(54.2)

If one presumes convergence, something not guaranteed, then a first guess, if good enough,
will get closer and closer to the target with each iteration. If this first guess is far from the target,
following the tangent line could ping pong you to some other part of the curve, and it is possible
not to find the root, or to find some other one.
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Figure 54.1: Refining an approximate horizontal intersection
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Figure 54.2: Refining an approximation for the intersection with an arbitrarily oriented line
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54.3 intersection with a line

The above pictorial treatment works nicely for the intersection of a horizontal line with a curve.
Now consider the intersection of an arbitrarily oriented line with a curve, as illustrated in
fig. 54.2. Here it is useful to setup the problem algebraically from the beginning. Our problem
is really still just that of finding the intersection of two lines. The curve itself can be considered
the set of end points of the vector

r(x) = xe1 + f (x)e2, (54.3)

for which the tangent direction vector is

t(x) =
dr
dx

= e1 + f ′(x)e2. (54.4)

The set of points on this tangent, taken at the point x0, can also be written as a vector, namely

(x0, f (x)) + αt(x0). (54.5)

For the line to intersect this, suppose we have one point on the line p0, and a direction vector
for that line û. The points on this line are therefore all the endpoints of

p0 + βû. (54.6)

Provided that the tangent and the line of intersection do in fact intersect then our problem
becomes finding α or β after equating eq. (54.5) and eq. (54.6). This is the solution of

(x0, f (x0)) + αt(x0) = p0 + βû. (54.7)

Since we do not care which of α or β we solve for, setting this up as a matrix equation in two
variables is not the best approach. Instead we wedge both sides with t(x0) (or û), essentially
using Cramer’s method. This gives

((x0, f (x0)) − p0) ∧ t(x0) = βû∧ t(x0). (54.8)

If the lines are not parallel, then both sides are scalar multiples of e1 ∧ e2, and dividing out
one gets
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β =
((x0, f (x0)) − p0) ∧ t(x0)

û∧ t(x0)
. (54.9)

Writing out t(x0) = e1 + f ′(x0)e2, explicitly, this is

β =
((x0, f (x0)) − p0) ∧ (e1 + f ′(x0)e2)

û∧ (e1 + f ′(x0)e2)
. (54.10)

Further, dividing out the common e1 ∧ e2 bivector, we have a ratio of determinants

β =

∣∣∣∣∣∣∣x0 − p0 · e1 f (x0) − p0 · e2

1 f ′(x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣û · e1 û · e2

1 f ′(x0)

∣∣∣∣∣∣∣
. (54.11)

The final step in the solution is noting that the point of intersection is just

p0 + βû, (54.12)

and in particular, the x coordinate of this is the desired result of one step of iteration

x1 = p0 · e1 + (û · e1)

∣∣∣∣∣∣∣x0 − p0 · e1 f (x0) − p0 · e2

1 f ′(x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣û · e1 û · e2

1 f ′(x0)

∣∣∣∣∣∣∣
. (54.13)

This looks a whole lot different than the original x1 for the horizontal from back at eq. (54.2),
but substitution of û = e1, and p0 = be2, shows that these are identical.

54.4 intersection of two curves

Can we generalize this any further? It seems reasonable that we would be able to use this New-
ton’s method technique of following the tangent to refine an approximation for the intersection
point of two general curves. This is not expected to be much harder, and the geometric idea is
illustrated in fig. 54.3
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Figure 54.3: Refining an approximation for the intersection of two curves in a plane
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The task at hand is to setup this problem algebraically. Suppose the two curves s(x), and r(x)
are parametrized as vectors

s(x) = xe1 + s(x)e2 (54.14)

r(x) = xe1 + r(x)e2. (54.15)

Tangent direction vectors at the point x0 are then

s′(x0) = e1 + s′(x0)e2 (54.16)

r′(x0) = e1 + r′(x0)e2. (54.17)

The intersection of interest is therefore the solution of

(x0, s(x0)) + αs′ = (x0, r(x0)) + βr′. (54.18)

Wedging with one of tangent vectors s′ or r′ provides our solution. Solving for α this is

α =
(0, r(x0) − s(x0))∧ r′

s′ ∧ r′
=

∣∣∣∣∣∣∣ 0 r(x0) − s(x0)

r′ · e1 r′ · e2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣s′ · e1 s′ · e2

r′ · e1 r′ · e2

∣∣∣∣∣∣∣
= −

r(x0) − s(x0)
r′(x0) − s′(x0)

. (54.19)

To finish things off, we just have to calculate the new x coordinate on the line for this value
of α, which gives us

x1 = x0 −
r(x0) − s(x0)

r′(x0) − s′(x0)
. (54.20)

It is ironic that generalizing things to two curves leads to a tidier result than the more specific
line and curve result from eq. (54.13). With a substitution of r(x) = f (x), and s(x) = b, we once
again recover the result eq. (54.2), for the horizontal line intersecting a curve.

54.5 followup

Having completed the play that I set out to do, the next logical step would be to try the min/max
problem that leads to the Hessian. That can be for another day.





55
C E N T E R O F M A S S O F A T O RO I DA L S E G M E N T

55.1 motivation

In I love when kids stump me, the center of mass of a toroidal segment is desired, and the
simpler problem of a circular ring segment is considered.

Let us try the solid torus problem for fun using the geometric algebra toolbox. To setup the
problem, it seems reasonable to introduce two angle, plus radius, toroidal parametrization as
shown in fig. 55.1.

Figure 55.1: Toroidal parametrization

441

http://samjshah.com/2010/05/05/i-love-when-kids-stump-me/


442 center of mass of a toroidal segment

Our position vector to a point within the torus is then

r(ρ, θ, φ) = e− jθ/2
(
ρe1eiφ + Re3

)
e jθ/2 (55.1a)

i = e1e3 (55.1b)

j = e3e2 (55.1c)

Here i and j for the bivectors are labels picked at random. They happen to have the quaternion-
ic properties i j = − ji, and i2 = j2 = −1 which can be verified easily.

55.2 volume element

Before we can calculate the center of mass, we will need the volume element. I do not recall
having ever seen such a volume element, so let us calculate it from scratch.

We want

dV = ±e1e2e3

(
∂r
∂ρ
∧
∂r
∂θ
∧
∂r
∂φ

)
dρdθdφ, (55.2)

so the first order of business is calculation of the partials. After some regrouping those are

∂r
∂ρ

= e− jθ/2e1eiφe jθ/2 (55.3a)

∂r
∂θ

= e− jθ/2 (R + ρ sin φ) e2e jθ/2 (55.3b)

∂r
∂φ

= e− jθ/2ρe3eiφe jθ/2. (55.3c)

For the volume element we want the wedge of each of these, and can instead select the trivec-
tor grades of the products, which conveniently wipes out a number of the interior exponentials

∂r
∂ρ
∧
∂r
∂θ
∧
∂r
∂φ

= ρ (R + ρ sin φ)
〈
e− jθ/2e1eiφe2e3eiφe jθ/2

〉
3

(55.4)

Note that e1 commutes with j = e3e2, so also with e− jθ/2. Also e2e3 = − j anticommutes with
i, so we have a conjugate commutation effect eiφ j = je−iφ. Together the trivector grade selection
reduces almost magically to just

∂r
∂ρ
∧
∂r
∂θ
∧
∂r
∂φ

= ρ (R + ρ sin φ) e1e2e3 (55.5)
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Thus the volume element, after taking the positive sign, is

dV = ρ (R + ρ sin φ) dρdθdφ. (55.6)

As a check we should find that we can use this to calculate the volume of the complete torus,
and obtain the expected V = (2πR)(πr2) result. That volume is

V =

∫ r

ρ=0

∫ 2π

θ=0

∫ 2π

φ=0
ρ (R + ρ sin φ) dρdθdφ. (55.7)

The sine term conveniently vanishes over the 2π interval, leaving just

V =
1
2

r2R(2π)(2π), (55.8)

as expected.

55.3 center of mass

With the prep done, we are ready to move on to the original problem. Given a toroidal segment
over angle θ ∈ [−∆θ/2,∆θ/2], then the volume of that segment is

∆V = r2Rπ∆θ. (55.9)

Our center of mass position vector is then located at

R∆V =

∫ r

ρ=0

∫ ∆θ/2

θ=−∆θ/2

∫ 2π

φ=0
e− jθ/2

(
ρe1eiφ + Re3

)
e jθ/2ρ (R + ρ sin φ) dρdθdφ. (55.10)

Evaluating the φ integrals we loose the
∫ 2π

0 eiφ and
∫ 2π

0 sin φ terms and are left with
∫ 2π

0 eiφ sin φdφ =

iπ/2 and
∫ 2π

0 dφ = 2π. This leaves us with

R∆V =

∫ r

ρ=0

∫ ∆θ/2

θ=−∆θ/2

(
e− jθ/2ρ3e3

π

2
e jθ/2 + 2πρR2e3e jθ

)
dρdθ (55.11)

=

∫ ∆θ/2

θ=−∆θ/2

(
e− jθ/2r4e3

π

8
e jθ/2 + 2π

1
2

r2R2e3e jθ
)

dθ (55.12)

=

∫ ∆θ/2

θ=−∆θ/2

(
e− jθ/2r4e3

π

8
e jθ/2 + πr2R2e3e jθ

)
dθ. (55.13)
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Since e3 j = − je3, we have a conjugate commutation with the e− jθ/2 for just

R∆V = πr2
(
r2

8
+ R2

)
e3

∫ ∆θ/2

θ=−∆θ/2
e jθdθ (55.14)

= πr2
(
r2

8
+ R2

)
e32 sin(∆θ/2). (55.15)

A final reassembly, provides the desired final result for the center of mass vector

R = e3
1
R

(
r2

8
+ R2

)
sin(∆θ/2)

∆θ/2
. (55.16)

Presuming no algebraic errors have been made, how about a couple of sanity checks to see if
the correctness of this seems plausible.

We are pointing in the z-axis direction as expected by symmetry. Good. For ∆θ = 2π, our
center of mass vector is at the origin. Good, that is also what we expected. If we let r → 0, and
∆θ → 0, we have R = Re3 as also expected for a tiny segment of “wire” at that position. Also
good.

55.4 center of mass for a circular wire segment

As an additional check for the correctness of the result above, we should be able to compare
with the center of mass of a circular wire segment, and get the same result in the limit r → 0.

For that we have

Z(R∆θ) =

∫ ∆θ/2

θ=−∆θ/2
Rie−iθRdθ (55.17)

So we have

Z =
1

∆θ
Ri

1
−i

(e−i∆θ/2 − ei∆θ/2). (55.18)

Observe that this is

Z = Ri
sin(∆θ/2)

∆θ/2
, (55.19)

which is consistent with the previous calculation for the solid torus when we let that solid
diameter shrink to zero.
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In particular, for 3/4 of the torus, we have ∆θ = 2π(3/4) = 3π/2, and

Z = Ri
4 sin(3π/4)

3π
= Ri

2
√

2
3π
≈ 0.3Ri. (55.20)

We are a little bit up the imaginary axis as expected.
I had initially somehow thought I had been off by a factor of two compared to the result by

The Virtuosi, without seeing a mistake in either. But that now appears not to be the case, and
I just screwed up plugging in the numbers. Once again, I should go to my eight year old son
when I have arithmetic problems, and restrict myself to just the calculus and algebra bits.

http://samjshah.com/2010/05/05/i-love-when-kids-stump-me/#comment-2349
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56
WAV E E Q UAT I O N BA S E D L O R E N T Z T R A N S F O R M AT I O N
D E R I VAT I O N

56.1 intro

My old electrodynamics book did a Lorentz transformation derivation using a requirement for
invariance of a spherical light shell. ie:

x2 − c2t2 = x′2 − c2t′2 (56.1)

Such an approach does not require any sophisticated math, but I never understood why that
invariance condition could be assumed. To understand that intuitively, requires that you under-
stand how the speed of light is constant. There are some subtleties involved in understanding
that which are not necessarily obvious to me. A good illustration of this is Feynman’s question
about what speed to expect light to be going from a rocket ship going 100000 miles per second
is a good example (ref: book: Six not so easy parts). Many people who would say "yes, the
speed of light is constant" would still answer 280000 miles per second for that question.

I present below an alternate approach to deriving the Lorentz transformation. This has a bit
more math (ie: partial differentials for change of variables in the wave equation). However,
compared to really understanding that the speed of light is constant, I think it is easier to to
conceptualize the idea that light is wavelike regardless of the motion of the observer since it (ie:
an electrodynamic field) must satisfy the wave equation (ie: Maxwell’s equations) regardless of
the parametrization. I am curious if somebody else also new to the subject of relativity would
agree?

The motivation for this is the fact that many introductory relativity texts mention how Lorentz
observed that while Maxwell’s equations were not invariant with respect to Galilean transfor-
mation, they were with his modified transformation.

I found it interesting to consider this statement with a bit of detail. The result is what I think
is an interesting approach to introducing the Lorentz transformation.

449
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56.2 the wave equation for electrodynamic fields (light)

From Maxwell’s equations one can show that in a charge and current free region the electric
field and magnetic field both satisfy the wave equation:

∇2 −
1
c2

∂2

∂t2 = 0 (56.2)

I believe this is the specific case where there are the light contains enough photons that the
bulk (wavelike) phenomena dominate and quantum effects do not have to be considered.

The wikipedia article Electromagnetic radiation (under Derivation)
goes over this nicely.
Although this can be solved separately for either E or B the two are not independent. This

dependence is nicely expressed by writing the electromagnetic field as a complete bivector F =

E + icB, and in that form the general solution to this equation for the combined electromagnetic
field is:

F = (E0 + k̂∧E0) f (k̂ · r ± ct) (56.3)

Here f is any function, and represents the amplitude of the waveform.

56.3 verifying lorentz invariance

The Lorentz transform for a moving (primed) frame where the motion is along the x axis is
(β = v/c, γ−2 = 1 − β2).

 x′

ct′

 = γ

 1 −β

−β 1


Or,  x

ct

 = γ

1 β

β 1


Using this we can express the partials of the wave equation in the primed frame. Starting with

the first derivatives:

∂

∂x
=
∂x′

∂x
∂

∂x′
+
∂ct′

∂x
∂

∂ct′

= γ
∂

∂x′
− γβ

∂

∂ct′

(56.4)
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And:

∂

∂ct
=
∂x′

∂ct
∂

∂x′
+
∂ct′

∂ct
∂

∂ct′

= −βγ
∂

∂x′
+ γ

∂

∂ct′

(56.5)

Thus the second partials in terms of the primed frame are:

∂2

∂x2 = γ2
(
∂

∂x′
− β

∂

∂ct′

) (
∂

∂x′
− β

∂

∂ct′

)
= γ2

(
∂2

∂x′∂x′
+ β2 ∂2

∂ct′∂ct′
− β

(
∂2

∂x′∂ct′
∂2

∂ct′∂x′

)) (56.6)

∂2

∂ct∂ct
= γ2

(
β2 ∂2

∂x′∂x′
+

∂2

∂ct′∂ct′
− β

(
∂2

∂x′∂ct′
∂2

∂ct′∂x′

))
(56.7)

Thus the wave equation transforms as:

∂2

∂x2 −
∂2

∂ct∂ct
= γ2

(
(1 − β2)

∂2

∂x′∂x′
+ (β2 − 1)

∂2

∂ct′∂ct′

)
=

∂2

∂x′∂x′
−

∂2

∂ct′∂ct′

(56.8)

which is what we expect but nice to see written out in full without having to introduce
Minkowski space, and its invariant norm, or use Einstein’s subtle arguments from his "Rel-
ativity, the special and general theory" (the latter requires actual understanding whereas the
former and this just require math).

56.4 derive lorentz transformation requiring invariance of the wave equation

Now, lets look at a general change of variables for the wave equation for the electromagnetic
field. This will include the Galilean transformation, as well as the Lorentz transformation above,
as special cases.

Consider a two variable, scaled Laplacian:

∇2 = m
∂2

∂u2 + n
∂2

∂v2 (56.9)
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and a linear change of variables defined by:

uv
 =

e f

g h


x

y

 = A

x

y

 (56.10)

To perform the change of variables we need to evaluate the following:

∂

∂u
=
∂x
∂u

∂

∂x
+
∂y
∂u

∂

∂y
∂

∂v
=
∂x
∂v

∂

∂x
+
∂y
∂v

∂

∂y

(56.11)

To compute the partials we must invert A. Writing

J =

∣∣∣∣∣∣∣e f

g h

∣∣∣∣∣∣∣ =
∂(u, v)
∂(x, y)

, (56.12)

that inverse is

A−1 =
1∣∣∣∣∣∣∣e f

g h

∣∣∣∣∣∣∣
 h − f

−g e

 . (56.13)

The first partials are therefore:

∂

∂u
=

1
J

(
h
∂

∂x
− g

∂

∂y

)
∂

∂v
=

1
J

(
− f

∂

∂x
+ e

∂

∂y

)
.

(56.14)

Repeating for the second partials yields:

∂2

∂u2 =
1
J2

(
h2 ∂

2

∂x2 + g2 ∂
2

∂y2 − gh
(
∂2

∂x∂y
+

∂2

∂y∂x

))
∂2

∂v2 =
1
J2

(
f 2 ∂

2

∂x2 + e2 ∂
2

∂y2 − e f
(
∂2

∂x∂y
+

∂2

∂y∂x

)) (56.15)

That is the last calculation required to compute the transformed Laplacian:

∇2 =
1
J2

(
(mh2 + n f 2)∂xx + (mg2 + ne2)∂yy − (mgh + ne f )(∂xy + ∂yx)

)
(56.16)
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56.4.1 Galilean transformation

Lets apply this to the electrodynamics wave equation, first using a Galilean transformation
x = x′ + vt, t = t′, β = v/c.

 x

ct

 =

1 β

0 1


 x′

ct′

 (56.17)

∂xx −
1
c2 ∂tt = (1 − β2)∂x′x′ −

1
c2 ∂t′t′ +

1
c
β(∂x′t′ + ∂t′x′) (56.18)

Thus we see that the equations of light when subjected to a Galilean transformation have a
different form after such a transformation. If this was correct we should see the effects of the
mixed product terms and the reduced effect of the spatial component when there is any motion.
However, light comes in a wave form regardless of the motion, so there is something wrong
with application of this transformation to the equations of light. This was the big problem of
physics over a hundred years ago before Einstein introduced relativity to explain all this.

56.4.2 Determine the transformation of coordinates that retains the form of the equations of
light

Before Einstein, Lorentz worked out the transformation that left Maxwell’s equation “invariant”.
I have not seen any text that actually showed this. Lorentz may have showed that his transfor-
mations left Maxwell’s equations invariant in their full generality, however that complexity is
not required to derive the transformation itself. Instead this can be done considering only the
wave equation for light in source free space.

Let us define the matrix A for a general change of space and time variables in one spatial
dimension:

 x

ct

 =

e f

g h


 x′

ct′

 (56.19)

Application of this to eq. (56.16) gives:

∂xx − ∂ct,ct =
1
J2

(
(h2 − f 2)∂x′x′ + (g2 − e2)∂ct′,ct′ − (gh − e f )(∂x′,ct′ + ∂ct′,x′)

)
(56.20)

Now, we observe that light has wavelike behavior regardless of our velocity (we do observe
frequency variation with velocity but the fundamental waviness does not change). Once that is
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accepted as a requirement for a transformation of coordinates of the wave equation for light we
get the Lorentz transformation.

Expressed mathematically, this means that we want eq. (56.20) to have the form:

∂xx − ∂ct,ct = ∂x′x′ − ∂ct′,ct′ (56.21)

This requirement is equivalent to the following system of equations:

J = eh − f g

h2 − f 2 = J2

g2 − e2 = −J2

gh = e f .

(56.22)

Attempting to solve this in full generality for any J gets messy (ie: non-linear). To simplify
things, it is not unreasonable to require J = 1, which is consistent with Galilean transformation,
in particular for the limiting case as v→ 0.

Additionally, we want to give physical significance to these values e, f , g, h. Following Ein-
stein’s simple derivation of the Lorentz transformation, we do this by defining x′ = 0 as the
origin of the moving frame:

x′ =
1
J

[
h − f

]  x

ct

 = 0 (56.23)

This allows us to relate f , h to the velocity:

xh = f ct (56.24)

=⇒
dx
dt

=
f c
h

= v, (56.25)

and provides physical meaning to the first of the elements of the linear transformation:

f = h
v
c

= hβ. (56.26)
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The significance and values of e, g, h remain to be determined. Substituting eq. (56.26) into
our system of equations we have:

h2 − h2β2 = 1

g2 − e2 = −1

gh = ehβ.

(56.27)

From the first equation we have h2 = 1
1−β2 , which is what is usually designated γ2. Consider-

ing the limiting case again of v → 0, we want to take the positive root. Summarizing what has
been found so far we have:

h =
1√

1 − β2
= γ

f = γβ

g2 − e2 = −1

g = eβ.

(56.28)

Substitution of the last yields

e2(β2 − 1) = −1 (56.29)

which means that e2 = γ2, or e = γ, and g = γβ (again taking the positive root to avoid a re-
flective transformation in the limiting case). This completely specifies the linear transformation
required to maintain the wave equation in wave equation form after a change of variables that
includes a velocity transformation in one direction:

 x

ct

 = γ

1 β

β 1


 x′

ct′

 (56.30)

Inversion of this yields the typical one dimensional Lorentz transformation where the position
and time of a moving frame is specified in terms of the inertial frame:

 x′

ct′

 = γ

 1 −β

−β 1


 x

ct

 . (56.31)
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That is perhaps more evident when this is written out explicitly in terms of velocity:

x′ =
x − vt√

1 − v2/c2

t′ =
t − (v/c2)x√

1 − v2/c2
.

(56.32)

56.5 light sphere , and relativistic metric

TBD.
My old E&M book did this derivation using a requirement for invariance of a spherical light

shell. ie:
x2 − c2t2 = x′2 − c2t′2.
That approach requires less math (ie: to partial derivatives or change of variables), but I never

understood why that invariance condition could be assumed (to understand that intuitively, you
have to understand the constancy of light phenomena, which has a few subtleties that are not
obvious in my opinion).

I like my approach, which has a bit more math, but I think is easier (vs. light constancy) to
conceptualize the idea that light is wavelike regardless of the motion of the observer since it (ie:
an electrodynamic field) must satisfy the wave equation (ie: Maxwell’s equations). I am curious
if somebody else also new to the subject of relativity would agree?

56.6 derive relativistic doppler shift

TBD.
This is something I think would make sense to do considering solutions to the wave equation

instead of utilizing more abstract wave number, and frequency four vector concepts. Have not
yet done the calculations for this part.
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E Q UAT I O N S O F M OT I O N G I V E N M A S S VA R I AT I O N W I T H
S PAC E T I M E P O S I T I O N

57.1

Let

x =
∑

γµxµ

v =
dx
dτ

=
∑

γµ ẋµ
(57.1)

Where whatever spacetime basis you pick has a corresponding reciprocal frame defined im-
plicitly by:

γµ · γν = δµν

You could for example pick these so that these are orthonormal with:

γ2
i = γi · γi = −1

γi = −γi

γ0 = γ0

γ2
0 = 1

γi · γ0 = 0

(57.2)

ie: the frame vectors define the metric tensor implicitly:

gµν = γµ · γν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(57.3)

Now, my assumption is that given a Lagrangian of the form:

L =
1
2

mv2 + φ (57.4)

457
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That the equations of motion follow by computation of:

∂L

∂xµ
=

d
dτ

∂L

∂ẋµ
(57.5)

I do not have any proof of this (I do not yet know any calculus of variations, and this is a
guess based on intuition). It does however work out to get the covariant form of the Lorentz
force law, so I think it is right.

To get the EOM we need the squared proper velocity. This is just c2. Example: for an or-
thonormal spacetime frame one has:

v2 =
(
γ0cdt/dτ +

∑
γidx/dτ

)2

= γ
(
γ0c +

∑
γidx/dt

)2

= γ2
(
c2 − v2

)
= c2

(57.6)

but if we leave this expressed in terms of coordinates (also do not have to assume the diagonal
metric tensor, since we can use non-orthonormal basis vectors if desired) we have:

v2 =
(∑

γµ ẋµ
)
·
(∑

γν ẋν
)

=
∑

γµ · γν ẋµ ẋν

=
∑

gµν ẋµ ẋν
(57.7)

Therefore the Lagrangian to minimize is:

L =
1
2

m
∑

gµν ẋµ ẋν + φ. (57.8)
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Performing the calculations for the EOM, and in this case, also allowing mass to be a function
of space or time position (m = m(xµ))

∂L

∂xµ
=

d
dτ

∂L

∂ẋµ
∂φ

∂xµ
+

1
2
∂m
∂xµ

∑
gαβ ẋα ẋβ =

∂φ

∂xµ
+

1
2
∂m
∂xµ

v2 =

=
1
2

d
dτ

m
∑

gαβ
∂

∂xµ
(
ẋα ẋβ

)
=

1
2

d
dτ

m
∑

gαβ
(
δµα ẋβ + ẋαδµβ

)
=

d
dτ

m
∑

gαµ ẋα

=
∑ ∂m

∂xβ
ẋβgαµ ẋα + mgαµ ẍα

(57.9)

Now, the metric tensor values can be removed by summing since they can be used to switch
upper and lower indices of the frame vectors:

γµ =
∑

aνγν

γµ · γβ =
∑

aνγν · γβ

=
∑

aνδνβ

= aβ

=⇒

γµ =
∑

γµ · γνγ
ν

=
∑

gµνγν

(57.10)

If you are already familiar with tensors then this may be obvious to you (but was not to me
with only vector background).
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Multiplying throughout by γµ, and summing over µ one has:

∑
γµ

(
∂φ

∂xµ
+

1
2
∂m
∂xµ

v2
)

=
∑

γµ
(
∂m
∂xβ

ẋβgαµ ẋα + mgαµ ẍα
)

+

(∑
γµ

∂

∂xµ

)
φ +

1
2

v2
(∑

γµ
∂

∂xµ

)
m =

=
∑ ∂m

∂xβ
ẋβγµγα · γµ ẋα + mγµγα · γµ ẍα

=
∑ ∂m

∂xβ
ẋβγα ẋα + mγα ẍα

(57.11)

Writing:

∇ =
∑

γµ
∂

∂xµ

This is:

∇φ +
1
2

v2∇m = v
∑ ∂m

∂xβ
ẋβ + mv̇

However,

(∇m) · v =

(∑
γµ
∂m
∂xµ

)
·
(∑

γν ẋν
)

=
∑

γµ · γν
∂m
∂xµ

ẋν

=
∑

δµν
∂m
∂xµ

ẋν

=
∑ ∂m

∂xµ
ẋµ =

dm
dτ

(57.12)

That allows for expressing the EOM in strict vector form:

∇φ +
1
2

v2∇m = v∇m · v + mv̇. (57.13)
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However, there is still an asymmetry here, as one would expect a ṁv term. Regrouping
slightly, and using some algebraic vector manipulation we have:

mv̇ + v∇m · v −
1
2

v2∇m = ∇φ

mv̇ +
1
2

v( 2∇m · v − v∇m

2a · b − ba = ab

) =

mv̇ +
1
2

v(∇m)v =

mv̇ +
1
2

(v∇m)v =

mv̇ +
1
2

(2v · ∇m −∇mv)v =

mv̇ + (v · ∇m)v −
1
2

(∇mv)v =

mv̇ + ṁv −
1
2
∇m(vv) =

=⇒

d(mv)
dτ

= mv̇ + ṁv =
1
2
∇mc2 +∇φ

= ∇

(
φ −

1
2

mc2
)

= ∇

(
φ −

1
2

mv2
)

(57.14)

So, after a whole wack of algebra, the end result is to show the proper time variant of the
Lagrangian equations imply that our proper force can be expressed as a (spacetime) gradient.

The caveat is that if the mass is allowed to vary, it also needs to be included in the generalized
potential associated with the equation of motion.
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57.1.1 Summarizing

We took this Lagrangian with kinetic energy and non-velocity dependent potential terms, where
the mass in the kinetic energy term is allowed to vary with position or time. That plus the
presumed proper-time Lagrange equations:

L =
1
2

mv2 + φ

∂L

∂xµ
=

d
dτ

∂L

∂ẋµ
,

(57.15)

when followed to their algebraic conclusion together imply that the equation of motion is:

d(mv)
dτ

= ∇L, (57.16)

57.2 examine spatial components for comparison with newtonian limit

Now, in the original version of this document, the signs for all the φ terms were inverted. This
was changed since we want agreement with the Newtonian limit, and there is an implied sign
change hiding in the above equations.

Consider, the constant mass case, where the Lagrangian is specified in terms of spatial quan-
tities:

L =
1
2

mv2 + φ =
1
2

mγ2(c2 − v2) =
1
2

mγ2c2 − γ2
(
1
2

mv2 − φ

)
For |v| << c, γ ≈ 1, so we have a constant term in the Lagrangian of 1

2 mc2 which will not
change the EOM and can be removed. The remainder is our normal kinetic minus potential
Lagrangian (the sign inversion on the entire remaining Lagrangian also will not change the
EOM result).

Suppose one picks an orthonormal spacetime frame as given in the example metric tensor of
eq. (57.3). To select our spatial quantities we wedge with γ0.
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For the left hand side of our equation of motion eq. (57.16) we have:

d(mv)
dτ

∧ γ0 =
d(mv)∧ γ0

dt
dt
dτ

=
dp∧ γ0

dt
dt
dτ

=
dt
dτ

d
dt

m(cγ0 +
∑

γi ẋi)∧ γ0

=
dt
dτ

d
dt

m
∑

(γi ∧ γ0)ẋi

=
dt
dτ

d
dt

m
∑

σi ẋi

=
dt
dτ

d
dt

(mvγ)

= γ
d(γp)

dt

(57.17)

Now, looking at the right hand side of the EOM we have (again for the constant mass case
where we expect agreement with our familiar Newtonian EOM):

∇

(
φ −

1
2

mv2
)
∧ γ0 = (∇φ)∧ γ0

=
∑

γµ ∧ γ0
∂φ

∂xµ

=
∑

γi ∧ γ0
∂φ

∂xi

= −
∑

γi ∧ γ0
∂φ

∂xi

= −
∑

σi
∂φ

∂xi

= −∇φ

(57.18)

Therefore in the limit |v| << c we have our agreement with the Newtonian EOM:

γ
d(γp)

dt
= −∇φ ≈

dp
dt

(57.19)
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U N D E R S TA N D I N G F O U R V E L O C I T Y T R A N S F O R M F RO M R E S T
F R A M E

58.1

[10] writes v = Rγ0R†, as a proper velocity expressed in terms of a rest frame velocity and a
Lorentz boost. This was not clear to me, and would probably be a lot more obvious to me if I
had fully read chapter 5, but in my defense it is a hard read without first getting more familiarity
with basic relativity.

Let us just expand this out to see how this works. First thing to note is that there is an omitted
factor of c, and I will add that back in here, since I am not comfortable enough without it
explicitly for now.

With:

v/c = tanh (α) v̂
R = exp (αv̂/2)

(58.1)

We want to expansion this Lorentz boost exponential (see details section) and apply it to the
rest frame basis vector. Writing C = cosh (α/2), and S = sinh (α/2), we have:

v = R (cγ0)R†

= c (C + v̂S ) γ0 (C − v̂S )

= c (Cγ0 + S v̂γ0) (C − v̂S )

= c
(
C2γ0 + S Cv̂γ0 −CS γ0v̂ − S 2v̂γ0v̂

) (58.2)

465
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Now, here things can start to get confusing since v̂ is a spatial quantity with vector-like
spacetime basis bivectors σi = γiγ0. Factoring out the γ0 term, utilizing the fact that γ0 and σi

anticommute (see below).

v = c
(
C2 + S 2 + 2S Cv̂

)
γ0

= c (cosh (α) + v̂ sinh (α)) γ0

= c cosh (α) (1 + v̂ tanh (α)) γ0

= c cosh (α) (1 + v/c) γ0

= cγ (1 + v/c) γ0

= γ
(
cγ0 +

∑
viγi

)
=

dt
dτ

(
cγ0 +

∑
viγi

)
=

dt
dτ

d
dt

(
ctγ0 +

∑
xiγi

)
=

dt
dτ

d
dt

∑
xµγµ

=
d
dτ

∑
xµγµ

=
dx
dτ

(58.3)

So, we get the end result that demonstrates that a Lorentz boost applied to the rest event vector
x = x0γ0 = ctγ0 directly produces the four velocity for the motion from the new viewpoint. This
makes some intuitive sense, but I do not feel this is necessarily obvious without demonstration.

This also explains how the text is able to use the wedge and dot product ratios with the γ0

basis vector to produce the relative spatial velocity. If one introduces a rest frame proper velocity
of w = d

dt (ctγ0) = cγ0, then one has:

v ·w =

(∑ dxµ

dτ
γµ

)
· (cγ0)

= c2γ

(58.4)
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v∧w =

(∑ dxµ

dτ
γµ

)
∧ (cγ0)

=

(∑ dxi

dτ
γi

)
∧ (cγ0)

= c
∑ dxi

dτ
σi

= c
dt
dτ

∑ dxi

dt
σi

= cγ
∑ dxi

dt
σi

(58.5)

Combining these one has the spatial observer dependent relative velocity:

v∧w
v ·w

=
1
c

∑ dxi

dt
σi =

v
c

(58.6)

58.1.1 Invariance of relative velocity?

What is not clear to me is whether this can be used to determine the relative velocity between
two particles in the general case, when one of them is not a rest frame velocity (time progression
only at a fixed point in space.) The text seems to imply this is the case, so perhaps it is obvious
to them only and not me;)

This can be verified relatively easily for the extreme case, where one boosts both the w, and
v velocities to measure v in its rest frame.

Expressed mathematically this is:

w = cγ0

v = RwR†

v′ = R†vR = R†Rcγ0R†R = cγ0

w′ = R†wR

(58.7)

Now, this last expression for w′ can be expanded brute force as was done initially to calculate
v (and I in fact did that initially without thinking). The end result matches what should have been
the intuitive expectation, with the velocity components all negated in a conjugate like fashion:

w′ = γ
(
cγ0 −

∑
viγi

)
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With this result we have:

v′ ·w′ = cγ0 · γ
(
cγ0 −

∑
viγi

)
= γc2

v′ ∧w′ = cγ0 ∧ γ
(
cγ0 −

∑
viγi

)
= −cγ

∑
viγ0γi

= cγ
∑

viσi

(58.8)

Dividing the two we have the following relative velocity between the two proper velocities:

v′ ∧w′

v′ ·w′
=

1
c

∑
viσi = v/c.

Lo and behold, this is the same as when the first event worldline was in its rest frame, so
we have the same relative velocity regardless of which of the two are observed at rest. The
remaining obvious question is how to show that this is a general condition, assuming that it is.

58.1.2 General invariance?

Intuitively, I would guess that this is fact the case because when only two particles are consid-
ered, the result should be the same independent of which of the two is considered at rest.

Mathematically, I would express this statement by saying that if one has a Lorentz boost that
takes v′ = TvT † to its rest frame, then application of this to both proper velocities leaves both
the wedge and dot product parts of this ratio unchanged:

v ·w =
(
T †v′T

)
·
(
T †w′T

)
=

〈(
T †v′T

) (
T †w′T

)〉
=

〈
T †v′w′T

〉

=
〈
T †v′ ·w′T

〉
+

〈
T †v′ ∧w′T

〉 = 0

= (v′ ·w′)
〈
T †T

〉
= v′ ·w′

(58.9)
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v∧w =
(
T †v′T

)
∧

(
T †w′T

)
=

〈(
T †v′T

) (
T †w′T

)〉
2

=
〈
T †v′w′T

〉
2

=
〈
T †v′ ·w′T

〉
2

= 0

+
〈
T †v′ ∧w′T

〉
2

= T † (v′ ∧w′) T

(58.10)

FIXME: can not those last T factors be removed somehow?

58.2 appendix . omitted details from above

58.2.1 exponential of a vector

Understanding the vector exponential is a prerequisite above. This is defined and interpreted by
series expansion as with matrix exponentials. Expanding in series the exponential of a vector
x = xx̂, we have:

exp (x) =
∑ x2k

(2k) !
+

∑ x2k+1

(2k + 1) !

=
∑ x2k

(2k) !
+ x̂

∑ x2k+1

(2k + 1) !

= cosh (x) + x̂ sinh (x)

(58.11)

Notationally this can also be written:

exp (x) = cosh (x) + sinh (x)

But doing so will not really help.
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58.2.2 v anticommutes with γ0

vγ0 =
∑

viσiγ0

=
∑

viγiγ0γ0

= −
∑

viγ0γiγ0

= −γ0

∑
viγiγ0

= −γ0

∑
viσ0

= −γ0v

(58.12)
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F O U R V E C T O R D OT P RO D U C T I N VA R I A N C E A N D L O R E N T Z
ROT O R S

59.1

Prof. Ramamurti Shankar’s In the relativity lectures of [40] Prof. Shankar indicates that the four
vector dot product is a Lorentz invariant. This makes some logical sense, but lets demonstrate it
explicitly.

Start with a Lorentz transform matrix between coordinates for two four vectors (omitting the
components perpendicular to the motion) :

x1

x0


′

= γ

 1 −β

−β 1


x1

x0


y1

y0


′

= γ

 1 −β

−β 1


y1

y0


Now write out the dot product between the two vectors given the perceived length and time

measurements for the same events in the moving frame:

X′ · Y ′ = γ2
(
(−βx1 + x0)(−βy1 + y0) − (x1 − βx0)(y1 − βy0)

)
= γ2

(
(β2x1y1 + x0y0) + x0y1(−β + β) + x1y0(−β + β) − (x1y1 + β2x0y0)

)
= γ2

(
x0y0(1 − β2) − (1 − β2)x1y1

)
= x0y0 − x1y1

= X · Y

(59.1)

This completes the proof of dot product Lorentz invariance. An automatic consequence of
this is invariance of the Minkowski length.

471
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59.1.1 Invariance shown with hyperbolic trig functions

Dot product or length invariance can also be shown with the hyperbolic representation of the
Lorentz transformation:

x1

x0


′

=

 cosh(α) − sinh(α)

− sinh(α) cosh(α)


x1

x0

 (59.2)

Writing S = sinh(α), and C = cosh(α) for short, this gives:

X′ · Y ′ =
(
(−S x1 + Cx0)(−S y1 + Cy0) − (Cx1 − S x0)(Cy1 − S y0)

)
=

(
(S 2x1y1 + C2x0y0) + x0y1(−S C + S C) + x1y0(−S C + S C) − (C2x1y1 + S 2x0y0)

)
=

(
x0y0(C2 − S 2) − (C2 − S 2)x1y1

)
= x0y0 − x1y1

= X · Y
(59.3)

This is not really any less work.

59.2 geometric product formulation of lorentz transform

We can show the above invariance almost trivially when we write the Lorentz boost in exponen-
tial form. However we first have to show how to do so.

Writing the spacetime bivector γ10 = γ1 ∧ γ0 for short, lets calculate the exponential of this
spacetime bivector, as scaled with a rapidity angle α :

exp(γ10α) =
∑ (γ10α)k

k!
(59.4)

Now, the spacetime bivector has a unit square:

γ10
2 = γ1010 = −γ1001 = −γ11 = 1

so, we can split the sum of eq. (59.4) into even and odd parts, and pull out the common
bivector factor:

exp(γ10α) =
∑ α2k

(2k)!
+ γ10

∑ α2k+1

(2k + 1)!
= cosh(α) + γ10 sinh(α) (59.5)
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59.2.1 Spatial rotation

So, this quite a similar form as bivector exponential with a Euclidean metric. For such a space
the bivector had a negative square, just like the complex unit imaginary, which allowed for the
normal trigonometric split of the exponential:

exp(e12θ) =
∑

(−1)k θ2k

(2k)!
+ e12

∑
(−1)k θ2k+1

(2k + 1)!
= cos(θ) + e12 sin(θ) (59.6)

Now, with the Minkowski metric having a negative square for purely spatial components,
how does a purely spacial bivector behave when squared? Let us try it with

γ12
2 = γ1212 = −γ1221 = γ11 = −1

This also has a square that behaves like the unit imaginary, so we can do spacial rotations
with rotors like we can with Euclidean space. However, we have to invert the sign of the angle
when using a Minkowski metric. Take a specific example of a 90 degree rotation in the x-y
plane, expressed in complex form:

Rπ/2(γ1) = γ1 exp(γ12π/2)

= γ1(0 + γ12)

= −γ2

(59.7)

In general our Rotor equation with a Minkowski (+,−,−,−) metric will be thus be:

Rθ(x) = exp(iθ/2)x exp(−iθ/2) (59.8)

Here i is a spatial bivector (a bivector with negative square), such as γ1 ∧ γ2, and the rotation
sense is with increasing angle from γ1 towards γ2.

59.2.2 Validity of the double sided spatial rotor formula

To demonstrate the validity of eq. (59.8) one has to observe how the unit vectors γµ behave
with respect to commutation, and how that behavior results in either commutation or conjugate
commutation with the exponential rotor. Without any loss of generality one can restrict attention
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to a specific example, such as bivector γ12. By inspection, γ0, and γ3 both commute since an
even number of exchanges in position is required for either:

γ0γ12 = γ0 ∧ γ1 ∧ γ2

= γ1 ∧ γ2 ∧ γ0

= γ12γ0

(59.9)

For this reason, application of the double sided rotation does not change any such (perpendic-
ular) vector that commutes with the rotor:

Rθ(x⊥) = exp(iθ/2)x⊥ exp(−iθ/2)

= x⊥ exp(iθ/2) exp(−iθ/2)

= x⊥

(59.10)

Now for the basis vectors that lie in the plane of the spatial rotation we have anticommutation:

γ1γ12 = −γ1γ21

= −γ121

= −γ12γ1

(59.11)

γ2γ12 = γ21γ2

= −γ12γ2
(59.12)

Given an understanding of how the unit vectors either commute or anticommute with the
bivector for the plane of rotation, one can now see how these behave when multiplied by a rotor
expressed exponentially:

γµ exp(iθ) = γµ (cos(θ) + i sin(θ)) =

 (cos(θ) + i sin(θ)) γµ if γµ · i = 0

(cos(θ) − i sin(θ)) γµ if γµ · i , 0
(59.13)

The condition γµ · i = 0 corresponds to a spacelike vector perpendicular to the plane of
rotation, or a timelike vector, or any combination of the two, whereas γµ · i , 0 is true for any
spacelike vector that lies completely in the plane of rotation.

Putting this information all together, we now complete the verification that the double sided
rotor formula leaves the perpendicular spacelike or the timelike components untouched. For



59.2 geometric product formulation of lorentz transform 475

for purely spacelike vectors in the plane of rotation we recover the single sided complex form
rotation as illustrated by the following x-y plane rotation:

Rθ(x‖) = exp(γ12θ/2)x‖ exp(−γ12θ/2)

= x‖ exp(−γ12θ/2) exp(−γ12θ/2)

= x‖ exp(−γ12θ)

(59.14)

59.2.3 Back to time space rotation

Now, like we can express a spatial rotation in exponential form, we can do the same for the
hyperbolic “rotation” matrix of eq. (59.2). Direct expansion 1 of the product is the easiest way
to see that this is the case:

(
γ1x1 + γ0x0

)
exp(γ10α) =

(
γ1x1 + γ0x0

)
(cosh(α) + γ10 sinh(α)) (59.15)

(
γ1x1 + γ0x0

)
exp(γ10α)

= γ1
(
x1 cosh(α) − x0 sinh(α)

)
+ γ0

(
x0 cosh(α) − x1 sinh(α)

) (59.16)

As with the spatial rotation, full characterization of this exponential rotation operator, in both
single and double sided form requires that one looks at how the various unit vectors commute
with the unit bivector. Without loss of generality one can restrict attention to a specific case, as
done with the γ10 above.

As in the spatial case, γ2, and γ3 both commute with γ10 = γ1 ∧ γ0. Example:

γ2γ10 = γ2 ∧ γ1 ∧ γ0 = γ1 ∧ γ0 ∧ γ2 = γ10γ2

Now, consider each of the basis vectors in the spacetime plane.

γ0γ10 = γ010 = γ01γ0 = −γ10γ0

1 The paper “Generalized relativistic velocity addition with spacetime algebra”,
http://arxiv.org/pdf/physics/0511247.pdf derives the bivector form of this Lorentz boost directly in an inter-
esting fashion. Simple relativistic arguments are used that are quite similar to those of Einstein in his “Relativity,
the special and general theory” appendix. This paper is written in a form that requires you to work out many of the
details yourself (likely for brevity). However, once that extra work is done, I found the first half of that paper quite
readable.
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γ1γ10 = γ110 = −γ101 = −γ10γ1

Both of the basis vectors in the spacetime plane anticommute with the bivector that describes
the plane, and as a result we have a conjugate change in the exponential comparing left and
right multiplication as with a spatial rotor. Summarizing for the general case by introducing a
spacetime rapidity plane described by a bivector
α = α̂α, we have:

γµ exp(α) = γµ (cosh(α) + α̂ sinh(α))

=

 (cosh(α) + α̂ sinh(α)) γµ if γµ · α̂ = 0

(cosh(α) − α̂ sinh(α)) γµ if γµ · α̂ , 0

(59.17)

Observe the similarity between eq. (59.13), and eq. (59.17) for spatial and spacetime rotors.
Regardless of whether the plane is spacelike, or a spacetime plane we have the same rule:

γµ exp(B) =

 exp(B)γµ if γµ · B̂ = 0

exp(−B)γµ if γµ · B̂ , 0
(59.18)

Here, if B is a spacelike bivector (B2 < 0) we get trigonometric functions generated by the
exponentials, and if it represents the spacetime plane B2 > 0 we get the hyperbolic functions.
As with the spatial rotor formulation, we have the same result for the general signature bivector,
and can write the generalized spacetime or spatial rotation as:

RB(x) = exp(−B/2)x exp(B/2) (59.19)

Some care is required assigning meaning to the bivector angle B. We have seen that this is an
negatively oriented spatial rotation in the B̂ plane when spacelike. How about for the spacetime
case? Lets go back and rewrite eq. (59.16) in terms of vector relations, with v = vv̂

(
x1v̂ + x0γ0

)  1√
1 − |(v/c)|2

+
(v/c)γ0√
1 − |(v/c)|2


= v̂γ

(
x1 − x0v/c

)
+ γ0γ

(
x0 − x1v/c

) (59.20)

This allows for the following identification:
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cosh(α) + v̂γ0 sinh(α) = exp(v̂γ0α) =
1 + (v/c)γ0√

1 − |v/c|2

which gives us the rapidity bivector (B above) in terms of the values we are familiar with:

v̂γ0α = log

 1 + (v/c)γ0√
1 − |v/c|2


Or,

B = v̂γ0α = tanh−1(v/c)v̂γ0

Now since |v/c| < 1, the hyperbolic inverse tangent here can be expanded in (the slowly
convergent) power series:

tanh−1(x) =
∑
k=0

x2k+1

2k + 1

Observe that this has only odd powers, and ((v/c)γ0)2k+1 = v̂γ0(v/c)2k+1. This allows for the
notational nicety of working with the spacetime bivector directly instead of only its magnitude:

B = tanh−1((v/c)γ0) (59.21)

59.2.4 FIXME

Revisit the equivalence of the two identities above. How can one get from the log expression to
the hyperbolic inverse tangent directly?

59.2.5 Apply to dot product invariance

With composition of rotation and boost rotors we can form a generalized Lorentz transformation.
For example application of a rotation with rotor R, to a boost with spacetime rotor L0, we get a
combined more general transformation:
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L(x) = R(L0xL0
†)R†

In both cases, the rotor and its reverse when multiplied are identity:

1 = RR† = LL†

It is not hard to see one can also compose an arbitrary set of rotations and boosts in the same
fashion. The new rotor will also satisfy LL† = 1.

Application of such a rotor to a four vector we have:

X′ = LXL†

Y ′ = LYL†

X′ · Y ′ = (LXL†) · (LYL†)

=
〈
LXL†LYL†

〉
=

〈
LXYL†

〉
=

〈
L(X · Y)L†

〉
+

〈
L(X ∧ Y)L†

〉
= (X · Y)

〈
LL†

〉
= X · Y

(59.22)

It is also clear that the four bivector X ∧ Y will also be Lorentz invariant. This also implies
that the geometric product of two four vectors XY will also be Lorentz invariant.

UPDATE (Aug 14): I do not recall my reasons for thinking that the bivector invariance was
clear initially. It does not seem so clear now after the fact so I should have written it down.
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L O R E N T Z T R A N S F O R M AT I O N O F S PAC E T I M E G R A D I E N T

60.1 motivation

We have observed that the wave equation is Lorentz invariant, and conversely that invariance
of the form of the wave equation under linear transformation for light can be used to calculate
the Lorentz transformation. Specifically, this means that we require the equations of light (wave
equation) retain its form after a change of variables that includes a (possibly scaled) translation.
The wave equation should have no mixed partial terms, and retain the form:

(
∇

2 − ∂2
ct

)
F =

(
∇
′2 − ∂2

ct′
)

F = 0

Having expressed the spacetime gradient with a (STA) Minkowski basis, and knowing that
the Maxwell equation written using the spacetime gradient is Lorentz invariant:

∇F = J,

we therefore expect that the square root of the wave equation (Laplacian) operator is also
Lorentz invariant. Here this idea is explored, and we look at how the spacetime gradient behaves
under Lorentz transformation.

60.1.1 Lets do it

Our spacetime gradient is

∇ =
∑

γµ
∂

∂xµ

Under Lorentz transformation we can transform the x1 = x, and x0 = ct coordinates:

 x′

ct′

 = γ

 1 −β

−β 1


 x

ct
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Set c = 1 for convenience, and use this to transform the partials:

∂

∂x
=
∂x′

∂x
∂

∂x′
+
∂t′

∂x
∂

∂t′

= γ

(
∂

∂x′
− β

∂

∂t′

) (60.1)

∂

∂t
=
∂x′

∂t
∂

∂x′
+
∂t′

∂t
∂

∂t′

= γ

(
−β

∂

∂x′
+

∂

∂t′

) (60.2)

Inserting this into our expression for the gradient we have

∇ = γ0 ∂

∂t
+ γ1 ∂

∂x
+ γ2 ∂

∂y
+ γ3 ∂

∂z

= γ0γ

(
−β

∂

∂x′
+

∂

∂t′

)
+ γ1γ

(
∂

∂x′
− β

∂

∂t′

)
+ γ2 ∂

∂y
+ γ3 ∂

∂z
.

(60.3)

Grouping by the primed partials this is:

∇ = γ
(
γ0 − βγ1

) ∂

∂t′
+ γ

(
γ1 − βγ0

) ∂

∂x′
+ γ2 ∂

∂y
+ γ3 ∂

∂z
. (60.4)

Lo and behold, the basis vectors with respect to the new coordinates appear to themselves
transform as a Lorentz pair. Specifically:

γ1′

γ0′

 = γ

 1 −β

−β 1


γ1

γ0


Now this is a bit curious looking since these new basis vectors are a funny mix of the origi-

nal time and space basis vectors. Observe however that these linear combinations of the basis
vectors γ0′, and γ1′ do behave just as adequately as timelike and spacelike basis vectors:

γ0′γ0′ = γ2
(
−βγ1 + γ0

) (
−βγ1 + γ0

)
= γ2

(
−β2 + 1 − βγ0γ1 − βγ1γ0

)

= γ2(−β2 + 1 + βγ1γ0 − βγ1γ0

= 0

)

= 1

(60.5)
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and for the transformed “spacelike” vector, it squares like a spacelike vector:

γ1′γ1′ = γ2
(
γ1 − βγ0

) (
γ1 − βγ0

)
= γ2

(
−1 + β2 − βγ0γ1 − βγ1γ0

)

= γ2(−1 + β2 + βγ1γ0 − βγ1γ0

= 0

)

= −1

(60.6)

The conclusion is that like the wave equation, its square root, the spacetime gradient is also
Lorentz invariant, and to achieve this invariance we transform both the coordinates and the
basis vectors (there was no need to transform the basis vectors for the wave equation since it is
a scalar equation).

In fact, this gives a very interesting way to view the Lorentz transform. It is not just notational
that we can think of the spacetime gradient as one of the square roots of the wave equation. Like
the vector square root of a scalar there are infinitely many such roots, all differing by an angle
or rotation in the vector space:

(RnR†)2 = 1

Requiring the mixed signature (Minkowski) metric for the space requires only that we need
a slightly different meaning for any of the possible rotations applied to the vector.

60.1.2 transform the spacetime bivector

I am not sure of the significance of the following yet, but it is interesting to note that the space-
time bivector for the transformed coordinate pair is also invariant:

γ1′γ0′ = γ2
(
γ1 − βγ0

) (
−βγ1 + γ0

)
= γ2

(
β − β + β2γ0γ1 + γ1γ0

)
= γ2

(
1 − β2

)
γ1γ0

= γ1γ0

(60.7)

We can probably use this to figure out how to transform bivector quantities like the electro-
magnetic field F.
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G R AV I T O E L E C T RO M AG N E T I S M

61.1 some rough notes on reading of gravitoelectromagnetism review

I found the GEM equations interesting, and explored the surface of them slightly. Here are some
notes, mostly as a reference for myself ... looking at the GEM equations mostly generates ques-
tions, especially since I do not have the GR background to understand where the potentials (ie:
what is that stress energy tensor Tµν) nor the specifics of where the metric tensor (perturbation
of the Minkowski metric) came from.

61.2 definitions

The article [32] outlines the GEM equations, which in short are
Scalar and potential fields

Φ ≈
GM

r
, A ≈

G
c

J × x
r3

(61.1)

Gauge condition

1
c
∂Φ
∂t

+∇ ·

(
1
2

A
)

= 0. (61.2)

GEM fields

E = −∇Φ −
1
c
∂

∂t

(
1
2

B
)
, B = ∇ ×A (61.3)

and finally the Maxwell-like equations are

∇ ×E = −
1
c
∂

∂t

(
1
2

B
)

∇ ·

(
1
2

B
)

= 0

∇ ·E = 4πGρ

∇ ×

(
1
2

B
)

=
1
c
∂E
∂t

+
4πG

c
J

(61.4)
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61.3 sta form

As with Maxwell’s equations a Clifford algebra representation should be possible to put this
into a more symmetric form. Combining the spatial div and grads, following conventions from
[10] we have

∇E = 4πGρ +
1
c
∂

∂t

(
1
2

IB
)

∇

(
1
2

IB
)

=
1
c
∂E
∂t

+
4πG

c
J

(61.5)

Or (
∇ −

1
c
∂

∂t

) (
E +

1
2

IB
)

=
4πG

c
(cρ + J) (61.6)

Left multiplication with γ0, using a time positive metric signature ((γ0)2 = 1),(
∇ −

1
c
∂

∂t

)
γ0

(
−E +

1
2

IB
)

=
4πG

c

(
cργ0 + Jiγi

)
(61.7)

But
(
∇ − 1

c
∂
∂t

)
γ0 = γi∂i − γ0∂0 = −γµ∂µ = −∇. Introduction of a four vector mass density

J = cργ0 + Jiγi = Jµγµ, and a bivector field F = E − 1
2 IB this is

∇F = −
4πG

c
J (61.8)

The gauge condition suggests a four potential V = Φγ0 + Aγ0 = Vµγµ, where V0 = Φ, and
V i = Ai/2. This merges the space and time parts of the gauge condition

∇ · V = γµ∂µ · γνVν = ∂µVµ =
1
c
∂Φ
∂t

+
1
2
∂iAi. (61.9)

It is reasonable to assume that F = ∇∧V as in electromagnetism. Let us see if this is the case

E − IB/2 = −∇Φ −
1
c
∂

∂t

(
1
2

B
)
− I∇ ×A/2

= −γi∂iγ0V0 −
1
2
∂0Aiγiγ0 +∇∧A/2

= γi∂iγ0V0 + γ0∂0γiAi/2 − γi∂i ∧ γ jV j

= γi∂iγ0V0 + γ0∂0γiV i + γi∂i ∧ γ jV j

= γµ∂µ ∧ γνVν

= ∇∧ V

(61.10)
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Okay, so in terms of potential we have the form as Maxwell’s equation

∇(∇∧ V) = −
4πG

c
J. (61.11)

With the gauge condition ∇ · V = 0, this produces the wave equation

∇2V = −
4πG

c
J. (61.12)

In terms of the author’s original equation 1.2 it appears that roughly Vµ = h0µ, and Jµ ∝ T0µ.
This is logically how he is able to go from that equation to the Maxwell form since both have

the same four-vector wave equation form (when Ti j ≈ 0). To give the potentials specific values
in terms of mass and current distribution appears to be where the retarded integrals are used.

The author expresses T µν in terms of ρ, and mass current j, but the field equations are in
terms of Tµν. What metric tensor is used to translate from upper to lower indices in this case. ie:
is it gµν, or ηµν ?

61.4 lagrangians

61.4.1 Field Lagrangian

Since the electrodynamic equation and corresponding field Lagrangian is

∇(∇∧ A) =
J
ε0c

L = −
ε0c
2

(∇∧ A)2 + A · J
(61.13)

Then, from eq. (61.11), the GEM field Lagrangian in covariant form is

L =
c

8πG
(∇∧ V)2 + V · J (61.14)

Writing Fµν = ∂µVν − ∂νVµ, the scalar part of this Lagrangian is:

L = −
c

16πG
FµνFµν + VσJσ (61.15)

Is this expression hiding in the Einstein field equations?
What is the Lagrangian for Newtonian gravity, and how do they compare?
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61.4.2 Interaction Lagrangian

The metric (equation 1.4) in the article is given to be

ds2 = −c2
(
1 − 2

Φ
c2

)
dt2 +

4
c
(A · dx) dt +

(
1 + 2

Φ
c2

)
δi jdxidx j

=⇒
∣∣∣ds2

∣∣∣ = c2(dτ)2 = (dx0)2 −
∑

i

(dxi)2 − 2
V0

c2 (dx0)2 −
8
c2 Vidxidx0 − 2

V0

c2 δi jdxidx j
(61.16)

With v = γµdxµ/dτ, the Lagrangian for interaction is

L =
1
2

m
∣∣∣∣∣ds
dτ

∣∣∣∣∣2
=

1
2

mc2

=
1
2

mv2 − 2
mV0

c2

∑
µ

(ẋµ)2 −
8m
c2 Vi ẋ0 ẋi

(61.17)

L =
1
2

mv2 − 2m

V0

∑
µ

(ẋµ/c)2 + 4Vi(ẋ0/c)(ẋi/c)

 (61.18)

Now, unlike the Lorentz force Lagrangian

L =
1
2

mv2 + qA · v/c, (61.19)

the Lagrangian of eq. (61.18) is quadratic in powers of ẋµ. There are remarks in the article
saying that the non-covariant Lagrangian used to arrive at the Lorentz force equivalent was a
first order approximation. Evaluation of this interaction Lagrangian does not produce anything
like the ṗµ = κFµν ẋν that we see in electrodynamics.

The calculation is not interesting but the end result for reference is

ṗ =
4m
c2

(
(v · ∇V0)γµvµ + 2(v · ∇Vi)(viγ0 + v0γi)

)
+

4m
c2

(
V0γ

µaµ + 2Vi(aiγ0 + a0γi)
)

−
2m
c2

∑
µ

(vµ)2∇V0 + 4v0vi∇Vi


(61.20)
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This can be simplified somewhat, but no matter what it will be quadratic in the velocity
coordinates.

The article also says that the line element is approximate. Has some of what is required for a
more symmetric covariant interaction proper force been discarded?

61.5 conclusion

The ideas here are interesting. At a high level, roughly, as I see it, the equation

∇2h0µ = T0µ (61.21)

has exactly the same form as Maxwell’s equations in covariant form, so you can define an
antisymmetric field tensor equation in the same way, treating these elements of h, and the cor-
responding elements of T as a four vector potential and mass current.

That said, I do not have the GR background to know understand the introduction. For exam-
ple, how to actually arrive at 1.2 or how to calculated your metric tensor in equation 1.4. I would
have expected 1.4 to have a more symmetric form like the covariant Lorentz force Lagrangian
(v2 + kA.v), since you can get a Lorentz force like equation out of it. Because of the quadratic
velocity terms, no matter how one varies that metric with respect to s as a parameter, one can-
not get anything at all close to the electrodynamics Lorentz force equation mẍµ = qFµνẋν, so
the correspondence between electromagnetism and GR breaks down once one considers the
interaction.





62
R E L AT I V I S T I C D O P P L E R F O R M U L A

62.1 transform of angular velocity four vector

It was possible to derive the Lorentz boost matrix by requiring that the wave equation operator

∇2 =
1
c2

∂2

∂t2 −∇
2 (62.1)

retain its form under linear transformation (56). Applying spatial Fourier transforms (115),
one finds that solutions to the wave equation

∇2ψ(t, x) = 0 (62.2)

Have the form

ψ(t, x) =

∫
A(k)ei(k·x−ωt)d3k (62.3)

Provided that ω = ±c|k|. Wave equation solutions can therefore be thought of as continuously
weighted superpositions of constrained fundamental solutions

ψ = ei(k·x−ωt)

c2k2 = ω2 (62.4)

The constraint on frequency and wave number has the look of a Lorentz square

ω2 − c2k2 = 0 (62.5)

Which suggests that in additional to the spacetime vector

X = (ct, x) = xµγµ (62.6)
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evident in the wave equation fundamental solution, we also have a frequency-wavenumber
four vector

K = (ω/c,k) = kµγµ (62.7)

The pair of four vectors above allow the fundamental solutions to be put explicitly into co-
variant form

K · X = ωt − k · x = kµxµ (62.8)

ψ = e−iK·X (62.9)

Let us also examine the transformation properties of this fundamental solution, and see as a
side effect that K has transforms appropriately as a four vector.

0 = ∇2ψ(t, x)

= ∇′
2ψ(t′, x′)

= ∇′
2ei(x′·k′−ω′t′)

= −

(
ω′2

c2 − k′2
)

ei(x′·k′−ω′t′)

(62.10)

We therefore have the same form of frequency wave number constraint in the transformed
frame (if we require that the wave function for light is unchanged under transformation)

ω′2 = c2k′2 (62.11)

Writing this as

0 = ω2 − c2k2 = ω′2 − c2k′2 (62.12)

singles out the Lorentz invariant nature of the (ω,k) pairing, and we conclude that this pairing
does indeed transform as a four vector.



62.2 application of one dimensional boost 491

62.2 application of one dimensional boost

Having attempted to justify the four vector nature of the wave number vector K, now move on
to application of a boost along the x-axis to this vector.

ω′ck′

 = γ

 1 −β

−β 1


ωck


=

 ω − vk

ck − βω


(62.13)

We can take ratios of the frequencies if we make use of the dependency between ω and k.
Namely, ω = ±ck. We then have

ω′

ω
= γ(1 ∓ β)

=
1 ∓ β√
1 − β2

=
1 ∓ β√

1 − β
√

1 + β

(62.14)

For the positive angular frequency this is

ω′

ω
=

√
1 − β√
1 + β

(62.15)

and for the negative frequency the reciprocal.
Deriving this with a Lorentz boost is much simpler than the time dilation argument in wikipedia

doppler article [45]. EDIT: Later found exactly the above boost argument in the wiki k-vector
article [43].

What is missing here is putting this in a physical context properly with source and reciever
frequencies spelled out. That would make this more than just math.





63
P O I N C A R E T R A N S F O R M AT I O N S

63.1 motivation

In [35] a Poincare transformation is used to develop the symmetric stress energy tensor directly,
in contrast to the non-symmetric canonical stress energy tensor that results from spacetime
translation.

Attempt to decode one part of this article, the use of a Poincare transformation.

63.2 incremental transformation in ga form

Equation (11) in the article, is labeled an infinitesimal Poincare transformation

x′µ = x′µ + εµνxν + εµ (63.1)

It is stated that an antisymmetrization condition εµν = −ενµ. This is somewhat confusing since
the infinitesimal transformation is given by a mixed upper and lower index tensor. Due to the
antisymmetry perhaps this all a coordinate statement of the following vector to vector linear
transformation

x′ = x + ε + A · x (63.2)

This transformation is less restricted than a plain old spacetime transformation, as it also con-
tains a projective term, where x is projected onto the spacetime (or spatial) plane A (a bivector),
plus a rotation in that plane.

Writing as usual

x = γµxµ (63.3)

So that components are recovered by taking dot products, as in

xµ = x · γµ (63.4)
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494 poincare transformations

For the bivector term, write

A = c∧ d = cαdβ(γα ∧ γβ) (63.5)

For

(A · x) · γµ = cαdβxσ((γα ∧ γβ) · γσ) · γµ

= cαdβxσ(δαµδβσ − δβµδασ)

= (cµdσ − cσdµ)xσ

(63.6)

This allows for an identification εµσ = cµdσ − cσdµ which is antisymmetric as required. With
that identification we can write eq. (63.1) via the equivalent vector relation eq. (63.2) if we write

εµσxσ = (cµdσ − cσdµ)xσ (63.7)

Where εµσ is defined implicitly in terms of components of the bivector A = c∧ d.
Is this what a Poincare transformation is? The Poincare Transformation article suggests not.

This article suggests that the Poincare transformation is a spacetime translation plus a Lorentz
transformation (composition of boosts and rotations). That Lorentz transformation will not be
antisymmetric however, so how can these be reconciled? The key is probably the fact that this
was an infinitesimal Poincare transformation so lets consider a Taylor expansion of the Lorentz
boost or rotation rotor, considering instead a transformation of the following form

x′ = x + ε + RxR̃

RR̃ = 1
(63.8)

In particular, let us look at the Lorentz transformation in terms of the exponential form

R = eIθ/2 (63.9)

Here θ is either the angle of rotation (when the bivector is a unit spatial plane such as I =

γk ∧ γm), or a rapidity angle (when the bivector is a unit spacetime plane such as I = γk ∧ γ0).
Ignoring the translation in eq. (63.8) for now, to calculate the first order term in Taylor series

we need

dx′

dθ
=

dR
dθ

xR̃ + Rx
dR̃
dθ

=
dR
dθ

R̃RxR̃ + RxR̃R
dR̃
dθ

=
1
2

(Ωx′ + x′Ω̃)

(63.10)

http://mathworld.wolfram.com/PoincareTransformation.html
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where

1
2

Ω =
dR
dθ

R̃ (63.11)

Now, what is the grade of the product Ω? We have both dR/dθ and R in {
∧0 ⊕

∧2} so the
product can only have even grades Ω ∈ {

∧0 ⊕
∧2 ⊕

∧4}, but the unitary constraint on R restricts
this

Since RR̃ = 1 the derivative of this is zero

dR
dθ

R̃ + R
dR̃
dθ

= 0 (63.12)

Or

dR
dθ

R̃ = −

(
dR
dθ

R̃
)̃

(63.13)

Antisymmetry rules out grade zero and four terms, leaving only the possibility of grade 2.
That leaves

dx′

dθ
=

1
2

(Ωx′ − x′Ω) = Ω · x′ (63.14)

And the first order Taylor expansion around θ = 0 is

x′(dθ) ≈ x′(θ = 0) + (Ωdθ) · x′

= x + (Ωdθ) · x′
(63.15)

This has close to the postulated form in eq. (63.2), but differs in one notable way. The dot
product with the antisymmetric form A = 1

2
dR
dθ R̃dθ is a dot product with x′ and not x! One can

however invert the identity writing x in terms of x′ (to first order)

x = x′ − (Ωdθ) · x′ (63.16)

Replaying this argument in fast forward for the inverse transformation should give us a rela-
tion for x′ in terms of x and the incremental Lorentz transform

x′ = RxR̃

=⇒

x = R̃x′R

(63.17)
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dx
dθ

=
dR̃
dθ

RR̃x′R + R̃x′RR̃
dR
dθ

=

(
2

dR̃
dθ

R
)
· x

(63.18)

So we have our incremental transformation given by

x′ = x −
(
2

dR̃
dθ

Rdθ
)
· x (63.19)

63.3 consider a specific infinitesimal spatial rotation

The signs and primes involved in arriving at eq. (63.19) were a bit confusing. To firm things up
a bit considering a specific example is called for.

For a rotation in the x, y plane, we have

R = eγ1γ2θ/2

x′ = RxR̃
(63.20)

Here also it is easy to get the signs wrong, and it is worth pointing out the sign convention
picked here for the Dirac basis is γ0

2 = −γk
2 = 1. To verify that R does the desired job, we have

Rγ1R̃ = γ1R̃2

= γ1eγ2γ1θ

= γ1(cos θ + γ2γ1 sin θ)

= γ1(cos θ − γ1γ2 sin θ)

= γ1 cos θ + γ2 sin θ

(63.21)

and

Rγ2R̃ = γ2R̃2

= γ2eγ2γ1θ

= γ2(cos θ + γ2γ1 sin θ)

= γ2 cos θ − γ1 sin θ

(63.22)
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For γ3 or γ0, the quaternion R commutes, so we have

Rγ3R̃ = RR̃γ3 = γ3

Rγ0R̃ = RR̃γ0 = γ0
(63.23)

(leaving the perpendicular basis directions unchanged).
Summarizing the action on the basis vectors in matrix form this is

γ0

γ1

γ2

γ3


→


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1




γ0

γ1

γ2

γ3


(63.24)

Observe that the basis vectors transform with the transposed matrix to the coordinates, and
we have

γ0x0 + γ1x1 + γ2x2 + γ3x3 → γ0x0 + x1(γ1 cos θ + γ2 sin θ) + x2(γ2 cos θ − γ1 sin θ) + γ3x3

(63.25)

Dotting x′µ = x′ · γµ we have

x0 → x0

x1 → x1 cos θ − x2 sin θ

x2 → x1 sin θ + x2 cos θ

x3 → x3

(63.26)

In matrix form this is the expected and familiar rotation matrix in coordinate form
x0

x1

x2

x3


→


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1




x0

x1

x2

x3


(63.27)

Moving on to the initial verification we have

2
dR̃
dθ

= 2
d
dθ

eγ2γ1θ/2

= γ1γ2eγ2γ1θ/2
(63.28)



498 poincare transformations

So we have

2
dR̃
dθ

R = γ2γ1eγ2γ1θ/2eγ1γ2θ/2

= γ2γ1

(63.29)

The antisymmetric form εµν in this case therefore appears to be nothing more than the unit
bivector for the plane of rotation! We should now be able to verify the incremental transforma-
tion result from eq. (63.19), which is in this specific case now calculated to be

x′ = x + dθ(γ1γ2) · x (63.30)

As a final check let us look at the action of rotation part of the transformation eq. (63.30)
on the coordinates xµ. Only the x1 and x2 coordinates need be considered since there is no
projection of γ0 or γ3 components onto the plane γ1γ2.

dθ(γ1γ2) · (x1γ1 + x2γ2) = dθ
〈
γ1γ2(x1γ1 + x2γ2)

〉
1

= dθ(γ2x1 − γ1x2)
(63.31)

Now compare to the incremental transformation on the coordinates in matrix form. That is

δR = dθ
d
dθ


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θ=0

= dθ


0 0 0 0

0 − sin θ − cos θ 0

0 cos θ − sin θ 0

0 0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θ=0

= dθ


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0



(63.32)
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So acting on the coordinate vector

δR = dθ


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0




x0

x1

x2

x3



= dθ


0

−x2

x1

0



(63.33)

This is exactly what we got above with the bivector dot product. Good.

63.4 consider a specific infinitesimal boost

For a boost along the x axis we have

R = eγ0γ1α/2

x′ = RxR̃
(63.34)

Verifying, we have

x0γ0 → x0(coshα + γ0γ1 sinhα)γ0

= x0(γ0 coshα − γ1 sinhα)
(63.35)

x1γ1 → x1(coshα + γ0γ1 sinhα)γ1

= x1(γ1 coshα − γ0 sinhα)
(63.36)

Dot products recover the familiar boost matrix
x0

x1

x2

x3



′

=


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


(63.37)
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Now, how about the incremental transformation given by eq. (63.19). A quick calculation
shows that we have

x′ = x + dα(γ0γ1) · x (63.38)

Just like the eq. (63.30) case for a rotation in the xy plane, the antisymmetric form is again
the unit bivector of the rotation plane (this time the unit bivector in the spacetime plane of the
boost.)

This completes the examination of two specific incremental Lorentz transformations. It is
clear that the result will be the same for an arbitrarily oriented bivector, and the original guess
eq. (63.2) of a geometric equivalent of tensor relation eq. (63.1) was correct, provided that A is
a unit bivector scaled by the magnitude of the incremental transformation.

The specific case not treated however are those transformations where the orientation of the
bivector is allowed to change. Parameterizing that by angle is not such an obvious procedure.

63.5 in tensor form

For an arbitrary bivector A = a∧ b, we can calculate εσα. That is

εσαxα = dθ
((aµγµ ∧ bνγν) · (xαγα)) · γσ∣∣∣((aµγµ)∧ (bνγν)) · ((aαγα)∧ (bβγβ))

∣∣∣1/2
=

aσbα − aαbσ∣∣∣aµbν(aνbµ − aµbν)
∣∣∣1/2 xα

(63.39)

So we have

εσα = dθ
aσbα − aαbσ∣∣∣aµbν(aνbµ − aµbν)

∣∣∣1/2 (63.40)

The denominator can be subsumed into dθ, so the important factor is just the numerator,
which encodes an incremental boost or rotational in some arbitrary spacetime or spatial plane
(respectively). The associated antisymmetry can be viewed as a consequence of the bivector
nature of the rotor derivative rotor product.
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64
M A X W E L L’ S E Q UAT I O N S E X P R E S S E D W I T H G E O M E T R I C
A L G E B R A

64.1 on different ways of expressing maxwell’s equations

One of the most striking applications of the geometric product is the ability to formulate the
eight Maxwell’s equations in a coherent fashion as a single equation.

This is not a new idea, and this has been done historically using formulations based on quater-
nions ( 1910. dig up citation). A formulation in terms of antisymmetric second rank tensors Fµν

and Gµν (See: wiki:Formulation of Maxwell’s equations in special relativity) reduces the eight
equations to two, but also introduces complexity and obfuscates the connection to the physically
measurable quantities.

A formulation in terms of differential forms (See: wiki:Maxwell’s equations) is also possible.
This does not have the complexity of the tensor formulation, but requires the electromagnetic
field to be expressed as a differential form. This is arguably strange given a traditional vector
calculus education. One also does not have to integrate a field in any fashion, so what meaning
should be given to a electrodynamic field as a differential form?

64.1.1 Introduction of complex vector electromagnetic field

To explore the ideas, the starting point is the traditional set of Maxwell’s equations

(64.1)∇ · E =
ρ

ε0

(64.2)∇ · B = 0

(64.3)∇ × E +
∂B
∂t

= 0

(64.4)c2∇ × B −
∂E
∂t

=
J
ε0

It is customary in relativistic treatments of electrodynamics to introduce a four vector (x, y, z, ict).
Using this as a hint, one can write the time partials in terms of ict and regrouping slightly
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(64.5)∇ · E =
ρ

ε0

(64.6)∇ · (icB) = 0

(64.7)∇ × E +
∂(icB)
∂(ict)

= 0

(64.8)∇ × (icB) +
∂E
∂(ict)

= i
J
ε0c

There is no use of geometric or wedge products here, but the opposing signs in the two sets of
curl and time partial equations is removed. The pairs of equations can be added together without
loss of information since the original equations can be recovered by taking real and imaginary
parts.

(64.9)∇ · (E + icB) =
ρ

ε0

(64.10)∇ × (E + icB) +
∂(E + icB)
∂(ict)

= i
J
ε0c

It is thus natural to define a combined electrodynamic field as a complex vector, expressing
the natural orthogonality of the electric and magnetic fields

(64.11)F = E + icB

The electric and magnetic fields can be recovered from this composite field by taking real
and imaginary parts respectively, and we can now write write Maxwell’s equations in terms of
this single electrodynamic field

(64.12)∇ · F =
ρ

ε0

(64.13)∇ × F +
∂F
∂(ict)

= i
J
ε0c
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64.1.2 Converting the curls in the pair of Maxwell’s equations for the electrodynamic field to
wedge and geometric products

The above manipulations didn’t make any assumptions about the structure of the “imaginary”
denoted i above. What was implied was a requirement that i2 = −1, and that i commutes with
vectors. Both of these conditions are met by the use of the pseudoscalar for 3D Euclidean
space e1e2e3. This is usually denoted I and we’ll now switch notations for clarity. XX With
multiplication of the second by a I factor to convert to a wedge product representation the
remaining pair of equations can be written

(64.14)∇ · F =
ρ

ε0

(64.15)I∇ × F +
1
c
∂F
∂t

= −
J
ε0c

This last, in terms of the geometric product is,

(64.16)∇ ∧ F +
1
c
∂F
∂t

= −
J
ε0c

These equations can be added without loss

(64.17)∇ · F + ∇ ∧ F +
1
c
∂F
∂t

=
ρ

ε0
−

J
ε0c

Leading to the end result

(64.18)
(
1
c
∂

∂t
+ ∇

)
F =

1
ε0

(
ρ −

J
c

)
Here we have all of Maxwell’s equations as a single differential equation. This gives a hint

why it is hard to separately solve these equations for the electric or magnetic field components
(the partials of which are scattered across the original eight different equations.) Logically the
electric and magnetic field components have to be kept together.

Solution of this equation will require some new tools. Minimally, some relearning of existing
vector calculus tools is required.

64.1.3 Components of the geometric product Maxwell equation

Explicit expansion of this equation, again using I = e1e2e3, will yield a scalar, vector, bivector,
and pseudoscalar components, and is an interesting exercise to verify the simpler field equation
really describes the same thing.
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FIXME: the following is busted. Both ∇ · (IB) and ∇∧ (IB) are malformed.

(64.19)
(
1
c
∂

∂t
+ ∇

)
F =

1
c
∂E
∂t

+ I
1
c
∂B
∂t

+ ∇ · E + ∇ ∧ E + ∇ · IB + ∇ ∧ IB

The imaginary part of the field can be multiplied out as bivector components explicitly

IB = e1e2e3(e1B1 + e2B2 + e3B3)

= e2e3B1 + e3e1B2 + e1e2B3
(64.20)

which allows for direct calculation of the following

(64.21)∇ ∧ IB = I∇ · B

(64.22)∇ · IB = −∇ × B

That, plus writing the electric field curl term in terms of the cross product

(64.23)∇ ∧ E = I∇ × E

This allows for grouping of real and imaginary scalar and real and imaginary vector (bivector)
components

(64.24)(∇ · E) + I (∇ · B) +

(
1
c
∂E
∂t
− ∇ × B

)
+ I

(
1
c
∂B
∂t

+ ∇ × E
)

(64.25)=
ρ

ε0
+ I (0) +

(
−

J
ε0c

)
+ I0

Comparing each of the left and right side components recovers the original set of four (or
eight depending on your point of view) Maxwell’s equations.

64.2 future: comparison to gravitation?

The high school electrostatics equation, where ρ is either a continuous distribution or a spatial
delta function for point masses:

(64.26)E(r) =
1

4πε0

∫
ρ(r′)

(r − r′)
(r − r′)2 dV ′

As a field equation this is written:

(64.27)∇ · E(r) =
ρ(r)
ε0
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but this is both not relativistically correct nor does is include the propagation effects for
“electrostatics” interactions which occur at the speed of light.

We need the other three components of the Maxwell’s equation eq. (64.18), to get the propa-
gation and relativistic corrections.

Compare this to newton’s gravitational field equation:

(64.28)G(r) = −G
∫

ρ(r′)
(r − r′)
(r − r′)2 dV ′

which can be written as a field equation as:

(64.29)∇ ·G(r) = 4πGρ(r).

If one assumes that electrodynamics and gravitation have the same form then is the corrected
form of the gravitational field equation with respect to relativity and propagation at the speed
of light as follows:

(
1
c
∂

∂t
+∇

)
G(r) = 4πGρ(r) (64.30)

Is this correct in any sense? Perhaps it matches the special relativity results but not the general
relativity ones?





65
BAC K T O M A X W E L L’ S E Q UAT I O N S

65.1

Having observed and demonstrated that the Lorentz transformation is a natural consequence
of requiring the electromagnetic wave equation retains the form of the wave equation under
change of space and time variables that includes a velocity change in one spacial direction.

Lets step back and look at Maxwell’s equations in more detail. In particular looking at how
we get from integral to differential to GA form. Some of this is similar to the approach in GAFP,
but that text is intended for more mathematically sophisticated readers.

We start with the equations in SI units:

∫
S (closed boundary of V)

E · n̂dA =
1
ε0

∫
V
ρdV∫

S (any closed surface)
B · n̂dA = 0∫

C(boundary of S)
E · dx = −

∫
S

∂B
∂t
· n̂dA∫

C(boundary of S)
B · dx = µ0

(
I + ε0

∫
S

∂E
∂t
· n̂dA

)
(65.1)

As the surfaces and corresponding loops or volumes are made infinitely small, these equations
(FIXME: demonstrate), can be written in differential form:

∇ ·E =
ρ

ε0

∇ ·B = 0

∇ ×E = −
∂B
∂t

∇ ×B = µ0

(
J + ε0

∂E
∂t

) (65.2)

These are respectively, Gauss’s Law for E, Gauss’s Law for B, Faraday’s Law, and the Am-
pere/Maxwell’s Law.

This differential form can be manipulated to derive the wave equation for free space, or the
wave equation with charge and current forcing terms in other space.
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65.1.1 Regrouping terms for dimensional consistency

Derivation of the wave equation can be done nicely using geometric algebra, but first is it helpful
to put these equations in a more dimensionally pleasant form. Lets relate the dimensions of the
electric and magnetic fields and the constants µ0, ε0.

From Faraday’s equation we can relate the dimensions of B, and E:

[E]
[d]

=
[B]
[t]

(65.3)

We therefore see that B, and E are related dimensionally by a velocity factor.
Looking at the dimensions of the displacement current density in the Ampere/Maxwell equa-

tion we see:

[B]
[d]

= [µ0ε0]
[E]
[t]

(65.4)

From the two of these the dimensions of the µ0ε0 product can be seen to be:

[µ0ε0] =
[t]2

[d]2 (65.5)

So, we see that we have a velocity factor relating E, and B, and we also see that we have a
squared velocity coefficient in Ampere/Maxwell’s law. Let us factor this out explicitly so that E
and B take dimensionally consistent form:

τ =
t

√
µ0ε0

∇ ·E =
ρ

ε0

∇ ·
B
√
µ0ε0

= 0

∇ ×E = −
∂

∂τ

B
√
µ0ε0

∇ ×
B
√
µ0ε0

=

√
µ0

ε0
J +

∂E
∂τ

(65.6)
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65.1.2 Refactoring the equations with the geometric product

Now that things are dimensionally consistent, we are ready to group these equations using the
geometric product

AB = A ·B + A∧B = A ·B + iA ×B (65.7)

where i = e1e2e3 is the spatial pseudoscalar. By grouping the divergence and curl terms for
each of B, and E we can write vector gradient equations for each of the Electric and Magnetic
fields:

∇E =
ρ

ε0
− i

∂

∂τ

B
√
µ0ε0

(65.8)

∇
B
√
µ0ε0

= i
√
µ0

ε0
J + i

∂E
∂τ

(65.9)

Multiplication of eq. (65.9) with i, and adding to eq. (65.8), we have Maxwell’s equations
consolidated into:

∇

(
E + i

B
√
µ0ε0

)
=

(
ρ

ε0
−

√
µ0

ε0
J
)
−
∂

∂τ

(
E +

iB
√
µ0ε0

)
(65.10)

We see that we have a natural combined Electrodynamic field:

F = ε0

(
E + i

B
√
µ0ε0

)
= ε0 (E + icB) (65.11)

Note that here the ε0 factor has been included as a convenience to remove it from the charge
and current density terms later. We have also looked ahead slightly and written:

c =
1
√
µ0ε0

(65.12)

The dimensional analysis above showed that this had dimensions of velocity. This velocity
is in fact the speed of light, and we will see this more exactly when looking at the wave equa-
tion for electrodynamics. Until that this can be viewed as a nothing more than a convenient
shorthand.
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We use this to write (Maxwell’s) eq. (65.10) as:

(
∇ +

1
c
∂

∂t

)
F = ρ −

J
c
. (65.13)

These are still four equations, and the originals can be recovered by taking scalar, vector,
bivector and trivector parts. However, in this consolidated form, we are able to see the structure
more easily.

65.1.3 Grouping by charge and current density

Before moving on to the wave equation, lets put equations eq. (65.8) and eq. (65.9) in a slightly
more symmetric form, grouping by charge and current density respectively:

∇E +
∂icB
∂ct

=
ρ

ε0
(65.14)

∇icB +
∂E
∂ct

= −
J
ε0c

(65.15)

Here we see how spatial electric field variation and magnetic field time variation are related
to charge density. We also see the opposite pairing, where spatial magnetic field variation and
electric field variation with time are related to current density.

TODO: examine Lorentz transformations of the coordinates here.
Perhaps the most interesting feature here is how the spacetime gradient ends up split across

the E and B fields, but it may not be worth revisiting this. Let us move on.

65.1.4 Wave equation for light

To arrive at the wave equation, we take apply the gradient twice to calculate the Laplacian. First
vector gradient is:

∇F = −
1
c
∂F
∂t

+

(
ρ −

J
c

)
. (65.16)

Second application gives:

∇
2F = −

1
c
∇
∂F
∂t

+∇

(
ρ −

J
c

)
.
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Assuming continuity sufficient for mixed partial equality, we can swap the order of spatial
and time derivatives, and substitute eq. (65.16) back in.

∇
2F = −

1
c
∂

∂t

(
−

1
c
∂F
∂t

+

(
ρ −

J
c

))
+∇

(
ρ −

J
c

)
(65.17)

Or,

(
∇

2 −
1
c2 ∂tt

)
F =

(
∇ −

1
c
∂t

) (
ρ −

J
c

)
(65.18)

Now there are a number of things that can be read out of this equation. The first is that in
a charge and current free region the electromagnetic field is described by an unforced wave
equation:

(
∇

2 −
1
c2 ∂tt

)
F = 0 (65.19)

This confirms the meaning that was assigned to c. It is the speed that an electrodynamic wave
propagates in a charge and current free region of space.

65.1.5 Charge and current density conservation

Now, lets look at the right hand side of eq. (65.18) a bit closer:

(∇ − ∂ct)

(
ρ −

J
c

)
= −

1
c

(
∂ρ

∂t
+∇ · J

)
+∇ρ −

1
c
∇∧ J +

1
c2

∂J
∂t

(65.20)

Compare this to the left hand side of eq. (65.18) which has only vector and bivector parts.
This implies that the scalar components of the right hand side are zero. Specifically:

∂ρ

∂t
+∇ · J = 0

This is a statement of charge conservation, and is more easily interpreted in integral form:

−

∫
S (closed boundary of V)

J · n̂dA =
∂

∂t

∫
V
ρdV =

∂Qenc

∂t
(65.21)

FIXME: think about signs fully here.
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The flux of the current density vector through a closed surface equals the time rate of change
of the charge enclosed by that volume (ie: the current). This could perhaps be viewed as the def-
inition of the current density itself. This fact would probably be more obvious if I did the math
myself to demonstrate exactly how to take Maxwell’s equations in integral form and convert
those to their differential form. In lieu of having done that proof myself I can at least determine
this as a side effect of a bit of math.

65.1.6 Electric and Magnetic field dependence on charge and current density

Removing the explicit scalar terms from eq. (65.18) we have:

(
∇

2 − ∂ct,ct
)

F =
1
c

(
∇cρ +

∂J
∂ct

)
−

1
c
∇∧ J

This shows explicitly how the charge and current forced wave equations for the electric and
magnetic fields is split:

(
∇

2 − ∂ct,ct
)

E =
1
c

(
∇cρ +

∂J
∂ct

)

(
∇

2 − ∂ct,ct
)

B = −
1
c2∇ × J

65.1.7 Spacetime basis

Now, if we look back to Maxwell’s equation in the form of eq. (65.13), we have a spacetime
“gradient” with vector and scalar parts, an electrodynamic field with vector and trivector parts,
and a charge and current density term with scalar and vector parts.

It is still rather confused, but it all works out, and one can recover the original four vector
equations by taking scalar, vector, bivector, and trivector parts.

We want however to put this into a natural orderly fashion, and can do so if we use a normal
bivector basis for all the spatial basis vectors, and factor out a basis vector from that for each of
the scalar (timelike) factors.

Since bivectors over a Euclidean space have negative square, and this is not what we want for
our Euclidean basis, and will have to pick a bivector basis with a mixed metric. We will see that
this defines a Minkowski metric space. Amazingly, by the simple desire that we want to express
Maxwell’s equations be written in the most orderly fashion, we arrive at the mixed signature
spacetime metric that is the basis of special relativity.
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Now, perhaps the reasons why to try to factor the spatial basis into a bivector basis are not
obvious. It is worth noting that we have suggestions of conjugate operations above. Examples
of this are the charge and current terms with alternate signs, and the alternation in sign in the
wave equation itself. Also worth pointing out is the natural appearance of a complex factor i
in Maxwell’s equation coupled with the time term (that idea is explored more in ../maxwell/-
maxwell.pdf). This coupling was observed long ago and Minkowski’s original paper refactors
Maxwell’s equation using it. Now we have also seen that complex numbers are isomorphic
with a scalar plus vector representation. Quaternions, which were originally “designed” to fit
naturally in Maxwell’s equation and express the inherent structure are exactly this, a scalar and
bivector sum. There is a lot of history that leads up to this idea, and the ideas here are not too
surprising with some reading of the past attempts to put structure to these equations.

On to the math...
Having chosen to find a bivector representation for our spatial basis vectors we write:

ei = γi ∧ γ0 = γiγ0 = γ0 ∧ γi = γ0γi

For our Euclidean space we want

(ei)2 = γiγ0γiγ0 = −(γi)2(γ0)2 = 1

This implies the mixed signature:

(γi)2 = −(γ0)2 = ±1

We are free to pick either γ0 or γi to have a negative square, but following GAFP we use:

(γ0)2 = 1

(γi)2 = −1

γ0 = γ0

γi = −γi

(65.22)
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Now, lets translate the other scalar, vector, bivector, and trivector representations to use this
alternate basis, and see what we get. Start with the spacial pseudoscalar that is part of our
magnetic field:

i = e123

= γ102030

= −γ012030

= γ012300

= γ0123

(65.23)

We see that the three dimensional pseudoscalar represented with this four dimensional basis
is in fact also a pseudoscalar for that space. Lets now use this to expand the trivector part of our
electromagnetic field in this new basis:

iB =
∑

ieiBi =
∑

γ0123i0Bi = γ32B1 + γ13B2 + γ21B3 (65.24)

So we see that our electromagnetic field has a bivector only representation with this mixed
signature basis:

F = E + icB = γ10E1 + γ20E2 + γ30E3 + γ32cB1 + γ13cB2 + γ21cB3 (65.25)

Each of the possible bivector basis vectors is associated with a component of the combined
electromagnetic field. I had the signs wrong initially for the B components, but I think it is right
now (and signature independent in fact). ? If I did get it wrong the idea is the same ... F is
naturally viewed as a pure bivector, which fits well with the fact that the tensor formulation is
two completely antisymmetric rank two tensors.

Now, lets look at the spacetime gradient terms, first writing the spacial gradient in index form:

∇ =
∑

ei ∂

∂xi

=
∑

ei
∂

∂xi

=
∑

γiγ0
∂

∂xi

= γ0

∑
γi ∂

∂xi .

(65.26)
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This allows the spacetime gradient to be written in vector form replacing the vector plus
scalar formulation:

∇ + ∂ct = γ0

∑
γi ∂

∂xi + ∂ct

= γ0

(∑
γi ∂

∂xi + γ0∂ct

)
= γ0

∑
γµ

∂

∂xi

(65.27)

Observe that after writing x0 = ct we can factor out the γ0, and write the spacetime gradient
in pure vector form, using this mixed signature basis.

Now, let us do the same thing for the charge and current density terms, writing J = eiJi:

ρ −
J
c

=
1
c

(
cρ −

∑
eiJi

)
=

1
c

(
cρ −

∑
γiγ0Ji

)
=

1
c

(
cρ + γ0

∑
γiJi

)
= γ0

1
c

(
γ0cρ +

∑
γiJi

)
(65.28)

Thus after writing J0 = cρ, we have:

ρ −
J
c

= γ0
1
c

∑
γµJµ

Putting these together and canceling out the leading γ0 terms we have the final result:

∑
γµ

∂

∂xi F =
1
c

∑
γµJµ. (65.29)

Or with a four-gradient ∇ =
∑
γµ ∂

∂xi , and four current J =
∑
γµJµ, we have Maxwell’s

equation in their most compact and powerful form:

∇F =
J
c
. (65.30)
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65.1.8 Examining the GA form Maxwell equation in more detail

From eq. (65.30), the wave equation becomes quite simple to derive. Lets look at this again
from this point of view. Applying the gradient we have:

∇2F =
∇J
c
. (65.31)

∇2 = ∇ · ∇ =
∑

(γµ)2∂xµ,xµ = −∇2 +
1
c2 ∂tt. (65.32)

Thus for a charge and current free region, we still have the wave equation.
Now, lets look at the right hand side, and verify that it meets the expectations:

1
c
∇J =

1
c
(∇ · J +∇∧ J) (65.33)

First thing to observe is that the left hand side is a pure spacetime bivector, which implies
that the scalar part of eq. (65.33) is zero as we previously observed. Lets verify that this is still
the charge conservation condition:

0 = ∇ · J

= (
∑

γµ∂µ) ·
∑

γνJν

=
∑

γµ · γν∂µJν

=
∑

δ
µ
ν∂µJν

=
∑

∂µJµ

= ∂ct(cρ) +
∑

∂iJi

(65.34)

This is our previous result:

∂ρ

∂t
+∇ · J = 0 (65.35)

This allows a slight simplification of the current forced wave equation for an electrodynamic
field, by taking just the bivector parts:

(
∇

2 −
1
c2 ∂tt

)
F = −∇∧

J
c

(65.36)
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Now we know how to solve the left hand side of this equation in its homogeneous form, but
the four space curl term on the right is new.

This is really a set of six equations, subject to coupled boundary value conditions. Written
this out in components, one for each F · (γν ∧ γµ) term and the corresponding terms of the right
hand side one ends up with:

−∇2E = ∇ρ/ε0 + µ0∂tJ

−∇2B = −µ0∇ × J

I have not bothered transcribing my notes for how to get this. One way (messy) was starting
with eq. (65.36) and dotting with γνµ to calculate the tensor Fµν (components of which are E
and B components). Doing the same for the spacetime curl term the end result is:

(∇∧ J) · (γνµ) = ∂µJν(γµ)2 − ∂νJµ(γν)2

For a spacetime split of indices one gets the ∇ρ, and ∂tJ term, and for a space-space pair of
indices one gets the spacial curl in the B equation.

An easier starting point for this is actually using equations eq. (65.14) and eq. (65.15) since
they are already split into E, and B fields.

65.1.9 Minkowski metric

Having observed that a mixed signature bivector basis with a space time mix of underlying basis
vectors is what we want to express Maxwell’s equation in its most simple form, now lets step
back and look at that in a bit more detail. In particular lets examine the dot product of a four
vector with such a basis. Our current density four vector is one such vector:

J2 = J · J =
∑

(Jµ)2(γµ)2 = (cρ)2 − J2 (65.37)

The coordinate vector that is forms the partials of our four gradient is another such vector:

x = (ct, x1, x2, x3) =
∑

γµxµ

Again, the length applied to this vector is:

x2 = x · x = (ct)2 − x2 (65.38)

As a result of nothing more than a desire to put Maxwell’s equations into structured form, we
have the special relativity metric of Minkowski and Einstein.
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M AC RO S C O P I C M A X W E L L’ S E Q UAT I O N

66.1 motivation

In [22] the macroscopic Maxwell’s equations are given as

∇ ·D = 4πρ

∇ ×H −
1
c
∂D
∂t

=
4π
c

J

∇ ×E +
1
c
∂B
∂t

= 0

∇ ·B = 0

(66.1)

The H and D fields are then defined in terms of dipole, and quadrupole fields

Dα = Eα + 4π

Pα −
∑
β

∂Q′αβ
∂xβ

+ · · ·


Hα = Bα − 4π (Mα + · · ·)

(66.2)

Can this be put into the Geometric Algebra formulation that works so nicely for microscopic
Maxwell’s equations, and if so what will it look like?

66.2 consolidation attempt

Let us try this, writing

P = σα

Pα −
∑
β

∂Q′αβ
∂xβ

+ · · ·


M = σα (Mα + · · ·)

(66.3)

We can then express the E, B in terms of the derived fields

E = D − 4πP
B = H + 4πM

(66.4)
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and in turn can write the macroscopic Maxwell equations eq. (66.1) in terms of just the
derived fields, the material properties, and the charges and currents

∇ ·D = 4πρ

∇ ×H −
1
c
∂D
∂t

=
4π
c

J

∇ ×D +
1
c
∂H
∂t

= 4π∇ × P +
4π
c
∂M
∂t

∇ ·H = −4π∇ ·M

(66.5)

Now, using a × b = −i(a∧ b), we have

∇ ·D = 4πρ

i∇∧H +
1
c
∂D
∂t

= −
4π
c

J

∇∧D +
1
c
∂iH
∂t

= 4πi∇ × P +
4π
c
∂iM
∂t

i∇ ·H = −4πi∇ ·M

(66.6)

Summing these in pairs with ∇a = ∇ · a +∇∧ a, and writing ∂/∂(ct) = ∂0 we have

∇D + ∂0iH = 4πρ + 4π∇∧ P + 4π∂0iM

i∇H + ∂0D = −
4π
c

J − 4πi∇ ·M
(66.7)

Note that while had i∇ · a , ∇ · (ia), and i∇ ∧ a , ∇ ∧ (ia) (instead i∇ · a = ∇ ∧ (ia), and
i∇ ∧ a = ∇ · (ia)), but now that these are summed we can take advantage of the fact that the
pseudoscalar i commutes with all vectors (such as ∇). So, summing once again we have

(∂0 +∇)(D + iH) =
4π
c
(cρ − J) + 4π (∇∧ P + ∂0iM −∇∧ (iM)) (66.8)

Finally, premultiplication by γ0, where J = σkJk = γkγ0Jk, and ∇ =
∑

k γkγ0∂k we have

γµ∂µ(D + iH) =
4π
c

(
cργ0 + Jkγk

)
+ 4πγ0 (∇∧ P + ∂0iM −∇∧ (iM)) (66.9)

With

J0 = cρ

J = γµJµ

∇ = γµ∂µ

F = D + iH

(66.10)
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For the remaining terms we have ∇∧ P, iM ∈ span{γaγb}, and γ0∇∧ (iM) ∈ span γ1γ2γ3, so
between the three of these we have a (Dirac) trivector, so it would be reasonable to write

T = γ0 (∇∧ P + ∂0iM −∇∧ (iM)) ∈ span{γµ ∧ γν ∧ γσ} (66.11)

Putting things back together we have

∇F =
4π
c

J + 4πT (66.12)

This has a nice symmetry, almost nicer than the original microscopic version of Maxwell’s
equation since we now have matched grades (vector plus trivector in the Dirac vector space) on
both sides of the equation.

66.2.1 Continuity equation

Also observe that interestingly we still have the same continuity equation as in the microscopic
case. Application of another spacetime gradient and then selecting scalar grades we have

〈∇∇F〉 = 4π
〈
∇

( J
c

+ T
)〉

∇2〈F〉 =

=
4π
c
〈J〉

=
4π
c
∂µJµ

(66.13)

Since F is a Dirac bivector it has no scalar part, so this whole thing is zero by the grade
selection on the LHS. So, from the RHS we have

0 = ∂µJµ

=
1
c
∂cρ
∂t

+ ∂kJk

=
∂ρ

∂t
+∇ · J

(66.14)

Despite the new trivector term in the equation due to the matter properties!
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E X P R E S S I N G WAV E E Q UAT I O N E X P O N E N T I A L S O L U T I O N S
U S I N G F O U R V E C T O R S

67.1 mechanical wave equation solutions

For the unforced wave equation in 3D one wants solutions to

 1
v2 ∂tt −

3∑
j=1

∂ j j

 φ = 0 (67.1)

For the single spatial variable case one can verify that φ = f (x ± |v|t) is a solution for any
function f . In particular φ = exp(i(±|v|t + x)) is a solution. Similarly φ = exp(i(±|v|t + k̂ · x)) is
a solution in the 3D case.

Can the relativistic four vector notation be used to put this in a more symmetric form with
respect to time and position? For the four vector

x = xµγµ (67.2)

Lets try the following as a possible solution to eq. (67.1)

φ = exp(ik · x) (67.3)

verifying that this can be a solution, and determining the constraints required on the four
vector k.

Observe that

x · k = xµkµ (67.4)

so

φµ = ikµ
φµµ = (ikµ)2φ = −(kµ)2φ

(67.5)
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Since ∂t = c∂0, we have φtt = c2φ00, and

 1
v2 ∂tt −

3∑
j=1

∂ j j

 φ =

− 1
v2 c2k0

2 −

3∑
j=1

−(k j)2

 φ (67.6)

For equality with zero, and β = v/c, we require

β2 =
(k0)2∑
j(k j)2 (67.7)

Now want the components of k = kµγµ in terms of k directly. First

k0 = k · γ0 (67.8)

The spacetime relative vector for k is

k = k ∧ γ0 =
∑

kµγµ ∧ γ0 = (γ1)2
∑

j

k jσ j

k2 = (±1)2
∑

j

(k j)2
(67.9)

So the constraint on the four vector parameter k is

β2 =
(k0)2∑
j(k j)2

=
(k · γ0)2

(k ∧ γ0)2

(67.10)

It is interesting to compare this to the relative spacetime bivector for x

v =
dx
dτ

= c
dt
dτ
γ0 +

dxi

dτ
γi

v · γ0 =
dx
dτ
· γ0 = c

dt
dτ

v∧ γ0 =
dx
dτ
∧ γ0

=
dxi

dτ
σi

=
dxi

dt
dt
dτ
σi

(67.11)
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v/c =
d(xiσi)

dt

=
v∧ γ0

v · γ0

(67.12)

So, for φ = exp(ik · x) to be a solution to the wave equation for a wave traveling with velocity
|v|, the constraint on k in terms of proper velocity v is

∣∣∣∣∣∣k ∧ γ0

k · γ0

∣∣∣∣∣∣−1

=

∣∣∣∣∣∣v∧ γ0

v · γ0

∣∣∣∣∣∣ (67.13)

So we see the relative spacetime vector of k has an inverse relationship with the relative
spacetime velocity vector v = dx/dτ.
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G AU S S I A N S U R FAC E I N VA R I A N C E F O R R A D I A L F I E L D

68.1 flux independence of surface

Figure 68.1: Flux through tilted spherical surface element

In [37], section 1.10 is a demonstration that the flux through any closed surface is the same
as that through a sphere.

A similar demonstration of the same is possible using a spherical polar basis {r̂, θ̂, φ̂} with an
element of surface area that is tilted slightly as illustrated in fig. 68.1.

The tangential surface on the sphere at radius r will have bivector

dAr = r2dθdφθ̂φ̂ (68.1)

where dθ, and dφ are the subtended angles (should have put them in the figure).
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530 gaussian surface invariance for radial field

Now, as in the figure we want to compute the bivector for the tilted surface at radius R. The
vector u in the figure is required. This is r̂R + Rdθθ̂ − r̂(R + dr), so the bivector for that area
element is

(
Rr̂ + Rdθθ̂ − (R + dr)r̂

)
∧ Rdθφ̂ =

(
Rdθθ̂ − drr̂

)
∧ Rdφφ̂ (68.2)

For

dAR = R2dθdφθ̂φ̂ − Rdrdφr̂φ̂ (68.3)

Now normal area elements can be calculated by multiplication with a R3 pseudoscalar such
as I = r̂θ̂φ̂.

n̂r |dAr | = r2dθdφr̂θ̂φ̂θ̂φ̂
= −r2dθdφr̂

(68.4)

And

n̂R|dAR| = r̂θ̂φ̂
(
R2dθdφθ̂φ̂ − Rdrdφr̂φ̂

)
= −R2dθdφr̂ − Rdrdφθ̂

(68.5)

Calculating E · n̂dA for the spherical surface element at radius r we have

E(r) · n̂r |dAr | =
1

4πε0r2 qr̂ · (−r2dθdφr̂)

=
−dθdφq

4πε0

(68.6)

and for the tilted surface at R

E(R) · n̂R|dAR| =
q

4πε0R2 r̂ ·
(
−R2dθdφr̂ − Rdrdφθ̂

)
=
−dθdφq

4πε0

(68.7)

The θ̂ component of the surface normal has no contribution to the flux since it is perpendicular
to the outwards (r̂ facing) field. Here the particular normal to the surface happened to be inwards
facing due to choice of the pseudoscalar, but because the normals chosen in each case had the
same orientation this does not make a difference to the equivalence result.



68.1 flux independence of surface 531

68.1.1 Suggests dual form of Gauss’s law can be natural

The fact that the bivector area elements work well to describe the surface can also be used to
write Gauss’s law in an alternate form. Let n̂dA = −IdA

E · n̂dA = −E · (IdA)

=
−1
2

(EIdA + IdAE)

=
−I
2

(EdA + dAE)

= −I(E∧ dA)

(68.8)

So for

∫
E · n̂dA =

∫
ρ

ε0
dV (68.9)

with dV = IdV , we have Gauss’s law in dual form:

∫
E∧ dA =

∫
ρ

ε0
dV (68.10)

Writing Gauss’s law in this form it becomes almost obvious that we can deform the surface
without changing the flux, since all the non-tangential surface elements will have an r̂ factor
and thus produce a zero once wedged with the radial field.
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E L E C T RO DY NA M I C WAV E E Q UAT I O N S O L U T I O N S

69.1 motivation

In 67 four vector solutions to the mechanical wave equations were explored. What was obvi-
ously missing from that was consideration of the special case for v2 = c2.

Here solutions to the electrodynamic wave equation will be examined. Consideration of such
solutions in more detail will is expected to be helpful as background for the more complex study
of quantum (matter) wave equations.

69.2 electromagnetic wave equation solutions

For electrodynamics our equation to solve is

∇F = J/ε0c (69.1)

For the unforced (vacuum) solutions, with F = ∇∧ A, and the Coulomb gauge ∇ · A = 0 this
reduces to

0 =
(
(γµ)2∂µµ

)
A

=

(
1
c2 ∂tt − ∂ j j

)
A

(69.2)

These equations have the same form as the mechanical wave equation where the wave veloc-
ity v2 = c2 is the speed of light

 1
v2 ∂tt −

3∑
j=1

∂ j j

ψ = 0 (69.3)

69.2.1 Separation of variables solution of potential equations

Let us solve this using separation of variables, and write Aν = XYZT = ΠµXµ

533
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From this we have

∑
µ

(γµ)2 (Xµ)′′

Xµ
= 0 (69.4)

and can proceed with the normal procedure of assuming that a solution can be found by
separately equating each term to a constant. Writing those constants explicitly as (mµ)2, which
we allow to be potentially complex we have (no sum)

Xµ = exp
(
±

√
(γµ)2mµxµ

)
(69.5)

Now, let kµ = ±
√

(γµ)2mµ, folding any sign variation and complex factors into these con-
stants. Our complete solution is thus

ΠµXµ = exp
(∑

kµxµ
)

(69.6)

However, for this to be a solution, the wave equation imposes the constraint

∑
µ

(γµ)2(kµ)2 = 0 (69.7)

Or

(k0)2 −
∑

j

(k j)2 = 0 (69.8)

Summarizing each potential term has a solution expressible in terms of null "wave-number"
vectors Kν

Aν = exp (Kν · x)

|Kν| = 0
(69.9)

69.2.2 Faraday bivector and tensor from the potential solutions

From the components of the potentials eq. (69.9) we can compute the curl for the complete field.
That is

F = ∇∧ A

A = γν exp (Kν · x)
(69.10)
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This is

F = (γµ ∧ γν) ∂µ exp (Kν · x)

= (γµ ∧ γν) ∂µ exp (γαKνα · γσxσ)

= (γµ ∧ γν) ∂µ exp (Kνσxσ)

= (γµ ∧ γν) Kνµ exp (Kνσxσ)

= (γµ ∧ γν) Kνµ exp (Kν · x)

= (γµ ∧ γν)
1
2
(Kνµ exp (Kν · x) − Kµν exp (Kµ · x))

(69.11)

Writing our field in explicit tensor form

F = Fµνγ
µ ∧ γν (69.12)

our vacuum solution is therefore

Fµν =
1
2
(Kνµ exp (Kν · x) − Kµν exp (Kµ · x)) (69.13)

but subject to the null wave number and Lorentz gauge constraints

∣∣∣Kµ

∣∣∣ = 0

∇ · (γµ exp (Kµ · x)) = 0
(69.14)

69.2.3 Examine the Lorentz gauge constraint

That Lorentz gauge constraint on the potential is a curious looking beastie. Let us expand that
out in full to examine it closer

∇ · (γµ exp (Kµ · x)) = γα∂α · (γ
µ exp (Kµ · x))

=
∑
µ

(γµ)2∂µ exp (Kµ · x)

=
∑
µ

(γµ)2∂µ exp
(∑

γνKµν · γαxα
)

=
∑
µ

(γµ)2∂µ exp
(∑

Kµαxα
)

=
∑
µ

(γµ)2Kµµ exp (Kµ · x)

(69.15)
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If this must be zero for any x it must also be zero for x = 0, so the Lorentz gauge imposes an
additional restriction on the wave number four vectors Kµ

∑
µ

(γµ)2Kµµ = 0 (69.16)

Expanding in time and spatial coordinates this is

K00 −
∑

j

K j j = 0 (69.17)

One obvious way to satisfy this is to require that the tensor Kµν be diagonal, but since we
also have the null vector requirement on each of the Kµ four vectors it is not clear that this is an
acceptable choice.

69.2.4 Summarizing so far

We have found that our field solution has the form

Fµν =
1
2
(Kνµ exp (Kν · x) − Kµν exp (Kµ · x)) (69.18)

Where the vectors Kµ have coordinates

Kµ = γνKµν (69.19)

This last allows us to write the field tensor completely in tensor formalism

Fµν =
1
2
(Kνµ exp (Kνσxσ) − Kµν exp (Kµσxσ)) (69.20)

Note that we also require the constraints

0 =
∑
µ

(γµ)2Kµµ

0 =
∑
µ

(γµ)2(Kνµ)2
(69.21)

Alternately, calling out the explicit space time split of the constraint, we can remove the
explicit γµ factors

0 = K00 −
∑

j

K j j = (K00)2 −
∑

j

(K j j)2
(69.22)
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69.3 looking for more general solutions

69.3.1 Using mechanical wave solutions as a guide

In the mechanical wave equation, we had exponential solutions of the form

f (x, t) = exp (k · x +ωt) (69.23)

which were solutions to eq. (69.3) provided that

1
v2ω

2 − k2 = 0. (69.24)

This meant that

ω = ±|v||k| (69.25)

and our function takes the (hyperbolic) form, or (sinusoidal) form respectively

f (x, t) = exp
(
|k|

(
k̂ · x ± |v|t

))
f (x, t) = exp

(
i|k|

(
k̂ · x ± |v|t

)) (69.26)

Fourier series superposition of the latter solutions can be used to express any spatially peri-
odic function, while Fourier transforms can be used to express the non-periodic cases.

These superpositions, subject to boundary value conditions, allow for writing solutions to the
wave equation in the form

f (x, t) = g
(
k̂ · x ± |v|t

)
(69.27)

Showing this logically follows from the original separation of variables approach has not been
done. However, despite this, it is simple enough to confirm that, this more general function does
satisfy the unforced wave equation eq. (69.3).

TODO: as followup here would like to go through the exercise of showing that the solution of
eq. (69.27) follows from a Fourier transform superposition. Intuition says this is possible, and I
have said so without backing up the statement.
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69.3.2 Back to the electrodynamic case

Using the above generalization argument as a guide we should be able to do something similar
for the electrodynamic wave solution.

We want to solve for F the following gradient equation for the field in free space

∇F = 0 (69.28)

Let us suppose that the following is a solution and find the required constraints

F = γµ ∧ γν (Kµν f (x · Kµ) − Kνµ f (x · Kν)) (69.29)

We have two different grade equations built into Maxwell’s equation eq. (69.28), one of which
is the vector equation, and the other trivector. Those are respectively

∇ · F = 0

∇∧ F = 0
(69.30)

69.3.2.1 zero wedge

For the grade three term we have we can substitute eq. (69.29) and see what comes out

∇∧ F = (γα ∧ γµ ∧ γν) ∂α (Kµν f (x · Kµ) − Kνµ f (x · Kν)) (69.31)

For the partial we will want the following

∂µ(x · Kβ) = ∂µ(xνγν · Kβσγ
σ)

= ∂µ(xσKβσ

= Kβµ

(69.32)

and application of this with the chain rule we have

∇∧ F = (γα ∧ γµ ∧ γν) (KµνKµα f ′(x · Kµ) − KνµKνα f ′(x · Kν))

= 2 (γα ∧ γµ ∧ γν) KµνKµα f ′(x · Kµ)
(69.33)

So, finally for this to be zero uniformly for all f , we require

KµνKµα = 0 (69.34)
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69.3.2.2 zero divergence

Now for the divergence term, corresponding to the current four vector condition J = 0, we have

∇ · F

= γα · (γµ ∧ γν) ∂α (Kµν f (x · Kµ) − Kνµ f (x · Kν))

= (γα)2 (γνδα
µ − γµδα

ν) ∂α (Kµν f (x · Kµ) − Kνµ f (x · Kν))

=
(
(γµ)2γν∂µ − (γν)2γµ∂ν

)
(Kµν f (x · Kµ) − Kνµ f (x · Kν))

= (γµ)2γν∂µ (Kµν f (x · Kµ) − Kνµ f (x · Kν)) − (γµ)2γν∂µ (Kνµ f (x · Kν) − Kµν f (x · Kµ))

= 2(γµ)2γν∂µ (Kµν f (x · Kµ) − Kνµ f (x · Kν))

(69.35)

Application of the chain rule, and ∂µ(x · Kβ) = Kβµ, gives us

∇ · F = 2(γµ)2γν (KµνKµµ f ′(x · Kµ) − KνµKνµ f ′(x · Kν)) (69.36)

For µ = ν this is zero, which is expected since that should follow from the wedge product
itself, but for the µ , ν case it is not clear cut.

Damn. On paper I missed some terms and it all canceled out nicely giving only a condition
on Kµν from the wedge term. The only conclusion possible is that we require x · Kν = x · Kµ

for this form of solution, and therefore need to restrict the test solution to a fixed spacetime
direction.

69.4 take ii . a bogus attempt at a less general plane wave like solution

Let us try instead

F = γµ ∧ γνAµν f (x · k) (69.37)

and see if we can find conditions on the vector k, and the tensor A that make this a solution
to the unforced Maxwell equation eq. (69.28).
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69.4.1 curl term

Taking the curl is straightforward

∇∧ F = γα ∧ γµ ∧ γν∂αAµν f (x · k)

= γα ∧ γµ ∧ γνAµν∂α f (xσkσ)

= γα ∧ γµ ∧ γνAµνkα f ′(x · k)

=
1
2
γα ∧ γµ ∧ γν(Aµν − Aνµ)kα f ′(x · k)

(69.38)

Curiously, the only condition that this yields is that we have

Aµν − Aνµ = 0 (69.39)

which is a symmetry requirement for the tensor

Aµν = Aνµ (69.40)

69.4.2 divergence term

Now for the divergence

∇ · F = γα · (γµ ∧ γν)∂αAµν f (xσkσ)

= (δα
µγν − δα

νγµ) kαAµν f ′(x · k)

= γνkµAµν f ′(x · k) − γµkνAµν f ′(x · k)

= γνkµ(Aµν − Aνµ) f ′(x · k)

(69.41)

So, again, as in the divergence part of Maxwell’s equation for the vacuum (∇F = 0), we
require, and it is sufficient that

Aµν − Aνµ = 0, (69.42)

for eq. (69.37) to be a solution. This is somewhat surprising since I would not have expected
a symmetric tensor to fall out of the analysis.
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Actually, this is more than surprising and amounts to a requirement that the field solution is
zero. Going back to the proposed solution we have

F = γµ ∧ γνAµν f (x · k)

= γµ ∧ γν
1
2

(Aµν − Aνµ) f (x · k)
(69.43)

So, any symmetric components of the tensor A automatically cancel out.

69.5 summary

A few dead ends have been chased and I am left with the original attempt summarized by
eq. (69.18), eq. (69.19), and eq. (69.21).

It appears that the TODO noted above to attempt the Fourier transform treatment will likely
be required to put these exponentials into a more general form. I had also intended to try to
cover phase and group velocities for myself here but took too much time chasing the dead ends.
Will have to leave that to another day.





70
M AG N E T I C F I E L D B E T W E E N T W O PA R A L L E L W I R E S

70.1 student’s guide to maxwell’s’ equations . problem 4.1

The problem is:
Two parallel wires carry currents I1 and 2I1 in opposite directions. Use Ampere is law to find

the magnetic field at a point midway between the wires.
Do this instead (visualizing the cross section through the wires) for N wires located at points

Pk, with currents Ik.

Figure 70.1: Currents through parallel wires

This is illustrated for two wires in fig. 70.1.

70.1.1

Consider first just the magnetic field for one wire, temporarily putting the origin at the point of
the current.

543
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∫
B · dl = µ0I

At a point r from the local origin the tangent vector is obtained by rotation of the unit vector:

ŷ exp
(
x̂ŷ log

(
r
‖r‖

))
= ŷ

(
r
‖r‖

)x̂ŷ

Thus the magnetic field at the point r due to this particular current is:

B(r) =
µ0Iŷ
2π‖r‖

(
r
‖r‖

)x̂ŷ

Considering additional currents with the wire centers at points Pk, and measurement of the
field at point R we have for each of those:

r = R − P

Thus the total field at point R is:

B(R) =
µ0ŷ
2π

∑
k

Ik

‖R − Pk‖

(
R − Pk

‖R − Pk‖

)x̂ŷ
(70.1)

70.1.2 Original problem

For the problem as stated, put the origin between the two points with those two points on the
x-axis.

P1 = −x̂d/2

P2 = x̂d/2
(70.2)

Here R = 0, so r1 = R − P1 = x̂d/2 and r2 = −x̂d/2. With x̂ŷ = i, this is:

B(0) =
µ0ŷ
πd

(
I1(−x̂)i + I2x̂i

)
=
µ0ŷ
πd

(−I − 2I)

=
−3Iµ0ŷ
πd

(70.3)
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Here unit vectors exponentials were evaluated with the equivalent complex number manipu-
lations:

(−1)i = x

i log (−1) = log x

iπ = log x

exp (iπ) = log x

x = −1

(70.4)

(1)i = x

i log (1) = log x

0 = log x

x = 1

(70.5)
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F I E L D D U E T O L I N E C H A R G E I N A R C

71.1 motivation

Problem 1.5 from [37], is to calculate the field at the center of a half circular arc of line charge.
Do this calculation and setup for the calculation at other points.

71.2 just the stated problem

To solve for the field at just the center point in the plane of the arc, given line charge density λ,
and arc radius R one has, and pseudoscalar for the plane i = e1e2 one has

dq = λRdθ

dE =
1

4πε0R2 dq(−e1eiθ)
(71.1)

Straight integration gives the result in short order

E =
−λe1

4πε0R

∫ π

0
eiθdθ

=
λe2

4πε0R
eiθ

∣∣∣π
0

=
−λe2

2πε0R

(71.2)

So, if the total charge is Q = πRλ, the field is then

E =
−Qe2

2π2ε0R2 (71.3)

So, at the center point the semicircular arc of charge behaves as if it is a point charge of
magnitude 2Q/π at the point Re2

E =
−Qe2

4πε0R2

2
π

(71.4)
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548 field due to line charge in arc

71.3 field at other points

Now, how about at points outside of the plane of the charge?
Suppose our point of measurement is expressed in cylindrical polar coordinates

P = ρe1eiα + ze3 (71.5)

So that the vector from the element of charge at θ is

u = P − Re1eiθ = e1(ρeiα − Reiθ) + ze3 (71.6)

Relative to θ, writing θ = α + β this is

u = e1eiα(ρ − Reiβ) + ze3 (71.7)

The squared magnitude of this vector is

u2 =
∣∣∣ρ − Reiβ

∣∣∣2 + z2

= z2 + ρ2 + R2 − 2ρR cos β
(71.8)

The field is thus

E =
1

4πε0
λR

∫ β=θ2−α

β=θ1−α

(
z2 + ρ2 + R2 − 2ρR cos β

)−3/2 (
e1eiα(ρ − Reiβ) + ze3

)
dβ (71.9)

This integral has two variations∫ (
a2 − b2 cos β

)−3/2
dβ∫ (

a2 − b2 cos β
)−3/2

eiβdβ
(71.10)

or

I1 =

∫ (
a2 − b2 cos β

)−3/2
dβ

I2 =

∫ (
a2 − b2 cos β

)−3/2
cos βdβ

I3 =

∫ (
a2 − b2 cos β

)−3/2
sin βdβ

(71.11)

Of these when only the last is obviously integrable (at least for b , 0)

I3 =

∫ (
a2 − b2 cos β

)−3/2
sin βdβ

= −2
(
a2 − b2 cos β

)−1/2
(71.12)

Having solved for the imaginary component can the Cauchy Riemann equations be used to
supply the real part? How about I1 ?
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71.3.1 On the z-axis

Not knowing how to solve the integral of eq. (71.9) (elliptic?), the easy case of ρ = 0 (up the
z-axis) can at least be obtained

E =
1

4πε0
λR

(
z2 + R2

)−3/2
∫ θ2

θ1

(
−e1Reiθ + ze3

)
dθ

=
1

4πε0
λR

(
z2 + R2

)−3/2 (
e2R(eiθ2 − eiθ1) + ze3∆θ

)
=

1
4πε0

λR
(
z2 + R2

)−3/2 (
e2Rei(θ1+θ2)/2

(
ei(θ2−θ1)/2 − e−i(θ2−θ1)/2

)
+ ze3∆θ

)
=

1
4πε0

λR
(
z2 + R2

)−3/2 (
−2e1Rei(θ1+θ2)/2 sin(∆θ/2) + ze3∆θ

)
=

1
4πε0∆θ

Q
(
z2 + R2

)−3/2 (
−2e1Rei(θ1+θ2)/2 sin(∆θ/2) + ze3∆θ

)
(71.13)

Eliminating the explicit imaginary, and writing θ = (θ1 + θ2)/2, we have in vector form the
field on any position up and down the z-axis

E =
1

4πε0∆θ
Q
(
z2 + R2

)−3/2 (
−2R

(
e1 cos θ + e2 sin θ

)
sin(∆θ/2) + ze3∆θ

)
(71.14)

For z = 0, θ1 = 0, and θ2 = π, this matches with eq. (71.4) as expected, but expressing this as
an equivalent to a point charge is no longer possible at any point off the plane of the charge.





72
C H A R G E L I N E E L E M E N T

72.1 motivation

In [37] the electric field for an infinite length charged line element is derived in two ways. First
using summation directly, then with Gauss’s law. Associated with the first was the statement
that the field must be radial by symmetry. This was not obvious to me when initially taking my
E&M course, so I thought it was worth revisiting.

72.2 calculation of electric field for non- infinite length line element

Figure 72.1: Charge on wire

This calculation will be done with a thickness neglected wire running up and down along
the y axis as illustrated in fig. 72.1, where the field is being measured at P = re1, and the field
contributions due to all charge elements dq = λdy are to be summed.
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552 charge line element

We want to sum each of the field contributions along the line, so with

dE =
dqû(θ)
4πε0R2

r/R = cos θ

dy = rd(tan θ) = r sec2 θ

û(θ) = e1eiθ

i = e1e2

(72.1)

Putting things together we have

dE =
λr sec2 θe1eiθdθ

4πε0r2 sec2 θ

=
λe1eiθdθ

4πε0r

= −
λe1id(eiθ)

4πε0r

(72.2)

Thus the total field is

E =

∫
dE

= −
λe2

4πε0r

∫
d(eiθ)

(72.3)

We see that the integration, which has the value

E = −
λ

4πε0r
e2eiδθ (72.4)

The integration range for the infinite wire is θ ∈ [3π/2, π/2] so the field for the infinite wire
is

E = −
λ

4πε0r
e2 eiθ

∣∣∣θ=π/2
θ=3π/2

= −
λ

4πε0r
e2(eiπ/2 − e3iπ/2)

= −
λ

4πε0r
e2(e1e2 − (−e1e2))

=
λ

2πε0r
e1

(72.5)
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Invoking symmetry was done in order to work with coordinates, but working with the vector
quantities directly avoids this requirement and gives the general result for any subset of angles.

For a finite length wire all that is required is an angle parametrization of that wire’s length

[θ1, θ2] = [tan−1(y1/r), tan−1(y2/r)] (72.6)

For such a range the exponential difference for the integral is

eiθ
∣∣∣θ2

θ1
= eiθ2 − eiθ1

= ei(θ1+θ2)/2
(
ei(θ2−θ1)/2 − ei(θ2−θ1)/2

)
= 2iei(θ1+θ2)/2 sin((θ2 − θ1)/2)

(72.7)

thus the associated field is

E = −
λ

2πε0r
e2iei(θ1+θ2)/2 sin((θ2 − θ1)/2)

=
λ

2πε0r
e1ei(θ1+θ2)/2 sin((θ2 − θ1)/2)

(72.8)





73
B I OT S AVA RT D E R I VAT I O N

73.1 motivation

Looked at my Biot-Savart derivation in 96. There I was playing with doing this without first
dropping down to the familiar vector relations, and end up with an expression of the Biot Savart
law in terms of the complete Faraday bivector. This is an excessive approach, albeit interesting
(to me). Let us try this again in terms of just the magnetic field.

73.2 do it

73.2.1 Setup. Ampere-Maxwell equation for steady state

The starting point can still be Maxwell’s equation

∇F = J/ε0c (73.1)

and the approach taken will be the more usual consideration of a loop of steady-state (no-time
variation) current.

In the steady state we have

∇ = γ0 1
c
∂t + γk∂k = γk∂k (73.2)

and in particular

γ0∇F = γ0γ
k∂kF

= γkγ0∂kF

= σk∂kF

= ∇(E + IcB)

(73.3)

555



556 biot savart derivation

and for the RHS,

γ0J/ε0c = γ0(cργ0 + Jkγk)/ε0c

= (cρ − Jkσk)/ε0c

= (cρ − j)/ε0c

(73.4)

So we have

∇(E + IcB) =
1
ε0
ρ −

j
ε0c

(73.5)

Selection of the (spatial) vector grades gives

Ic(∇∧B) = −
j
ε0c

(73.6)

or with a∧ b = I(a× b), and ε0µ0c2 = 1, this is the familiar Ampere-Maxwell equation when
∂E/∂t = 0.

∇ ×B = µ0j (73.7)

73.2.2 Three vector potential solution

With ∇ ·B = 0 (the trivector part of eq. (73.5)), we can write

B = ∇ ×A (73.8)

For some vector potential A. In particular, we have in eq. (73.7),

∇ ×B = ∇ × (∇ ×A)

= −I(∇∧ (∇ ×A))

= −
I
2

(∇(∇ ×A) − (∇ ×A)∇)

=
I2

2
(∇(∇∧A) − (∇∧A)∇)

= −∇ · (∇∧A)

(73.9)

Therefore the three vector potential equation for the magnetic field is

∇(∇ ·A) −∇2A = µ0j (73.10)
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73.2.3 Gauge freedom

We have the freedom to set∇ ·A = 0, in eq. (73.10). To see this suppose that the vector potential
is expressed in terms of some other potential A′ that does have zero divergence (∇ ·A′ = 0) plus
a (spatial) gradient

A = A′ +∇φ (73.11)

Provided such a construction is possible, then we have

∇(∇ ·A) −∇2A = ∇(∇ · (A′ +∇φ)) −∇2(A′ +∇φ)

= −∇2A′
(73.12)

and can instead solve the simpler equivalent problem

∇
2A′ = −µ0j (73.13)

Addition of the gradient ∇φ to A′ will not change the magnetic field B since ∇ × (∇φ) = 0.
FIXME: what was not shown here is that it is possible to express any vector potential A in

terms of a divergence free potential and a gradient. How would one show this?

73.2.4 Solution to the vector Poisson equation

The solution (dropping primes) to the Poisson eq. (73.13) is

A =
µ0

4π

∫
j
r

dV (73.14)

(See [39] for example.)
The magnetic field follows by taking the spatial curl

B = ∇ ×A

=
µ0

4π
∇ ×

∫
j′

|r − r′|
dV ′

(73.15)

Pulling the curl into the integral and writing the gradient in terms of radial components

∇ =
r − r′

|r − r′|
∂

∂|r − r′|
(73.16)
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we have

B =
µ0

4π

∫
r − r′

|r − r′|
× j′

∂

∂|r − r′|
1

|r − r′|
dV ′

= −
µ0

4π

∫
r − r′

|r − r′|3
× j′dV ′

(73.17)

Finally with j′dV ′ = I ĵ′dl′, we have

B(r) =
µ0

4π

∫
dl′ĵ′ ×

r − r′

|r − r′|3
(73.18)
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V E C T O R F O R M S O F M A X W E L L’ S E Q UAT I O N S A S P RO J E C T I O N
A N D R E J E C T I O N O P E R AT I O N S

74.1 vector form of maxwell’s equations

We saw how to extract the tensor formulation of Maxwell’s equations from ∇F = J. A little bit
of play shows how to pick off the divergence equations we are used to as well.

The end result is that we can pick off two of the eight coordinate equations with specific
product operations.

It is helpful in the following to write ∇F in index notation

∇F =
∂Ei

∂xµ
γµi0 − εi jkc

∂Bi

∂xµ
γµ jk (74.1)

In particular, look at the span of the vector, or trivector multiplicands of the partials of the
electric and magnetic field coordinates

γµi0 ∈ span{γµ, γ0i j} (74.2)

γµ jk ∈ span{γi jµ, γi} (74.3)

74.1.1 Gauss’s law for electrostatics

For extract Gauss’s law for electric fields that operation is to take the scalar parts of the product
with γ0.

Dotting with γ0 will pick off the ρ term from J

J
ε0c
· γ0 = ρ/ε0,
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We see that dotting with γ0 will leave bivector parts contributed by the trivectors in the span of
eq. (74.2). Similarly the magnetic partials will contribute bivectors and scalars with this product.
Therefore to get an equation with strictly scalar parts equal to ρ/ε0 we need to compute

〈
(∇F − J/ε0c) γ0

〉
=

〈
∇Eγ0

〉
− ρ/ε0

=
〈
∇Ekγk0

0
〉
− ρ/ε0

=
〈
γ j∂ jEkγk

〉
− ρ/ε0

= δ j
k∂ jEk − ρ/ε0

= ∂kEk − ρ/ε0

(74.4)

This is Gauss’s law for electrostatics:〈
(∇F − J/ε0c) γ0

〉
= ∇ ·E − ρ/ε0 = 0 (74.5)

74.1.2 Gauss’s law for magnetostatics

Here we are interested in just the trivector terms that are equal to zero that we saw before in
∇∧∇∧ A = 0.

The divergence like equation of these four can be obtained by dotting with γ123 = γ0I. From
the span enumerated in eq. (74.3), we see that only the B field contributes such a trivector. An
addition scalar part selection is used to eliminate the bivector that J contributes.

〈
(∇F − J/ε0c) ·

(
γ0I

)〉
= (∇IcB) ·

(
γ0I

)
=

〈
∇IcBγ0I

〉
=

〈
I∇IcBγ0

〉
= −c

〈
I2∇Bγ0

〉
= c

〈
∇Bγ0

〉
= c

〈
γµ∂µBkγk

〉
= cδµk∂µBk

= c∂kBk

= 0

(74.6)

This is just the divergence, and therefore yields Gauss’s law for magnetostatics:

(∇F − J/ε0c) ·
(
γ0I/c

)
= ∇ ·B = 0 (74.7)
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74.1.3 Faraday’s Law

We have three more trivector equal zero terms to extract from our field equation.
Taking dot products for those remaining three trivectors we have

(∇F − J/ε0c) · (γ jI) (74.8)

This will leave a contribution from J, so to exclude that we want to calculate

〈
(∇F − J/ε0c) · (γ jI)

〉
(74.9)

The electric field contribution gives us

∂µEk
〈
γµγk0γ

j
0123

〉
= −∂µEk(γ0)2

〈
γµγkγ

j
123

〉
(74.10)

the terms µ = 0 will not produce a scalar, so this leaves

−∂iEk(γ0)2
〈
γiγkγ

j
123

〉
= −∂iEk(γ0)2(γk)2ε jki

= ∂iEkε jki

= −∂iEkε jik

(74.11)

Now, for the magnetic field contribution we have

c∂µBk
〈
γµIγk0γ

jI
〉

= −c∂µBk
〈
Iγµγk0γ

jI
〉

= −c∂µBk
〈
I2γµγk0γ

j
〉

= c∂µBk
〈
γµγk0γ

j
〉 (74.12)

For a scalar part we need µ = 0 leaving

c∂0Bk
〈
γ0γk0γ

j
〉

= −∂tBk
〈
γkγ

j
〉

= −∂tBkδk
j

= −∂tB j

(74.13)

Combining the results and summing as a vector we have:∑
σ j

〈
(∇F − J/ε0c) · (γ jI)

〉
= −∂iEkε jikσ j − ∂tB jσ j

= −∂ jEkεi jkσi − ∂tBiσi

= −∇ ×E −
∂B
∂t

= 0

(74.14)
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Moving one term to the opposite side of the equation yields the familiar vector form for
Faraday’s law

∇ ×E = −
∂B
∂t

(74.15)

74.1.4 Ampere Maxwell law

For the last law, we want the current density, so to extract the Ampere Maxwell law we must
have to wedge with γ0. Such a wedge will eliminate all the trivectors from the span of eq. (74.2),
but can contribute pseudoscalar components from the trivectors in eq. (74.3). Therefore the
desired calculation is

〈
(∇F − J/ε0c) ∧ γ0

〉
2

=
〈
((γµ j0)∧ γ0∂µE j + (∇IcB)∧ γ0

〉
2
− (γ0)2J/ε0c

=
〈
−((γ0

0 j)∧ γ
0∂0E j + (∇IcB)∧ γ0

〉
2
− (γ0)2J/ε0c

= −γ j
0 1

c
∂tE j +

〈
(∇IcB)∧ γ0

〉
2
− (γ0)2J/ε0c

= −
(γ0)2

c
∂E
∂t

+ c〈∇IB〉1 ∧ γ
0 − (γ0)2J/ε0c

(74.16)

Let us take just that middle term

〈∇IB〉1 ∧ γ
0 = −

〈
Iγµ∂µBkγk0

〉
1
∧ γ0

= −∂µBk〈γ0123γ
µγk0

〉
1 ∧ γ

0

= ∂µBk (
〈
γ0123γ

µγ0
〉

2 · γk) ∧ γ
0

(74.17)

Here µ , 0 since that leaves just a pseudoscalar in the grade two selection.

〈∇IB〉1 ∧ γ
0 = ∂ jBk

(〈
γ0123γ

jγ0
〉

2
· γk

)
∧ γ0

= (γ0)2∂ jBk
(〈
γ123γ

j
〉

2
· γk

)
∧ γ0

= (γ0)2∂ jBk
(〈
εhk jγhk jγ

j
〉

2
· γk

)
∧ γ0

= ∂ jBkεhk j(γ0)2(γk)2γh
0

= −(γ0)2∂ jBkεhk jσh

= (γ0)2
∇ ×B

(74.18)
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Putting things back together and factoring out the common metric dependent (γ0)2 term we
have

−
1
c
∂E
∂t

+ c∇ ×B − J/ε0c = 0

=⇒

−
1
c2

∂E
∂t

+∇ ×B − J/ε0c2 = 0

(74.19)

With 1
c2 = µ0ε0 this is the Ampere Maxwell law

∇ ×B = µ0

(
J + ε0

∂E
∂t

)
(74.20)

which we can put in the projection form of eq. (74.5) and eq. (74.7) as:

〈
(∇F − J/ε0c) ∧ (γ0/c)

〉
2 = ∇ ×B − µ0

(
J + ε0

∂E
∂t

)
= 0 (74.21)

74.2 summary of traditional maxwell’s equations as projective operations on
maxwell equation〈

(∇F − J/ε0c) γ0
〉

= ∇ ·E − ρ/ε0 = 0〈
(∇F − J/ε0c) ·

(
γ0I/c

)〉
= ∇ ·B = 0∑

σ j
〈
(∇F − J/ε0c) · (γ jI)

〉
= −∇ ×E −

∂B
∂t

= 0〈
(∇F − J/ε0c) ∧ (γ0/c)

〉
2 = ∇ ×B − µ0

(
J + ε0

∂E
∂t

)
= 0

(74.22)

Faraday’s law requiring a sum suggests that this can likely be written instead using a rejective
operation. Will leave that as a possible future followup.
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A P P L I C AT I O N O F S T O K E S I N T E G R A L S T O M A X W E L L’ S
E Q UAT I O N

75.1 putting maxwell’s equation in curl form

These notes contain an application of the bivector Stokes equations detailed in ?? . Background
of interest can also be found in [8], which contained the core statement of the multivector form
of Stokes equation and Biot-Savart like application of it. Also informative as background is the
following excellent [7]. introduction to the STA form of Maxwell’s equation.

Stokes equation applied to a bivector takes the following form

$
(∇∧ F) · d3x =

I
F · d2x, (75.1)

where we will write F as the electromagnetic field bivector, and apply it to Maxwell’s equa-
tion

∇F = J/ε0c. (75.2)

Taking vector and trivector parts we have two equations

∇ · F = J/ε0c, (75.3)

and

∇∧ F = 0. (75.4)

75.1.1 Trivector equation part

The second of these, eq. (75.4), we can apply Stokes to directly:

$
(∇∧ F) · d3x =

I
F · d2x = 0. (75.5)

This area integral is a flux like quantity. Suppose we call this the field flux, then this says says
the flux of the combined electromagnetic field through any surface is zero independent of the
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566 application of stokes integrals to maxwell’s equation

charge or current densities. Note that here d3x can be a regular spatial volume trivector element,
but one can also pick a spacetime (area times time) “volume” to integrate over, in which case
d2x are the oriented “surfaces” of such a spacetime volume.

This does not seem like a result that I am familiar with based on the traditional vector forms
of Maxwell’s equation. Perhaps it is recognizable in terms of E and B explicitly:

I
E · d2x = −c

I
B · (d2xI) (75.6)

On the surface this does not look like a familiar identity. It is in fact Gauss’s law for magneto-
statics, which will be shown later.

Note also the subtle difference from traditional vector treatments where E and B were spatial
vectors. Here they are written as spacetime bivectors, E = Eiσi = Eiγi ∧ γ0, B = Biσi =

Biγi ∧ γ0.

75.1.2 Vector part

Moving on to the charge and current dependent vector terms of Maxwell’s equation, we want
express eq. (75.3) as a spacetime curl so that we can apply stokes to it.

We can do this by temporarily writing our field in terms of a potential as well its dual bivector.

F = ∇∧ A = ID (75.7)

∇F = ∇(∇∧ A)

= ∇ · (∇∧ A) +∇∧ (∇∧ A)

= ∇ · (ID)

= 〈∇ID〉1

= −

〈
I( ∇ · D

1 vector

+ ∇∧ D

3 vector

)
〉

1

= −I(∇∧ D)

(75.8)

or

I∇F = ∇∧ D. (75.9)
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Applying stokes we have∫
(∇∧ D) · d3x =

I
D · d2x∫

(I∇F) · d3x =

I
(−IF) · d2x

=

I 〈
−Fd2xI

〉
= −

I
F · (d2xI)

1
ε0c

∫
(IJ) · d3x =

1
ε0c

∫ 〈
IJd3x

〉
=

1
ε0c

∫ 〈
Jd3xI

〉
=

1
ε0c

∫
J · (d3xI) =

(75.10)

Or A
F · (d2xI) =

∫
J
ε0c
· (d3xI) (75.11)

This is the integral form of the vector part of Maxwell’s equation eq. (75.2). This does not
look terribly familiar, but we are not used to seeing Maxwell’s equations in a non-disassembled
form. Hiding in there should be a subset of the traditional eight Maxwell’s equations in integral
form. It will be possible to extract these by considering variations of current and charge density
and different volume and surface integration regions.

75.2 extracting the vector integral forms of maxwell’s equations

One can extract the integral forms of Maxwell’s equations from eq. (75.2), by first extracting
the differential vector equations, and then using the spatial divergence and stokes equations.
However, having formulated Stokes equation in its bivector form we can go directly to those
equations by appropriate selection of spatial or spacetime volumes. Of course we also now have
new tools to work with the field in its entirety, but lets use this as an exercise to verify that all the
previous computation that led to Stokes equation gives us the expected results. In particular this
should be a good way to verify that sign mistakes or other similar small errors (which would
not be too hard) have not been made.
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75.2.1 Zero current density. Gauss’s law for Electrostatics

With J = cργ0, the integral form of Maxwell’s equation becomes

A
F · (d2xI) =

∫
ρ

ε0

〈
γ0d3xI

〉
=

∫
ρ

ε0

〈
γ0123γ0d3x

〉
= −

1
ε0
γ0

2
∫

ρ

ε0

〈
γ123d3x

〉 (75.12)

From this we see that, in the absence of currents the LHS integral must be zero unless the
volume is purely spatial. Denoting the boundary of a spacetime volume as ∂Act, this is

A
∂Act

F · (d2xI) = 0. (75.13)

For a purely spatial volume the dual surfaces d2xI always includes a spacetime bivector,
therefore the magnetic field contributes nothing

A
∂V

IcB · (d2xI) = −c
A

∂V
B · d2x = 0

Although this looks similar to the integral equivalent of ∇ · B = 0, we should look elsewhere
for that since that is true for the non-zero current density case too.

That leaves

A
E · (d2xI) = −

1
ε0
γ0

2
∫

V
ρ
〈
γ123d3x

〉
(75.14)

Letting d3x = dx1dx2dx3γ123. Within the charge integral becomes

−
1
ε0
γ0

2
∫

V
ρ
〈
γ123d3x

〉
=

1
ε0

γ0
2γ1

2

= −1

γ2
2γ3

2

= (±1)2

∫
V
ρdx1dx2dx3 = −

1
ε0

∫
V
ρdx1dx2dx3 (75.15)
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To put this in correspondence with the forms we are used to consider the surfaces separately.
For the dual to the front surface (see: ??) we have

d2xI = dx1dx2γ12I

= dx1dx2γ120123

= dx1dx2γ112023

= −dx1dx2γ112203

= −(±1)2dx1dx2γ03

= dx1dx2σ3

(75.16)

For the left surface

d2xI = dx3dx2γ32I

= dx3dx2γ320123

= dx3dx2γ332012

= dx3dx2γ332201

= dx3dx2(±1)2γ01

= −dx3dx2σ1

(75.17)

and for the top

d2xI = dx1dx3γ13I

= dx1dx3γ130123

= dx1dx3γ113023

= dx1dx3γ113302

= −dx1dx3σ2

(75.18)

Assembling results, writing (x1, x2, x3) = (x, y, z) we have

1
ε0

∫
V
ρdxdydz =

"
(Ex(x, y, z1) − Ex(x, y, z0))dxdy

+

"
(Ey(x1, y, z) − Ey(x0, y, z))dydz

+

"
(Ez(x, y1, z) − Ez(x, y0, z))dxdz

(75.19)

This is Gauss’s law for electrostatics in integral form

"
E · n̂dA =

$
ρ

ε0
dV (75.20)
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Although this extraction method is easy to understand, it is apparent that having only a picto-
rial way of enumerating the oriented bivector area elements is not efficient for high level com-
putation. Revisiting the stokes derivation with a more algebraic enumeration of the surfaces
should be done!

75.2.2 Gauss’s law for magneto-statics

Return now to eq. (75.6), which resulted from considering the trivector part of Maxwell’s equa-
tion

I
E · d2x = −c

I
B · (d2xI). (75.21)

To start some observations can be made.
Only the spacetime surfaces of the volume contribute to the LHS integral sinceσi · (γ j∧γk) =

0.
For the RHS, only the purely spatial surfaces contribute to that B integral, since the dual

surface d2xI must have a spacetime component for that dot product to be non-zero. We have
also just enumerated these dual surface area elements d2xI for a purely spatial surface, therefore
with a E, B substitution we must have

0 =

"
(Bx(x, y, z1) − Bx(x, y, z0))dxdy

+

"
(By(x1, y, z) − By(x0, y, z))dydz

+

"
(Bz(x, y1, z) − Bz(x, y0, z))dxdz

(75.22)

or, more compactly

"
B · n̂dA = 0 (75.23)

For any current or charge distribution. We have therefore obtained two of the eight Maxwell’s
equations.
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75.2.3 Zero charge. Current density in single direction

Next to consider is J = jiγi. For simplicity, consider current in only one direction, taking
J = j1γ1. The exercise will be to compute the integrals of eq. (75.11).

I
F · (Id2x) =

∫
J
ε0c
· (Id3x)

=

∫
j1

ε0c
γ1 · (Id3x)

(75.24)

Unlike the calculations for the Gauss’s law equations above, this one will be done using the
area orientation methods from ?? since algebraically enumerating the surfaces should make life
easier. The two Gauss’s law results above were done without this, which was not too bad for
a purely spatial volume, but with spacetime volumes this is probably confusing in addition to
being harder.

Starting with the volume element, one can observe that the current density will not contribute
to the boundary integral unless d3x has no γ1 component, thus for a rectangular prism integra-
tion spacetime volume let d3x = γ023dx0dx2dx3

γ1 · (Id3x) = γ1 · γ0123023dx0dx2dx3

= γ1 · γ0012233dx0dx2dx3

= γ1 · γ111dx0dx2dx3

= −γ1 · γ
1dx0dx2dx3

= −dx0dx2dx3

(75.25)

Now for all the surfaces we want to calculate Id2x for each of the surfaces. For each of
µ ∈ {0, 2, 3}, calculation of I(d2x)µ is required where

(d2x)µ = d3x · rµ

r = xiγi

rµ =
∂r
∂xµ

= γµ

rµ = γµ

(75.26)
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Calculating the surfaces

I(d2x)µ
dxµ

dx0dx2dx3 =
〈
γ0123(γ023 · γ

µ)
〉

2

=
1
2
〈
γ0123(γ023γ

µ + γµγ023)
〉

2

=
1
2
〈
γ0123(γ023γ

µ + γ023γ
µ)

〉
2

=
〈
γ0012233γ

µ〉
2

= −
〈
γ133γ

µ〉
2

= −
〈
γ1γµ

〉
2

= γµ ∧ γ1

(75.27)

Putting things back together we have

−

∫
j1dx0dx2dx3 =

∫ ∑
µ=0,2,3

F ·
(
γµ ∧ γ1

)∣∣∣∣
∂xµ

dx0dx2dx3

dxµ (75.28)

Now, for µ = 0 we pick up the electric field component of the field

F · γ01 =
(
Eiγi0 − εi jkcBkγi j

)
· γ01

= Ei,
(75.29)

and for µ = 2, 3 we pick up magnetic field components

F · γµ1 =
(
Eiγi0 − εi jkcBkγi j

)
· γµ1

= −ε1µkcBkγ1µ · γ
µ1.

(75.30)

For µ = 2 this is −cB3, and for µ = 3, −ε132cB2 = cB2, so we have

0 =

∫
j1

cε0
dx0dx2dx3 +

∫
E1dx2dx3

∣∣∣
∂x0 + c

∫
B2dx0dx2

∣∣∣
∂x3 − c

∫
B3dx0dx3

∣∣∣
∂x2

=

∫
j1

cε0
dx0dx2dx3 +

∫
∂E1

∂x0 dx0dx2dx3 + c
∫

∂B2

∂x3 dx3dx2dx0 − c
∫

∂B3

∂x2 dx2dx0dx3

=

∫
dx0

∫
dx2dx3

(
j1

cε0
+

1
c
∂E1

∂t
+ c

∂B2

∂x3 − c
∂B3

∂x2

)
(75.31)
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If this is zero for all time intervals, then the inner integral is also zero. Utilizing c2µ0ε0 = 1
this is

0 =

∫
dx2dx3

(
µ0

(
j1 + ε0

∂E1

∂t

)
+

(
∂B2

∂x3 −
∂B3

∂x2

))
. (75.32)

Writing dA = σ1dx2dx3, j = j1σ1, E = E1σ1, and B = Biσi we can pick off the differential
form of the Maxwell-Ampere equation

∇ ×B = µ0

(
j + ε0

∂E
∂t

)
, (75.33)

as well as the integral form∫
(∇ ×B) · dA = µ0

(∫
j · dA + ε0

∫
∂E
∂t
· dA

)
(75.34)

Both of these forms come straight from the application of the generalized Stokes equation
integrating an appropriate spacetime volume.

Now it is normal to have the spatial curl of B written as a closed loop integral. Stokes can
be employed again to get exactly that form. This really just undoes the fact that the partials to
used as a convenience enumerate exactly those loop boundaries (although they were originally
oriented area boundaries).

∫
∂B2

∂x3 dx3 = B2(t, x, y, z1) − B2(t, x, y, z0)∫
∂B3

∂x2 dx2 = B3(t, x, y1, z) − B3(t, x, y0, z)
(75.35)

Also observe that this whole treatment was done with J = j1γ1 only. It is not hard to see
that doing the same with ji and summing over σi will produce the same result. Of course more
care is required to handle the more abstract symbolic indices since a nice hard-coded number is
easier. On the other hand the usual dodge, employing freedom to orient the coordinate system
along the γ1 direction makes the more general algebraic approach a less interesting exercise.

75.2.4 Faraday’s law

We have five of the eight Maxwell’s equations. Gauss’s law for electrostatics from the vector
part of eq. (75.3), integrating over a spatial volume, and the Maxwell-Ampere equation from the
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same, integrating over a spacetime volume. Gauss’s law for magneto-statics from the trivector
part of eq. (75.3), integrating over a spatial volume. This suggests that our remaining three (one
three-vector) equation will come from integrating the trivector parts over a spacetime volume.

Stokes’ gives us

∫
V

(∇∧ F) · d3x =

∫
∂V

F · (d2x)

Picking a spacetime volume element, and corresponding area elements

d3x = γ0i jdx0dxidx j

(d2x)µ = (γ0i j · γ
µ)

dx0dxidx j

dxµ
(75.36)

Our area integral (expanding boundaries as one more integral of partials) is∫ ∑
µ=0,i, j

dx0dxidx j
(
∂F
∂xµ
· (γ0i j · γ

µ)
)
.

For the dot products of the area elements we have


γi j if µ = 0

γ0i = −σi if µ = j

−γ0 j = σ j if µ = i

Our field derivatives in coordinates are

∂F
∂xµ

=
∂Em

∂xµ
σm − εklmc

∂Bm

∂xµ
γkl

Observe that µ , 0 selects only the electric field components, and µ = 0 only the magnetic
field components are selected. Specifically

∂F
∂xµ

=


−ε jimc∂Bm

∂x0 (γi)2(γ j)2 = εi jk
∂Bk

∂t if µ = 0
∂Em

∂x j σm · (−σi) = −∂Ei

∂x j if µ = j
∂Em

∂xi σm · (σ j) = ∂E j

∂xi if µ = i
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Reassembling the integral we have

0 =

∫
dx0dxidx j

(
∂E j

∂xi −
∂Ei

∂x j + εi jk
∂Bk

∂t

)
=

∫
dx0εi jk

∫
dxidx jσk

(
σkεi jk

(
∂E j

∂xi −
∂Ei

∂x j

)
+σk

∂Bk

∂t

) (75.37)

Summing over k, we can pick out the differential form of Faraday’s law

0 =
∂B
∂t

+∇ ×E (75.38)

as well as the integral form

0 =
∑

k

∫
dxidx jσk

(
σkεi jk

(
∂E j

∂xi −
∂Ei

∂x j

)
+σk

∂Bk

∂t

)
=

∑
k

εi jk

∫
dx j E j

∣∣∣
∂xi −

∑
k

εi jk

∫
dxi Ei

∣∣∣
∂x j +

∫
∂B
∂t
· n̂dA

(75.39)

which is

0 =

�
E · dr +

∫
∂B
∂t
· dA. (75.40)

75.3 conclusion

In the treatment of these notes, the traditional integral form of Maxwell’s equations are obtained
directly from the STA Maxwell’s equation using the bivector Stokes equation, and various space-
time integration volumes.

75.3.1 Summary of results

We started with the bivector form of Stokes law

$
(∇∧ F) · d3x =

I
F · d2x, (75.41)

and the multivector Maxwell equation

∇F = J/ε0c. (75.42)
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The trivector parts of this can be integrated directly. This integral is always zero for all space-
time or spatial surfaces

∫
(∇∧ F) · d3x = 0 (75.43)

Duality relations were used to put the vector parts of eq. (75.42) into a form that Stokes can
be applied to. This gives us

A
F · (d2xI) =

∫
J
ε0c
· (d3xI). (75.44)

Integration of the trivector parts

$
(∇∧ F) · d3x =

I
F · d2x = 0, (75.45)

produces a combined electric and magnetic field form of a Faraday’s law and Gauss’ magneto-
statics law that does not look terribly familiar

I
E · d2x = −c

I
B · (d2xI), (75.46)

but integration of this using a spatial volume produces the familiar Gauss’s magneto-static
law

"
B · dA = 0

∇ ·B = 0.
(75.47)

Integration and summation of the same trivector parts in eq. (75.46) over each of the possible
three spacetime volumes gives us Faraday’s law in its familiar forms

∂B
∂t

+∇ ×E = 0�
E · dr +

∫
∂B
∂t
· dA = 0.

(75.48)

Now, the vector parts of Maxwell’s multivector equation integrated over a spatial volume
produces Gauss’s law for electrostatics

"
E · dA =

∫
ρ

ε0
dV

∇ ·E =
ρ

ε0
.

(75.49)
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Finally, integration of the same with summation over all spacetime volumes gives us the
famous Maxwell-Ampere equation

∇ ×B = µ0

(
j + ε0

∂E
∂t

)
�

B · dr = µ0

(∫
j · dA + ε0

∫
∂E
∂t
· dA

)
.

(75.50)

In the process of arriving at these results it appears that some of the use of Stokes equation
was actually superfluous. One of the first things that was done once the area elements were
established was to undo the boundary integral writing things once more in terms of the partials
over those boundaries. Doing all this with just the volume integrals would possibly have been
simpler. That said, as an exercise to validate the generalized Stokes equation formulation it
worked well!

Conceptually the idea that integration of Maxwell’s equation over various volumes produces
all the traditional vector differential and integral forms that we are used to is quite nice. It seems
less arbitrary than trying to figure out the exactly what specific projection like operations, as
done in 74, will produce the various traditional vector differential equations. Of course those
can be used once found to develop the integral relations, but here we get them all in one shot.

75.3.2 Getting a glimpse of how the pieces fit together?

I think I am starting to see a bit of the big picture for electrodynamics. In 65, an earlier treat-
ment of Maxwell’s equations in a GA context, I used dimensional analysis to group electric
and magnetic fields in a logical way, and employs the spatial pseudoscalar to combine diver-
gence and curl terms. This I thought was a good motivation for the STA form of the equation,
using ideas familiar from school. Similar treatments can be found elsewhere such as in [10] but
understanding that takes a lot more work.

Once the STA form is taken as more fundamental, one can take that and show the types of
spacetime projection operations, as in 74, and produce the various traditional vector differential
forms of Maxwell’s equations. Alternatively, as in 76, we can extract the traditional tensor form
of the equations.

From an even higher level point of view we can relate the STA Maxwell’s equations to the
least action principles, as done in [25], to find the Lorentz force law in STA form using the
Euler-Lagrange equations, and finally in [24] where the STA form of Maxwell’s equation is
obtained directly from a complex valued field Lagrangian.

Goldstein [16] has an interesting treatment of a combined Lagrangian for both the Lorentz
force law and the field equations (using spatial delta functions). Minimization of the action for
that Lagrangian with respect to the potential produces the field equations, and with respect to
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coordinates produces the Lorentz force law. Have to work through that in a covariant form to
see how this relates to my previous treatments.

75.3.3 Followup

It would be interesting to see if any of the problems in a Maxwell’s equation text like [15] would
be any easier with a combined field as is possible in the STA formulation (ie: the ones based on
just current or charge distributions).

There is also some interesting looking treatments of complex number residue like integrals
for the field equation in references such as [20]. I re-encountered that paper after writing up
these notes. I had seen it before but those parts that cover (tersely) the same material as above
did not make much sense until I had independently worked it all out in detail myself. Perhaps I
am dense, but I find that many academic papers are ironically not very good at all for learning
from!

I believe these residue/green’s function ideas both relate to the Biot-Savart law, as mentioned
in [20], [10], and [8]. All of those are either too terse or have details missing that indicate I need
to study the ideas in more depth to understand.
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T E N S O R R E L AT I O N S F RO M B I V E C T O R F I E L D E Q UAT I O N

76.1 motivation

This contains a somewhat unstructured collection of notes translating between tensor and bivec-
tor forms of Maxwell’s equation(s).

76.2 electrodynamic tensor

John Denker’s paper [7] writes:

F = (E + icB)γ0 (76.1)

with

E = Eiγi

B = Biγi
(76.2)

Since he uses the positive end of the metric for spatial indices this works fine. Contrast to
[10] who write:

F = E + icB (76.3)

with the following implied spatial bivector representation:

E = Eiσi = Eiγi0

B = Biσi = Biγi0.
(76.4)

That implied representation was not obvious to me, but I eventually figured out what they
meant. They also use c = 1, so I have added it back in here for clarity.

The end result in both cases is a pure bivector representation for the complete field:

F = E jγ j0 + icB jγ j0

Let us look at the B j basis bivectors a bit more closely:

579
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iγ j0 = γ0123 j0 = −γ01230 j = +γ00123 j = (γ0)2γ123 j

Where,

γ123 j =


(γ j)2γ23 if j = 1

(γ j)2γ31 if j = 2

(γ j)2γ12 if j = 3

Combining these results we have a (γ0)2(γ j)2 = −1 coefficient that is metric invariant, and
can write:

iσ j = iγ j0 =


γ32 if j = 1

γ13 if j = 2

γ21 if j = 3

Or, more compactly:

iσa = iγa0 = −εabcγbc

Putting things back together, our bivector field in index notation is:

F = Eiγi0 − εi jkcBiγ jk (76.5)

76.2.1 Tensor components

Now, given a grade two multivector such as our field, how can we in general compute the
components of that field given any arbitrary basis. This can be done using the reciprocal bivector
frame:

F =
∑

aµν(eµ ∧ eν)

To calculate the coordinates aµν we can dot with eν ∧ eµ:

F · (eν ∧ eµ) =
∑

aαβ(eα ∧ eβ) · (eν ∧ eµ)

= (aµν(eµ ∧ eν) + aνµ(eν ∧ eµ)) · (eν ∧ eµ)

= aµν − aνµ
= 2aµν

(76.6)
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Therefore

F =
1
2

∑
(F · (eν ∧ eµ))(eµ ∧ eν) =

∑
µ<ν

(F · (eν ∧ eµ))(eµ ∧ eν)

Or, with Fµν = F · (eν ∧ eµ) and summation convention:

F =
1
2

Fµν(eµ ∧ eν) (76.7)

It is not hard to see that the representation with respect to the reciprocal frame, with Fµν =

F · (eν ∧ eµ) must be:

F =
1
2

Fµν(eµ ∧ eν) (76.8)

Writing Fµν or Fµν leaves a lot unspecified. You will get a different tensor for each choice of
basis. Using this form amounts to the equivalent of using the matrix of a linear transformation
with respect to a specified basis.

76.2.2 Electromagnetic tensor components

Next, let us calculate these Fµν, and Fµν values and relate them to our electric and magnetic
fields so we can work in or translate to and from all of the traditional vector, the tensor, and the
Clifford/geometric languages.

Fµν =
(
Eiγi0 − εi jkcBiγ jk

)
· γνµ

By inspection our electric field components we have:

Fi0 = Ei,

and for the magnetic field:

Fi j = −εki jcBk = −εi jkcBk.

Putting in sample numbers this is:

F32 = −ε321cB1 = cB1

F13 = −ε132cB2 = cB2

F21 = −ε213cB3 = cB3

(76.9)
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This can be summarized in matrix form:

Fµν =


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0


(76.10)

Observe that no specific reference to a metric was required to evaluate these components.

76.2.3 reciprocal tensor (name?)

The reciprocal frame representation of eq. (76.5) is

F = Eiγi0 − εi jkcBiγ jk

= −Eiγi0 − εi jkcBiγ jk (76.11)

Calculation of the reciprocal representation of the field tensor Fµν = F · γνµ is now possible,
and by inspection

Fi0 = −Ei = −Fi0

Fi j = −εi jkcBk = Fi j (76.12)

So, all the electric field components in the tensor have inverted sign:

Fµν =


0 E1 E2 E3

−E1 0 −cB3 cB2

−E2 cB3 0 −cB1

−E3 −cB2 cB1 0


This is metric independent with this bivector based definition of Fµν, and Fµν. Surprising,

since I thought I had read otherwise.

76.2.4 Lagrangian density

[10] write the Lagrangian density in terms of
〈
F2

〉
, whereas Denker writes it in terms of

〈
FF̃

〉
.

Is their alternate choice in metric responsible for this difference.
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Reversing the field since it is a bivector, just inverts the sign:

F = Eiγi0 − εi jkcBiγ jk

F̃ = Eiγ0i − εi jkcBiγk j = −F
(76.13)

So the choice of
〈
F2

〉
vs.

〈
FF̃

〉
is just a sign choice, and does not have anything to do with

the metric.
Let us evaluate one of these:

F2 = (Eiγi0 − εi jkcBiγ jk)(Euγu0 − εuvwcBuγvw)

= EiEuγi0γu0 − εuvwEicBuγvwγi0 − εi jkEucBiγ jkγu0 + εi jkεuvwc2BiBuγvwγ jk
(76.14)

That first term is:

EiEuγi0γu0 = E2 +
∑
i, j

EiE j(σiσ j +σ jσi)

= E2 +
∑
i, j

2EiE jσi ·σ j

= E2

(76.15)

Hmm. This is messy. Let us try with F = E + icB directly (with the Doran/Lasenby conven-
tion: E = Ekσk) :

F2 = (E + icB)(E + icB)

= E2 + c2(iB)(iB) + c(iBE + EiB)

= E2 + c2(Bi)(iB) + ic(BE + EB)

= E2 − c2B2 + 2ic(B ·E)

(76.16)
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76.2.4.1 Compared to tensor form

Now lets compare to the tensor form, where the Lagrangian density is written in terms of the
product of upper and lower index tensors:

FµνFµν = Fi0Fi0 + F0iF0i +
∑
i< j

Fi jFi j +
∑
j<i

Fi jFi j

= 2Fi0Fi0 + 2
∑
i< j

Fi jFi j

= 2(−Ei)(Ei) + 2
∑
i< j

(Fi j)2

= −2E2 + 2
∑
i< j

(−εi jkcBk)2

= −2(E2 − c2B2)

(76.17)

Summarizing with a comparison of the bivector and tensor forms we have:

1
2

FµνFµν = c2B2 −E2 = −
〈
F2

〉
=

〈
FF̃

〉
(76.18)

But to put this in context we need to figure out how to apply this in the Lagrangian. That
appears to require a potential formulation of the field equations, so that is the next step.

76.2.4.2 Potential and relation to electromagnetic tensor

Since the field is a bivector is it reasonable to assume that it may be possible to express as the
curl of a vector

F = ∇∧ A.

Inserting this into the field equation we have:

∇(∇∧ A) = ∇ · (∇∧ A) + ∇∧∇

= 0

∧ A

= ∇2A −∇(∇ · A)

=
1
ε0c

J

(76.19)
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With application of the gauge condition ∇ · A = 0, one is left with the four scalar equations:

∇2A =
1
ε0c

J (76.20)

This can also be seen more directly since the gauge condition implies:

∇∧ A = ∇∧ A +∇ · A = ∇A

from which eq. (76.20) follows directly. Observe that although the field equation was not
metric dependent, the equivalent potential equation is since it has a squared Laplacian.

76.2.4.3 Index raising or lowering

Any raising or lowering of indices, whether it be in the partials or the basis vectors corresponds
to a multiplication by a (γα)2 = ±1 value, so doing this twice cancels out (±1)2 = 1.

Vector coordinates in the reciprocal basis is translated by such a squared factor when we are
using an orthonormal basis:

x =
∑

γµ(γµ · x)

=
∑

γµxµ

=
∑

γµ(γµγµ)xµ

=
∑

(γµ)2γµxµ

(76.21)

therefore

xµ = x · γµ = (γµ)2xµ

Similarly our partial derivatives can be raised or lowered since they are just derivatives in
terms of one of the choices of coordinates

∂µ =
∂

∂xµ
=

∂

∂(γµ)2xµ
= (γµ)2 ∂

∂xµ
= (γµ)2∂µ

when written as a gradient, we have two pairs of (γµ)2 factors that cancel if we switch both
indices:
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∇ = γµ
∂

∂xµ
= (γµ)2(γµ)2γµ

∂

∂xµ
= (±1)2γµ

∂

∂xµ

Or in short with the notation above

∇ = γµ∂µ = γµ∂
µ

76.2.4.4 Back to tensor in terms of potential

Utilizing matched raising and lowering of indices, our field can be written in any of the follow-
ing ways

∇∧ A = γµ ∧ γν∂
µAν =

∑
µ<ν

γµ ∧ γν (∂
µAν − ∂νAµ)

= γµ ∧ γν∂µAν =
∑
µ<ν

γµ ∧ γν (∂µAν − ∂νAµ)

= γµ ∧ γ
ν∂µAν =

∑
µ<ν

γµ ∧ γ
ν (∂µAν − ∂νAµ)

= γµ ∧ γν∂µAν =
∑
µ<ν

γµ ∧ γν (∂µAν − ∂νAµ)

(76.22)

These implicitly define the tensor in terms of potential, so we can write: Calculating the
tensor in terms of the bivector we have:

Fµν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

Fµν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ
Fµ

ν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

Fµ
ν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

(76.23)

These potential based equations of eq. (76.23), are consistent with the definition of the field
tensor in terms of potential in the wikipedia Covariant electromagnetism article. That article’s
definition of the field tensor is also consistent with the field tensor in matrix form of eq. (76.10).

However, the wikipedia Electromagnetic Tensor uses different conventions (at the time of
this writing), but both claim a − + ++ metric, so I think one is wrong. I had naturally favor the
covariant article since it agrees with my results.

http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
http://en.wikipedia.org/wiki/Electromagnetic_tensor
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76.2.5 Field equations in tensor form

J/cε0 = ∇(∇∧ A)

= ∇ · (∇∧ A) +∇∧∇∧ A
(76.24)

This produces two equations

∇ · (∇∧ A) = J/cε0

∇∧∇∧ A = 0

76.2.5.1 Vector equation part

Expanding the first in coordinates we have

J/cε0 = γα∂α · (γµ ∧ γν∂µAν)

= (γα · γµν)∂α∂µAν

= (δαµγν − δ
α
νγµ)∂α∂µAν

= (γν∂µ − γµ∂ν)∂µAν

= γν∂µ(∂µAν − ∂νAµ)

= γν∂µFµν

(76.25)

Dotting the LHS with γα we have

γα · J/cε0 = γα · γβJβ/cε0

= δαβ Jβ/cε0

= Jα/cε0

(76.26)

and for the RHS

γα · γν∂µFµν = ∂µFµα (76.27)

Or,

∂µFµα = Jα/cε0 (76.28)

This is exactly (with index switch) the tensor equation in wikipedia Covariant electromag-
netism article. It however, differs from the wikipedia Electromagnetic Tensor article.

http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
http://en.wikipedia.org/wiki/Electromagnetic_tensor
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76.2.5.2 Trivector part

Now, the trivector part of this equation does not seem like it is worth much consideration

∇∧∇∧ A = 0 (76.29)

But this is four of the eight traditional Maxwell’s equations when written out in terms of
coordinates. Let us write this out in tensor form and see how this follows.

∇∧∇∧ A = (γα∂α)∧ (γβ∂β)∧ (γσAσ)

= (γα ∧ γβ ∧ γσ)∂α∂βAσ
= (γα ∧ γβ ∧ γσ)∂α∂βAσ + (γα ∧ γσ ∧ γβ)∂α∂σAβ
= (γα ∧ γβ ∧ γσ)∂α(∂βAσ − ∂σAβ)

= (γα ∧ γβ ∧ γσ)∂αFβσ

(76.30)

For each of the four trivectors that span the trivector space the coefficients of those trivectors
must all therefore equal zero. The duality set

{iγµ}

can be used to enumerate these four equations, so to separate these from the wedge products
we have to perform the dot products. Here i can be any pseudoscalar associated with the four
vector space, and it will be convenient to use an "index-up" pseudoscalar i = γ0123. This will
still anticommute with any of the γµ vectors.

(γα ∧ γβ ∧ γσ) · (iγµ) =
〈
(γα ∧ γβ ∧ γσ)(iγµ)

〉
= −

〈
γαγβγσγµ0123

〉
= −

〈
γαβσµ0123

〉
= εαβσµ

(76.31)

The last line follows with the observation that the scalar part will be zero unless α, β, σ,
and µ are all unique. When they are 0, 1, 2, 3 for example then we have i2 = −1, and any odd
permutation will change the sign.

Application of this to our curl of curl expression we have

(∇∧∇∧ A) · (iγµ) = εαβσµ∂αFβσ
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Which is exactly the remaining four equations of Maxwell’s equation in standard tensor form

εαβσµ∂αFβσ = 0 (76.32)

One of these will be Gauss’s law ∇ ·B = 0, and the other three can be summed in vector form
for Faraday’s law ∇ ×E + ∂B

∂t = 0.

76.2.6 Lagrangian density in terms of potential

We have seen that we can write the core of the Lagrangian density in two forms:

1
2

FµνFµν = −
〈
F2

〉
= c2B2 −E2

where summarizing the associated relations we have:

F = E + icB =
1
2

Fµνγµν = ∇∧ A = Eiγi0 − εi jkcBiγ jk

Fµν = ∂µAν − ∂νAµ

Fµν = ∂µAν − ∂νAµ
Fi0 = Ei = −Fi0

Fi j = −εi jkcBk = Fi j

(76.33)

Now, if we want the density in terms of potential, by inspection we can form this from the
tensor as:

1
2

FµνFµν =
1
2

(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)
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We should also be able to calculate this directly from the bivector square. Lets verify this:

〈
F2

〉
= 〈(∇∧ A)(∇∧ A)〉

=
〈
(γµ ∧ γν∂µAν)(γα ∧ γβ∂αAβ)

〉
= (γµ ∧ γν∂µAν) · (γα ∧ γβ∂αAβ)

= (((γµ ∧ γν) · γα) · γβ)∂µAν∂αAβ

=
(
δ
µ
βδ
ν
α − δ

µ
αδ

ν
β

)
∂µAν∂αAβ

= ∂µAν∂νAµ − ∂µAν∂µAν

= ∂µAν (∂νAµ − ∂µAν)

=
1
2
(∂µAν (∂νAµ − ∂µAν) + ∂νAµ (∂µAν − ∂νAµ))

=
1
2
(∂νAµ − ∂µAν) (∂νAµ − ∂µAν)

= −
1
2

FµνFµν

(76.34)

as expected.
The factor of 1/2 appearance is a x = (1/2)(x + x) operation, plus a switch of dummy indices

in one half of the sum.
With the density expanded completely in terms of potentials things are in a form for an

attempt to evaluate the Lagrangian equations or do the variational exercise (as in Feynman [12]
with the electrostatic case) and see that this recovers the field equations (covered in a subsequent
set of notes in both fashions).
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F O U R V E C T O R P OT E N T I A L

77.1

Goldstein’s classical mechanics, and many other texts, will introduce the four potential starting
with Maxwell’s equation in scalar, vector, bivector, trivector expanded form:

∇ ·E =
ρ

ε0

∇ ·B = 0

∇ ×E = −
∂B
∂t

∇ ×B = µ0

(
J + ε0

∂E
∂t

) (77.1)

ie: E can not be a gradient, since it has a curl, but B can be the curl of something since it has
zero divergence, so we have B = ∇ ×A. Faraday’s law above gives:

0 = ∇ ×E +
∂∇ ×A
∂t

= ∇ ×

(
E +

∂A
∂t

) (77.2)

Because this curl is zero, one can write it as a gradient, say −∇φ.
The end result are the equations:

E = − (∇φ + ∂tA) (77.3)

B = ∇ ×A (77.4)

Looking at what Goldstein does with this (which I re-derived above to put in the SI form
I am used to), my immediate question is how would the combined bivector field look when
expressed using an STA basis, and then once that is resolved, how would his Lagrangian for a
charged point particle look in explicit four vector form?

Intuition says that this is all going to work out to be a spacetime gradient of a four vector, but
I am not sure how the Lorentz gauge freedom will turn out. Here is an exploration of this.
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77.1.1

Forming as usual

F = E + icB (77.5)

We can combine the equations eq. (77.3) and eq. (77.4) into bivector form

F = − (∇φ + ∂tA) + c∇∧A (77.6)

77.1.2 Dimensions

Let us do a dimensional check before continuing:
Equation (77.5) gives:

[E] =
[m][d]
[q][t]2

That and eq. (77.6) gives

[φ] =
[m][d]2

[q][t]2

And the two A terms of eq. (77.6) both give:

[A] =
[m][d]
[q][t]

.

Therefore if we create a four vector out of φ, and A in SI units we will need that factor c with
A with velocity dimensions to fix things up.

77.1.3 Expansion in terms of components. STA split

F = − (∇φ + ∂tA) + c∇∧A

= −
∑

γiγ0∂xiφ −
∑

γiγ0∂tAi + c
(∑

σi∂xi

)
∧

(∑
σ jA j

)
=

∑
γi∂xi(γ0φ) +

∑
γ0∂ctcγiAi −

(∑
γi∂xi

)
∧

(∑
γ jcA j

)
=

∑
γi ∧ γ0∂xiφ +

∑
γ0 ∧ γi∂x0cAi +

∑
γi ∧ γ j∂xicA j

=
(∑

γi∂xi

)
∧

(
γ0φ + γicAi

)
= ∇∧

(
γ0φ +

∑
γicAi

)
(77.7)
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Once the electric and magnetic fields are treated as one entity, the separate equations of
eq. (77.3) and eq. (77.4) become nothing more than a statement that the bivector field F is the
spacetime curl of a four vector potential A = γ0φ +

∑
γicAi.

This original choice of components Ai, defined such that B = ∇×A is a bit unfortunate in SI
units. SettingAi = cAi, andA0 = φ, one then has the more symmetric form.

A =
∑

γµA
µ.

Of course the same thing could be achieved with c = 1 ;)
Anyways, substitution of this back into Maxwell’s equation gives:

∇(∇∧ A) = ∇ · (∇∧ A) + ∇∧∇∧ A

= 0

= J

One can see an immediate simplification possible if one requires:

∇ · A = 0.

Then we are left with a forced wave equation to solve for the four potential:

∇2A = −

(∑
∂xi xi −

1
c2 ∂tt

)
A = J.

Now, without all this mess of algebra, I could have gone straight to this end result (and had
done so previously). I just wanted to see where I would get applying the STA basis to the
classical vector+scalar four vector ideas.

77.1.4 Lorentz gauge

Looking at ∇ · A = 0, I was guessing that this was what I recalled being called the Lorentz
gauge, but in a slightly different form.

If one expands this you get:

0 = ∇ · A

=
∑

γµ∂µ ·
(
γ0φ + c

∑
γ jA j

)
= ∂ctφ + c

∑
∂xi Ai

= ∂ctφ + c∇ ·A

(77.8)
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Or,

∇ ·A = −
1
c2 ∂tφ (77.9)

Checked my Feynman book. Yes, this is the Lorentz Gauge.
Another note. Again the SI units make things ugly. With the above modification of compo-

nents that hide this, where one sets A =
∑
γiA

i, this gauge equation also takes a simpler form:

0 = ∇ · A =
(∑

γµ∂xµ
)
·
(∑

γνA
ν
)

=
∑

∂xµA
µ.

77.2 appendix

77.2.1 wedge of spacetime bivector basis elements

For i , j:

σi ∧σ j =
1
2
(σiσ j −σ jσi)

=
1
2
(γi0 j0 − γ j0i0)

=
1
2
(−γi j + γ ji)

= γ ji

(77.10)
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M E T R I C S I G NAT U R E D E P E N D E N C I E S

78.1 motivation

Doran/Lasenby use a +,−,−,− signature, and I had gotten used to that. On first seeing the
alternate signature used by John Denker’s excellent GA explanatory paper , I found myself
disoriented. How many of the identities that I was used to were metric dependent? Here are
some notes that explore some of the metric dependencies of STA, in particular observing which
identities are metric dependent and which are not.

In the end this exploration turned into a big meandering examination and comparison of
the bivector and tensor forms of Maxwell’s equation. That part has been split into a different
writeup.

78.2 the guts

78.2.1 Spatial basis

Our spatial (bivector) basis:

σi = γi ∧ γ0 = γi0,

that behaves like Euclidean vectors (positive square) still behave as desired, regardless of the
signature:

σi ·σ j =
〈
γi0 j0

〉
= −

〈
γi j

〉
(γ0)2

= −δi j(γi)2(γ0)2

(78.1)

Regardless of the signature the pair of products (γi)2(γ0)2 = −1, so our spatial bivectors are
metric invariant.
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78.2.2 How about commutation?

Commutation with

iγµ = γ0123µ = γµ0123

µ has to "pass" three indices regardless of metric, so anticommutes for any µ.

σkγµ = γk0µ

If k = µ, or 0 = µ, then we get a sign inversion, and otherwise commute (pass two indices).
This is also metric invariant.

78.2.3 Spatial and time component selection

With a positive time metric (Doran/Lasenby) selection of the x0 component of a vector x re-
quires a dot product:

x = x0γ0 + xiγi

x · γ0 = x0(γ0)2

Obviously this is a metric dependent operation. To generalize it appropriately, we need to dot
with γ0 instead:

x · γ0 = x0

Now, what do we get when wedging with this upper index quantity instead.

x ∧ γ0 =
(
x0γ0 + xiγi

)
∧ γ0

= xiγi ∧ γ
0

= xiγi0(γ0)2

= xiσi(γ0)2

= x
(
γ0

)2

(78.2)
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Not quite the usual expression we are used to, but it still behaves as a Euclidean vector
(positive square), regardless of the metric:

(x ∧ γ0)2 = (±x)2
= x2

This suggests that we should define our spatial projection vector as x ∧ γ0 instead of x ∧ γ0

as done in Doran/Lasenby (where a positive time metric is used).

78.2.3.1 Velocity

Variation of a event path with some parameter we have:

dx
dλ

=
dxµ

dλ
γµ = c

dt
dλ
γ0 +

dxi

dλ
γi

=
dt
dλ

(
cγ0 +

dxi

dt
γi

) (78.3)

The square of this is:

1
c2

(
dx
dλ

)2

=

(
dt
dλ

)2

(γ0)2

1 +
1
c2

(
dxi

dt

)2

(γi)2(γ0)2


=

(
dt
dλ

)2

(γ0)2
(
1 − (v/c)2

)
(γ0)2

c2

(
dx
dλ

)2

=

(
dt
dλ

)2 (
1 − (v/c)2

)
(78.4)

We define the proper time τ as that particular parametrization cτ = λ such that the LHS
equals 1. This is implicitly defined via the integral

τ =

∫ √
1 − (v/c)2dt =

∫ √
1 −

(
1
c

dxi

dα

)2

dα

Regardless of this parametrization α = α(t), this velocity scaled 4D arc length is the same.
This is a bit of a digression from the ideas of metric dependence investigation. There is however
a metric dependence in the first steps arriving at this result.

with proper velocity defined in terms of proper time v = dx/dτ, we also have:

γ =
dt
dτ

=
1√

1 − (v/c)2
(78.5)
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v = γ

(
cγ0 +

dxi

dt
γi

)
(78.6)

Therefore we can select this quantity γ, and our spatial velocity components, from our proper
velocity:

cγ = v · γ0

In eq. (78.5) we did not define v, only implicitly requiring that its square was
∑

(dxi/dt)2, as
we require for correspondence with Euclidean meaning. This can be made more exact by taking
wedge products to weed out the time component:

v∧ γ0 = γ
dxi

dt
γi ∧ γ

0

With a definition of v = dxi

dt γi ∧ γ
0 (which has the desired positive square), we therefore have:

v =
v∧ γ0

γ

=
v∧ γ0

v/c · γ0

(78.7)

Or,

v/c =
v/c∧ γ0

v/c · γ0 (78.8)

All the lead up to this allows for expression of the spatial component of the proper velocity
in a metric independent fashion.

78.2.4 Reciprocal Vectors

By reciprocal frame we mean the set of vectors {uα} associated with a basis for some linear
subspace {uα} such that:

uα · uβ = δ
β
α
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In the special case of orthonormal vectors uα · uβ = ±δαβ the reciprocal frame vectors are just
the inverses (literally reciprocals), which can be verified by taking dot products:

1
uα
· uα =

〈
1
uα

uα

〉
=

〈
1
uα

uα
uα

uα

〉
=

〈
(uα)2

(uα)2

〉
= 1

(78.9)

Written out explicitly for our positive "orthonormal" time metric:

(γ0)2 = 1

(γi)2 = −1,
(78.10)

we have the reciprocal vectors:

γ0 = γ0

γi = −γi (78.11)

Note that this last statement is consistent with (γi)2 = −1, since (γi)2 = γi(−γi) = −δi
i = −1

Contrast this with a positive spatial metric:

(γ0)2 = −1

(γi)2 = 1,
(78.12)

with reciprocal vectors:

γ0 = −γ0

γi = γi (78.13)

where we have the opposite.
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78.2.5 Reciprocal Bivectors

Now, let us examine the bivector reciprocals. Given our orthonormal vector basis, let us invert
the bivector and verify that is what we want:

1
γµν

=
1
γµν

γνµ

γνµ

=
1
γµν

1
γνµ

γνµ

=
1

γµννµ
γνµ

=
1

(γµ)2(γν)2γνµ

(78.14)

Multiplication with our vector we will get 1 if this has the required reciprocal relationship:
1
γµν

γµν =
1

(γµ)2(γν)2γνµγµν

=
(γµ)2(γν)2

(γµ)2(γν)2

= 1

(78.15)

Observe that unlike our basis vectors the bivector reciprocals are metric independent. Let us
verify this explicitly:

1
γi0

=
1

(γi)2(γ0)2γ0i

1
γi j

=
1

(γi)2(γ j)2γ ji

1
γ0i

=
1

(γ0)2(γi)2γi0

(78.16)

With a spacetime mix of indices we have a −1 denominator for either metric. With a spatial
only mix (B components) we have 1 in the denominator 12 = (−1)2 for either metric.

Now, perhaps counter to intuition the reciprocal 1
γµν

of γµν is not γµν, but instead γνµ. Here
the shorthand can be deceptive and it is worth verifying this statement explicitly:

γµν · γ
αβ = (γµ ∧ γν) · (γα ∧ γβ)

= ((γµ ∧ γν) · γα) · γβ)

= (γµ(γν · γα) − γν(γµ · γα)) · γβ)

= (γµδνα − γνδµα) · γβ

(78.17)
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Or,

γµν · γ
αβ = δµ

βδν
α − δν

βδµ
α (78.18)

In particular for matched pairs of indices we have:

γµν · γ
νµ = δµ

µδν
ν − δν

µδµ
ν = 1

78.2.6 Pseudoscalar expressed with reciprocal frame vectors

With a positive time metric

γ0123 = −γ0123

(three inversions for each of the spatial quantities). This is metric invariant too since it will
match the single negation for the same operation using a positive spatial metric.

78.2.7 Spatial bivector basis commutation with pseudoscalar

I have been used to writing:

σ j = γ j0

as a spatial basis, and having this equivalent to the four-pseudoscalar, but this only works
with a time positive metric:

i3 = σ123 = γ102030 = γ0123(γ0)2

With the spatial positive spacetime metric we therefore have:

i3 = σ123 = γ102030 = −i4

instead of i3 = i4 as is the case with a time positive spacetime metric. We see that the metric
choice can also be interpreted as a choice of handedness.

That choice allowed Doran/Lasenby to initially write the field as a vector plus trivector where
i is the spatial pseudoscalar:

F = E + icB, (78.19)
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and then later switch the interpretation of i to the four space pseudoscalar. The freedom to do
so is metric dependent freedom, but eq. (78.19) works regardless of metric when i is uniformly
interpreted as the spacetime pseudoscalar.

Regardless of the metric the spacetime pseudoscalar commutes with σ j = γ j0, since it anti-
commutes twice to cross:

σ ji = γ j00123 = γ00123 j = γ0123 j0 = iσ j

78.2.8 Gradient and Laplacian

As seen by the Lagrangian based derivation of the (spacetime or spatial) gradient, the form is
metric independent and valid even for non-orthonormal frames:

∇ = γµ
∂

∂xµ

78.2.8.1 Vector derivative

A cute aside, as pointed out in John Denker’s paper, for orthonormal frames, this can also be
written as:

∇ =
1
γµ

∂

∂xµ
(78.20)

as a mnemonic for remembering where the signs go, since in that form the upper and lower
indices are nicely matched in summation convention fashion.

Now, γµ is a constant when we are not working in curvilinear coordinates, and for constants
we are used to the freedom to pull them into our derivatives as in:

1
c
∂

∂t
=

∂

∂(ct)
Supposing that one had an orthogonal vector decomposition:

x =
∑

γixi =
∑

xi

then, we can abuse notation and do the same thing with our unit vectors, rewriting the gradient
eq. (78.20) as:

∇ =
∂

∂(γµxµ)
=

∑ ∂

∂xi
(78.21)
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Is there anything to this that is not just abuse of notation? I think so, and I am guessing the
notational freedom to do this is closely related to what Hestenes calls geometric calculus.

Expanding out the gradient in the form of eq. (78.21) as a limit statement this becomes, rather
loosely:

∇ =
∑

i

lim
dxi→0

1
dxi

( f (x + dxi) − f (x))

If nothing else this justifies the notation for the polar form gradient of a function that is only
radially dependent, where the quantity:

∇ = r̂
∂

∂r
=

1
r̂
∂

∂r
is sometimes written:

∇ =
∂

∂r
Tong does this for example in his online dynamics paper, although there it appears to be not

much more than a fancy shorthand for gradient.

78.2.9 Four-Laplacian

Now, although our gradient is metric invariant, its square the four-Laplacian is not. There we
have:

∇2 =
∑

(γµ)2 ∂2

∂2xµ

= (γ0)2
(
∂2

∂2x0 + (γ0)2(γi)2 ∂2

∂2xi

)
= (γ0)2

(
∂2

∂2x0 −
∂2

∂2xi

) (78.22)

This makes the metric dependency explicit so that we have:

∇2 =
1
c2

∂2

∂2t
−

∂2

∂2xi if (γ0)2 = 1

∇2 =
∂2

∂2xi −
1
c2

∂2

∂2t
if (γ0)2 = −1





79
WAV E E Q UAT I O N F O R M O F M A X W E L L’ S E Q UAT I O N S

79.1 motivation

In [22], on plane waves, he writes "we find easily..." to show that the wave equation for each of
the components of E, and B in the absence of current and charge satisfy the wave equation. Do
this calculation.

79.2 vacuum case

Avoiding the non-vacuum medium temporarily, Maxwell’s vacuum equations (in SI units) are

∇ ·E = 0 (79.1)

∇ ·B = 0 (79.2)

∇ ×B =
1
c2

∂E
∂t

(79.3)

∇ ×E = −
∂B
∂t

(79.4)

The last two curl equations can be decoupled by once more calculating the curl. Illustrating
by example

∇ × (∇ ×E) = −
∂

∂t
∇ ×B = −

1
c2

∂2E
∂t2

(79.5)

Digging out vector identities and utilizing the zero divergence we have

∇ × (∇ ×E) = ∇(∇ ·E) −∇2E = −∇2E (79.6)
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Putting eq. (79.5), and eq. (79.6) together provides a wave equation for the electric field
vector

1
c2

∂2E
∂t2 −∇

2E = 0 (79.7)

Operating with curl on the remaining Maxwell equation similarly produces a wave equation
for the magnetic field vector

1
c2

∂2B
∂t2 −∇

2B = 0 (79.8)

This is really six wave equations, one for each of the field coordinates.

79.3 with geometric algebra

Arriving at eq. (79.7), and eq. (79.8) is much easier using the GA formalism of [10].
Pre or post multiplication of the gradient with the observer frame time basis unit vector γ0

has a conjugate like action

∇γ0 = γ0γ0∂0 + γkγ0∂k

= ∂0 −∇
(79.9)

(where as usual our spatial basis is σk = γkγ0).
Similarly

γ0∇ = ∂0 +∇ (79.10)

For the vacuum Maxwell’s equation is just

∇F = ∇(E + IcB) = 0 (79.11)

With nothing more than an algebraic operation we have

0 = ∇γ0γ0∇F

= (∂0 −∇)(∂0 +∇)(E + IcB)

=

(
1
c2

∂2

∂t2 −∇
2
)

(E + IcB)

(79.12)
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This equality is true independently for each of the components of E and B, so we have as
before

These wave equations are still subject to the constraints of the original Maxwell equations.

0 = γ0∇F

= (∂0 +∇)(E + IcB)

= ∇ ·E + (∂0E − c∇ ×B) + I(c∂0B +∇ ×E) + Ic∇ ·B
(79.13)

79.4 tensor approach?

In both the traditional vector and the GA form one can derive the wave equation relations of
eq. (79.7), eq. (79.8). One can obviously summarize these in tensor form as

∂µ∂
µFαβ = 0 (79.14)

working backwards from the vector or GA result. In this notation, the coupling constraint
would be that the field variables Fαβ are subject to the Maxwell divergence equation (name?)

∂µFµν = 0 (79.15)

and also the dual tensor relation

εσµαβ∂µFαβ = 0 (79.16)

I cannot seem to figure out how to derive eq. (79.14) starting from these tensor relations?
This probably has something to do with the fact that we require both the divergence and the

dual relations eq. (79.15), eq. (79.16) expressed together to do this.

79.5 electromagnetic waves in media

Jackson lists the Macroscopic Maxwell equations in (6.70) as

∇ ·B = 0

∇ ·D = 4πρ

∇ ×E +
1
c
∂B
∂t

= 0

∇ ×H −
1
c
∂D
∂t

=
4π
c

J

(79.17)
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(for this note this means unfortunately a switch from SI to CGS midstream)
For linear material (B = µH, and D = εE) that is devoid of unbound charge and current

(ρ = 0, and J = 0), we can assemble these into his (7.1) equations

∇ ·B = 0

∇ ·E = 0

∇ ×E +
1
c
∂B
∂t

= 0

∇ ×B −
εµ

c
∂E
∂t

= 0

(79.18)

In this macroscopic form, it is not obvious how to assemble the equations into a nice tidy GA
form. A compromise is

∇E + ∂0(IB) = 0

∇(IB) + εµ∂0E = 0
(79.19)

Although not as pretty, we can at least derive the wave equations from these. For example for
E, we apply one additional spatial gradient

0 = ∇2E + ∂0(∇IB)

= ∇2E + ∂0(−εµ∂0E)
(79.20)

For B we get the same, and have two wave equations

µε

c2

∂2E
∂t2 −∇

2E = 0

µε

c2

∂2B
∂t2 −∇

2B = 0
(79.21)

The wave velocity is thus not c, but instead the reduced speed of c/
√
µε.

The fact that it is possible to assemble wave equations of this form means that there must
also be a simpler form than eq. (79.19). The reduced velocity is the clue, and that can be used
to refactor the constants

∇E +
√
µε∂0

(
IB
√
µε

)
= 0

∇

(
IB
√
µε

)
+
√
µε∂0E = 0

(79.22)
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These can now be added

(∇ +
√
µε∂0)

(
E +

IB
√
µε

)
= 0 (79.23)

This allows for the one liner derivation of eq. (79.21) by premultiplying by the conjugate
operator −∇ +

√
µε∂0

0 = (−∇ +
√
µε∂0) (∇ +

√
µε∂0)

(
E +

IB
√
µε

)
=

(
−∇2 +

µε

c2 ∂tt

) (
E +

IB
√
µε

) (79.24)

Using the same hint, and doing some rearrangement, we can write Jackson’s equations (6.70)
as

(∇ +
√
µε∂0)

(
E +

IB
√
µε

)
=

4π
ε

(
ρ −

√
µε

c
J
)

(79.25)
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S PAC E T I M E A L G E B R A S O L U T I O N S O F T H E M A X W E L L
E Q UAT I O N F O R D I S C R E T E F R E Q U E N C I E S

80.1 motivation

How to obtain solutions to Maxwell’s equations in vacuum is well known. The aim here is
to explore the same problem starting with the Geometric Algebra (GA) formalism [10] of the
Maxwell equation.

∇F = J/ε0c

F = ∇∧ A = E + icB
(80.1)

A Fourier transformation attack on the equation should be possible, so let us see what falls
out doing so.

80.1.1 Fourier problem

Picking an observer bias for the gradient by premultiplying with γ0 the vacuum equation for
light can therefore also be written as

0 = γ0∇F

= γ0(γ0∂0 + γk∂k)F

= (∂0 − γ
kγ0∂k)F

= (∂0 +σk∂k)F

=

(
1
c
∂t +∇

)
F

(80.2)

A Fourier transformation of this equation produces

0 =
1
c
∂F
∂t

(k, t) +
1

(
√

2π)3

∫
σm∂mF(x, t)e−ik·xd3x (80.3)
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and with a single integration by parts one has

0 =
1
c
∂F
∂t

(k, t) −
1

(
√

2π)3

∫
σmF(x, t)(−ikm)e−ik·xd3x

=
1
c
∂F
∂t

(k, t) +
1

(
√

2π)3

∫
kF(x, t)ie−ik·xd3x

=
1
c
∂F
∂t

(k, t) + ikF̂(k, t)

(80.4)

The flexibility to employ the pseudoscalar as the imaginary i = γ0γ1γ2γ3 has been employed
above, so it should be noted that pseudoscalar commutation with Dirac bivectors was implied
above, but also that we do not have the flexibility to commute k with F.

Having done this, the problem to solve is now Maxwell’s vacuum equation in the frequency
domain

∂F
∂t

(k, t) = −ickF̂(k, t) (80.5)

Introducing an angular frequency (spatial) bivector, and its vector dual

Ω = −ick
ω = ck

(80.6)

This becomes

F̂′ = ΩF (80.7)

With solution

F̂ = eΩtF̂(k, 0) (80.8)

Differentiation with respect to time verifies that the ordering of the terms is correct and this
does in fact solve eq. (80.7). This is something we have to be careful of due to the possibility of
non-commuting variables.

Back substitution into the inverse transform now supplies the time evolution of the field given
the initial time specification

F(x, t) =
1

(
√

2π)3

∫
eΩtF̂(k, 0)eik·xd3k

=
1

(2π)3

∫
eΩt

(∫
F(x′, 0)e−ik·x′d3x′

)
eik·xd3k

(80.9)
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Observe that Pseudoscalar exponentials commute with the field because i commutes with
spatial vectors and itself

Feiθ = (E + icB)(C + iS )

= C(E + icB) + S (E + icB)i

= C(E + icB) + S i(E + icB)

= eiθF

(80.10)

This allows the specifics of the initial time conditions to be suppressed

F(x, t) =

∫
d3keΩteik·x

∫
1

(2π)3 F(x′, 0)e−ik·x′d3x′ (80.11)

The interior integral has the job of a weighting function over plane wave solutions, and this
can be made explicit writing

D(k) =
1

(2π)3

∫
F(x′, 0)e−ik·x′d3x′

F(x, t) =

∫
eΩteik·xD(k)d3k

(80.12)

Many assumptions have been made here, not the least of which was a requirement for the
Fourier transform of a bivector valued function to be meaningful, and have an inverse. It is
therefore reasonable to verify that this weighted plane wave result is in fact a solution to the
original Maxwell vacuum equation. Differentiation verifies that things are okay so far

γ0∇F(x, t) =

(
1
c
∂t +∇

) ∫
eΩteik·xD(k)d3k

=

∫ (
1
c

ΩeΩt +σmeΩtikm

)
eik·xD(k)d3k

=

∫ (
1
c

(−ikc) + ik
)

eΩteik·xD(k)d3k

= 0 �

(80.13)

80.1.2 Discretizing and grade restrictions

The fact that it the integral has zero gradient does not mean that it is a bivector, so there must
also be at least also be restrictions on the grades of D(k).



614 space time algebra solutions of the maxwell equation for discrete frequencies

To simplify discussion, let us discretize the integral writing

D(k′) = Dkδ
3(k − k′) (80.14)

So we have

F(x, t) =

∫
eΩteik′·xD(k′)d3k′

=

∫
eΩteik′·xDkδ

3(k − k′)d3k′
(80.15)

This produces something planewave-ish

F(x, t) = eΩteik·xDk (80.16)

Observe that at t = 0 we have

F(x, 0) = eik·xDk

= (cos(k · x) + i sin(k · x))Dk
(80.17)

There is therefore a requirement for Dk to be either a spatial vector or its dual, a spatial
bivector. For example taking Dk to be a spatial vector we can then identify the electric and
magnetic components of the field

E(x, 0) = cos(k · x)Dk

cB(x, 0) = sin(k · x)Dk
(80.18)

and if Dk is taken to be a spatial bivector, this pair of identifications would be inverted.
Considering eq. (80.16) at x = 0, we have

F(0, t) = eΩtDk

= (cos(|Ω|t) + Ω̂ sin(|Ω|t))Dk

= (cos(|Ω|t) − ik̂ sin(|Ω|t))Dk

(80.19)

If Dk is first assumed to be a spatial vector, then F would have a pseudoscalar component if
Dk has any component parallel to k̂.

Dk ∈{σ
m} =⇒ Dk · k̂ = 0 (80.20)
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Dk ∈{σ
a ∧σb} =⇒ Dk · (ik̂) = 0 (80.21)

Since we can convert between the spatial vector and bivector cases using a duality transfor-
mation, there may not appear to be any loss of generality imposing a spatial vector restriction on
Dk, at least in this current free case. However, an attempt to do so leads to trouble. In particular,
this leads to collinear electric and magnetic fields, and thus the odd seeming condition where the
field energy density is non-zero but the field momentum density (Poynting vector P ∝ E × B)
is zero. In retrospect being forced down the path of including both grades is not unreasonable,
especially since this gives Dk precisely the form of the field itself F = E + icB.

80.2 electric and magnetic field split

With the basic form of the Maxwell vacuum solution determined, we are now ready to start
extracting information from the solution and making comparisons with the more familiar vector
form. To start doing the phasor form of the fundamental solution can be expanded explicitly in
terms of two arbitrary spatial parametrization vectors Ek and Bk.

F = e−iωteik·x(Ek + icBk) (80.22)

Whether these parametrization vectors have any relation to electric and magnetic fields re-
spectively will have to be determined, but making that assumption for now to label these
uniquely does not seem unreasonable.

From eq. (80.22) we can compute the electric and magnetic fields by the conjugate relations
eq. (80.49). Our conjugate is

F† = (Ek − icBk)e−ik·xeiωt

= e−iωte−ik·x(Ek − icBk)
(80.23)

Thus for the electric field

F + F† = e−iωt
(
eik·x(Ek + icBk) + e−ik·x(Ek − icBk)

)
= e−iωt (2 cos(k · x)Ek + ic(2i) sin(k · x)Bk)

= 2 cos(ωt) (cos(k · x)Ek − c sin(k · x)Bk)

+ 2 sin(ωt)k̂ × (cos(k · x)Ek − c sin(k · x)Bk)

(80.24)
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So for the electric field E = 1
2 (F + F†) we have

E =
(
cos(ωt) + sin(ωt)k̂×

)
(cos(k · x)Ek − c sin(k · x)Bk) (80.25)

Similarly for the magnetic field we have

F − F† = e−iωt
(
eik·x(Ek + icBk) − e−ik·x(Ek − icBk)

)
= e−iωt (2i sin(k · x)Ek + 2ic cos(k · x)Bk)

(80.26)

This gives cB = 1
2i (F − F†) we have

cB =
(
cos(ωt) + sin(ωt)k̂×

)
(sin(k · x)Ek + c cos(k · x)Bk) (80.27)

Observe that the action of the time dependent phasor has been expressed, somewhat abusively
and sneakily, in a scalar plus cross product operator form. The end result, when applied to a
vector perpendicular to k̂, is still a vector

e−iωta =
(
cos(ωt) + sin(ωt)k̂×

)
a (80.28)

Also observe that the Hermitian conjugate split of the total field bivector F produces vectors
E and B, not phasors. There is no further need to take real or imaginary parts nor treat the phasor
eq. (80.22) as an artificial mathematical construct used for convenience only.

With E · k̂ = B · k̂ = 0, we have here what Jackson ([22], ch7), calls a transverse wave.

80.2.1 Polar Form

Suppose an explicit polar form is introduced for the plane vectors Ek, and Bk. Let

Ek = EÊk

Bk = BÊkeik̂θ
(80.29)

Then for the field we have

F = e−iωteik·x(E + icBe−ik̂θ)Êk (80.30)

For the conjugate

F† = Êk(E − icBeik̂θ)e−ik·xeiωt

= e−iωte−ik·x(E − icBe−ik̂θ)Êk

(80.31)
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So, in the polar form we have for the electric, and magnetic fields

E = e−iωt(E cos(k · x) − cB sin(k · x)e−ik̂θ)Êk

cB = e−iωt(E sin(k · x) + cB cos(k · x)e−ik̂θ)Êk

(80.32)

Observe when θ is an integer multiple of π, E and B are colinear, having the zero Poynting
vector mentioned previously. Now, for arbitrary θ it does not appear that there is any inherent
perpendicularity between the electric and magnetic fields. It is common to read of light being the
propagation of perpendicular fields, both perpendicular to the propagation direction. We have
perpendicularity to the propagation direction by virtue of requiring that the field be a (Dirac)
bivector, but it does not look like the solution requires any inherent perpendicularity for the field
components. It appears that a normal triplet of field vectors and propagation directions must
actually be a special case. Intuition says that this freedom to pick different magnitude or angle
between Ek and Bk in the plane perpendicular to the transmission direction may correspond to
different mixes of linear, circular, and elliptic polarization, but this has to be confirmed.

Working towards confirming (or disproving) this intuition, lets find the constraints on the
fields that lead to normal electric and magnetic fields. This should follow by taking dot products

E ·Bc =
〈
e−iωt(E cos(k · x) − cB sin(k · x)e−ik̂θ)ÊkÊkeiωt(E sin(k · x) + cB cos(k · x)eik̂θ)

〉
=

〈
(E cos(k · x) − cB sin(k · x)e−ik̂θ)(E sin(k · x) + cB cos(k · x)eik̂θ)

〉
= (E2 − c2B2) cos(k · x) sin(k · x) + cEB

〈
cos2(k · x)eik̂θ − sin2(k · x)e−ik̂θ

〉
= (E2 − c2B2) cos(k · x) sin(k · x) + cEB cos(θ)(cos2(k · x) − sin2(k · x))

= (E2 − c2B2) cos(k · x) sin(k · x) + cEB cos(θ)(cos2(k · x) − sin2(k · x))

=
1
2

(E2 − c2B2) sin(2k · x) + cEB cos(θ) cos(2k · x)

(80.33)

The only way this can be zero for any x is if the left and right terms are separately zero, which
means

|Ek| = c|Bk|

θ =
π

2
+ nπ

(80.34)

This simplifies the phasor considerably, leaving

E + icBe−ik̂θ = E(1 + i(∓ik̂))

= E(1 ± k̂)
(80.35)
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So the field is just

F = e−iωteik·x(1 ± k̂)Ek (80.36)

Using this, and some regrouping, a calculation of the field components yields

E = eik̂(±k·x−ωt)Ek

cB = ±eik̂(±k·x−ωt)ikEk
(80.37)

Observe that ik rotates any vector in the plane perpendicular to k̂ by 90 degrees, so we have
here cB = ±k̂×E. This is consistent with the transverse wave restriction (7.11) of Jackson [22],
where he says, the “curl equations provide a further restriction, namely”, and

B =
√
µεn × E (80.38)

He works in explicit complex phasor form and CGS units. He also allows n to be complex.
With real k, and no E ·B = 0 constraint, it appears that we cannot have such a simple coupling
between the field components? Is it possible that allowing k to be complex allows this cross
product coupling constraint on the fields without the explicit 90 degree phase difference between
the electric and magnetic fields?
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80.3 energy and momentum for the phasor

To calculate the field energy density we can work with the two fields of equations eq. (80.32),
or work with the phasor eq. (80.22) directly. From the phasor and the energy-momentum four
vector eq. (80.52) we have for the energy density

U = T (γ0) · γ0

=
−ε0

2
〈Fγ0Fγ0〉

=
−ε0

2

〈
e−iωteik·x(Ek + icBk)γ0e−iωteik·x(Ek + icBk)γ0

〉
=
−ε0

2

〈
e−iωteik·x(Ek + icBk)(γ0)2e−iωte−ik·x(−Ek + icBk)

〉
=
−ε0

2

〈
e−iωt(Ek + icBk)e−iωt(−Ek + icBk)

〉
=
ε0

2
〈(Ek + icBk)(Ek − icBk)〉

=
ε0

2

(
(Ek)2 + c2(Bk)2

)
+ cε0〈iEk ∧Bk〉

=
ε0

2

(
(Ek)2 + c2(Bk)2

)
+ cε0〈Bk ×Ek〉

(80.39)

Quite anticlimactically we have for the energy the sum of the energies associated with the
parametrization constants, lending some justification for the initial choice to label these as elec-
tric and magnetic fields

U =
ε0

2

(
(Ek)2 + c2(Bk)2

)
(80.40)

For the momentum, we want the difference of FF†, and F†F

FF† = e−iωteik·x(Ek + icBk)(Ek − icBk)e−ik·xeiωt

= (Ek + icBk)(Ek − icBk)

= (Ek)2 + c2(Bk)2 − 2cBk ×Ek

(80.41)

FF† = (Ek − icBk)e−ik·xeiωte−iωteik·x(Ek + icBk)

= (Ek − icBk)(Ek + icBk)

= (Ek)2 + c2(Bk)2 + 2cBk ×Ek

(80.42)

So we have for the momentum, also anticlimactically

P =
1
c

T (γ0)∧ γ0 = ε0Ek ×Bk (80.43)
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80.4 followup

Well, that is enough for one day. Understanding how to express circular and elliptic polariza-
tion is one of the logical next steps. I seem to recall from Susskind’s QM lectures that these
can be considered superpositions of linearly polarized waves, so examining a sum of two co-
directionally propagating fields would seem to be in order. Also there ought to be a more natural
way to express the perpendicularity requirement for the field and the propagation direction. The
fact that the field components and propagation direction when all multiplied is proportional to
the spatial pseudoscalar can probably be utilized to tidy this up and also produce a form that
allows for simpler summation of fields in different propagation directions. It also seems reason-
able to consider a planar Fourier decomposition of the field components, perhaps framing the
superposition of multiple fields in that context.

Reconsilation of the Jackson’s (7.11) restriction for perpendicularity of the fields noted above
has not been done. If such a restriction is required with an explicit dot and cross product split
of Maxwell’s equation, it would make sense to also have this required of a GA based solution.
Is this just a conquense of the differences between his explicit phasor representation, and this
geometric approach where the phasor has an explicit representation in terms of the transverse
plane?

80.5 appendix . background details

80.5.1 Conjugate split

The Hermitian conjugate is defined as

A† = γ0Ãγ0 (80.44)

The conjugate action on a multivector product is straightforward to calculate

(AB)† = γ0(AB)̃γ0

= γ0B̃Ãγ0

= γ0B̃γ0
2Ãγ0

= B†A†

(80.45)
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For a spatial vector Hermitian conjugation leaves the vector unaltered

a = γ0(γkγ0)̃akγ0

= γ0(γ0γk)akγ0

= γkakγ0

= a

(80.46)

But the pseudoscalar is negated

i† = γ0 ĩγ0

= γ0iγ0

= −γ0γ0i

= −i

(80.47)

This allows for a split by conjugation of the field into its electric and magnetic field compo-
nents.

F† = −γ0(E + icB)γ0

= −γ2
0(−E + icB)

= E − icB
(80.48)

So we have

E =
1
2

(F + F†)

cB =
1
2i

(F − F†)
(80.49)

80.5.2 Field Energy Momentum density four vector

In the GA formalism the energy momentum tensor is

T (a) =
ε0

2
FaF̃ (80.50)
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It is not necessarily obvious this bivector-vector-bivector product construction is even a vector
quantity. Expansion of T (γ0) in terms of the electric and magnetic fields demonstrates this
vectorial nature.

Fγ0F̃ = −(E + icB)γ0(E + icB)

= −γ0(−E + icB)(E + icB)

= −γ0(−E2 − c2B2 + ic(BE −EB))

= γ0(E2 + c2B2) − 2γ0ic(B∧E))

= γ0(E2 + c2B2) + 2γ0c(B ×E)

= γ0(E2 + c2B2) + 2γ0cγkγ0(B ×E)k

= γ0(E2 + c2B2) + 2γk(E × (cB))k

(80.51)

Therefore, T (γ0), the energy momentum tensor biased towards a particular observer frame
γ0 is

T (γ0) = γ0
ε0

2
(E2 + c2B2) + γkε0(E × (cB))k (80.52)

Recognizable here in the components T (γ0) are the field energy density and momentum den-
sity. In particular the energy density can be obtained by dotting with γ0, whereas the (spatial
vector) momentum by wedging with γ0.

These are

U ≡ T (γ0) · γ0 =
1
2

(
ε0E2 +

1
µ0

B2
)

cP ≡ T (γ0)∧ γ0 =
1
µ0

E ×B
(80.53)

In terms of the combined field these are

U =
−ε0

2
(Fγ0Fγ0 + γ0Fγ0F)

cP =
−ε0

2
(Fγ0Fγ0 − γ0Fγ0F)

(80.54)

Summarizing with the Hermitian conjugate

U =
ε0

2
(FF† + F†F)

cP =
ε0

2
(FF† − F†F)

(80.55)
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80.5.2.1 Divergence

Calculation of the divergence produces the components of the Lorentz force densities

∇ · T (a) =
ε0

2
〈∇(FaF)〉

=
ε0

2
〈(∇F)aF + (F∇)Fa〉

(80.56)

Here the gradient is used implicitly in bidirectional form, where the direction is implied by
context. From Maxwell’s equation we have

J/ε0c = (∇F )̃

= (F̃∇̃)

= −(F∇)

(80.57)

and continuing the expansion

∇ · T (a) =
1
2c
〈JaF − JFa〉

=
1
2c
〈FJa − JFa〉

=
1
2c
〈(FJ − JF)a〉

(80.58)

Wrapping up, the divergence and the adjoint of the energy momentum tensor are

∇ · T (a) =
1
c

(F · J) · a

T (∇) = F · J/c
(80.59)

When integrated over a volume, the quantities F · J/c are the components of the RHS of the
Lorentz force equation ṗ = qF · v/c.





81
T R A N S V E R S E E L E C T R I C A N D M AG N E T I C F I E L D S

81.1 motivation

In Eli’s Transverse Electric and Magnetic Fields in a Conducting Waveguide blog entry he
works through the algebra calculating the transverse components, the perpendicular to the prop-
agation direction components.

This should be possible using Geometric Algebra too, and trying this made for a good exer-
cise.

81.2 setup

The starting point can be the same, the source free Maxwell’s equations. Writing ∂0 = (1/c)∂/∂t,
we have

∇ ·E = 0

∇ ·B = 0

∇ ×E = −∂0B
∇ ×B = µε∂0E

(81.1)

Multiplication of the last two equations by the spatial pseudoscalar I, and using Ia×b = a∧b,
the curl equations can be written in their dual bivector form

∇∧E = −∂0IB
∇∧B = µε∂0IE

(81.2)

Now adding the dot and curl equations using ab = a · b + a∧ b eliminates the cross products

∇E = −∂0IB
∇B = µε∂0IE

(81.3)

625

http://behindtheguesses.blogspot.com/2009/07/transverse-electric-and-magnetic-fields.html
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These can be further merged without any loss, into the GA first order equation for Maxwell’s
equation in cgs units

(
∇ +

√
µε

c
∂t

) (
E +

IB
√
µε

)
= 0. (81.4)

We are really after solutions to the total multivector field F = E + IB/√µε. For this problem
where separate electric and magnetic field components are desired, working from eq. (81.3) is
perhaps what we want?

Following Eli and Jackson, write ∇ = ∇t + ẑ∂z, and

E(x, y, z, t) = E(x, y)e±ikz−iωt

B(x, y, z, t) = B(x, y)e±ikz−iωt (81.5)

Evaluating the z and t partials we have

(∇t ± ikẑ)E(x, y) =
iω
c

IB(x, y)

(∇t ± ikẑ)B(x, y) = −µε
iω
c

IE(x, y)
(81.6)

For the remainder of these notes, the explicit (x, y) dependence will be assumed for E and B.
An obvious thing to try with these equations is just substitute one into the other. If that is

done we get the pair of second order harmonic equations

∇t
2

EB
 =

(
k2 − µε

ω2

c2

) EB
 (81.7)

One could consider the problem solved here. Separately equating both sides of this equation
to zero, we have the k2 = µεω2/c2 constraint on the wave number and angular velocity, and
the second order Laplacian on the left hand side is solved by the real or imaginary parts of any
analytic function. Especially when one considers that we are after a multivector field that of
intrinsic complex nature.

However, that is not really what we want as a solution. Doing the same on the unified Maxwell
equation eq. (81.4), we have

(
∇t ± ikẑ −

√
µε

iω
c

) (
E +

IB
√
µε

)
= 0 (81.8)
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Selecting scalar, vector, bivector and trivector grades of this equation produces the following
respective relations between the various components

0 = 〈· · ·〉 = ∇t ·E ± ikẑ ·E

0 = 〈· · ·〉1 = I∇t ∧B/
√
µε ± iIkẑ∧B/

√
µε − i

√
µε
ω

c
E

0 = 〈· · ·〉2 = ∇t ∧E ± ikẑ∧E − i
ω

c
IB

0 = 〈· · ·〉3 = I∇t ·B/
√
µε ± iIkẑ ·B/

√
µε

(81.9)

From the scalar and pseudoscalar grades we have the propagation components in terms of the
transverse ones

Ez =
±i
k
∇t ·Et

Bz =
±i
k
∇t ·Bt

(81.10)

But this is the opposite of the relations that we are after. On the other hand from the vector
and bivector grades we have

i
ω

c
E = −

1
µε

(∇t ×Bz ± ikẑ ×Bt)

i
ω

c
B = ∇t ×Ez ± ikẑ ×Et

(81.11)

81.3 a clue from the final result

From eq. (81.11) and a lot of messy algebra we should be able to get the transverse equations.
Is there a slicker way? The end result that Eli obtained suggests a path. That result was

Et =
i

µε ω
2

c2 − k2

(
±k∇tEz −

ω

c
ẑ ×∇tBz

)
(81.12)
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The numerator looks like it can be factored, and after a bit of playing around a suitable
factorization can be obtained:

〈(
±k +

ω

c
ẑ
)
∇tẑ (Ez + IBz)

〉
1

=

〈(
±k +

ω

c
ẑ
)
∇t (Ez + IBz)

〉
1

= ±k∇Ez +
ω

c
〈Iẑ∇tBz〉1

= ±k∇Ez +
ω

c
Iẑ∧∇tBz

= ±k∇Ez −
ω

c
ẑ ×∇tBz

(81.13)

Observe that the propagation components of the field Ez + IEz can be written in terms of the
symmetric product

1
2
(ẑ(E + IB) + (E + IB)ẑ) =

1
2
(ẑE + Eẑ) +

I
2
(ẑB + Bẑ + I)

= ẑ ·E + Iẑ ·B
(81.14)

Now the total field in CGS units was actually F = E + IB/√µε, not F = E + IB, so the
factorization above is not exactly what we want. It does however, provide the required clue.
We probably get the result we want by forming the symmetric product (a hybrid dot product
selecting both the vector and bivector terms).

81.4 symmetric product of the field with the direction vector

Rearranging Maxwell’s equation eq. (81.8) in terms of the transverse gradient and the total field
F we have

∇tF =

(
∓ikẑ +

√
µε

iω
c

)
F (81.15)

With this our symmetric product is

∇t(Fẑ + ẑF) = (∇tF)ẑ − ẑ(∇tF)

=

(
∓ikẑ +

√
µε

iω
c

)
Fẑ − ẑ

(
∓ikẑ +

√
µε

iω
c

)
F

= i
(
∓kẑ +

√
µε
ω

c

)
(Fẑ − ẑF)

(81.16)
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The antisymmetric product on the right hand side should contain the desired transverse field
components. To verify multiply it out

1
2

(Fẑ − ẑF) =
1
2
((E + IB/

√
µε) ẑ − ẑ (E + IB/

√
µε))

= E∧ ẑ + IB/
√
µε ∧ ẑ

= (Et + IBt/
√
µε)ẑ

(81.17)

Now, with multiplication by the conjugate quantity −i(±kẑ +
√
µεω/c), we can extract these

transverse components.

(
±kẑ +

√
µε
ω

c

) (
∓kẑ +

√
µε
ω

c

)
(Fẑ − ẑF) =

(
−k2 + µε

ω2

c2

)
(Fẑ − ẑF) (81.18)

Rearranging, we have the transverse components of the field

(Et + IBt/
√
µε)ẑ =

i

k2 − µε ω
2

c2

(
±kẑ +

√
µε
ω

c

)
∇t

1
2

(Fẑ + ẑF) (81.19)

With left multiplication by ẑ, and writing F = Ft + Fz we have

Ft =
i

k2 − µε ω
2

c2

(
±kẑ +

√
µε
ω

c

)
∇tFz (81.20)

While this is a complete solution, we can additionally extract the electric and magnetic fields
to compare results with Eli’s calculation. We take vector grades to do so with Et = 〈Ft〉1, and
Bt/
√
µε = 〈−IFt〉1. For the transverse electric field

〈(
±kẑ +

√
µε
ω

c

)
∇t(Ez + IBz/

√
/µε)

〉
1

= ±kẑ(−ẑ)∇tEz +
ω

c
〈I∇tẑ〉1

−I2ẑ ×∇t

Bz

= ∓k∇tEz +
ω

c
ẑ ×∇tBz

(81.21)

and for the transverse magnetic field

〈
−I

(
±kẑ +

√
µε
ω

c

)
∇t(Ez + IBz/

√
µε)

〉
1

= −I
√
µε
ω

c
∇tEz +

〈(
±kẑ +

√
µε
ω

c

)
∇tBz/

√
µε

〉
1

= −
√
µε
ω

c
ẑ ×∇tEz ∓ k∇tBz/

√
µε

(81.22)
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Thus the split of transverse field into the electric and magnetic components yields

Et =
i

k2 − µε ω
2

c2

(
∓k∇tEz +

ω

c
ẑ ×∇tBz

)
Bt =

i

k2 − µε ω
2

c2

(
−µε

ω

c
ẑ ×∇tEz ∓ k∇tBz

) (81.23)

Compared to Eli’s method using messy traditional vector algebra, this method also has a fair
amount of messy tricky algebra, but of a different sort.

81.5 summary

There is potentially a lot of new ideas above (some for me even with previous exposure to the
Geometric Algebra formalism). There was no real attempt to teach GA here, but for complete-
ness the GA form of Maxwell’s equation was developed from the traditional divergence and
curl formulation of Maxwell’s equations. That was mainly due to use of CGS units which differ
since this makes Maxwell’s equation take a different form from the usual (see [10]).

Here a less exploratory summary of the previous results above is assembled.
In these CGS units our field F, and Maxwell’s equation (in absence of charge and current),

take the form

F = E +
IB
√
µε

0 =

(
∇ +

√
µε

c
∂t

)
F

(81.24)

The electric and magnetic fields can be picked off by selecting the grade one (vector) compo-
nents

E = 〈F〉1
B =

√
µε〈−IF〉1

(81.25)

With an explicit sinusoidal and z-axis time dependence for the field

F(x, y, z, t) = F(x, y)e±ikz−iωt (81.26)
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and a split of the gradient into transverse and z-axis components ∇ = ∇t + ẑ∂z, Maxwell’s
equation takes the form

(
∇t ± ikẑ −

√
µε

iω
c

)
F(x, y) = 0 (81.27)

Writing for short F = F(x, y), we can split the field into transverse and z-axis components
with the commutator and anticommutator products respectively. For the z-axis components we
have

Fzẑ ≡ Ez + IBz =
1
2

(Fẑ + ẑF) (81.28)

The projections onto the z-axis and and transverse directions are respectively

Fz = Ez + IBz =
1
2

(F + ẑFẑ)

Ft = Et + IBt =
1
2

(F − ẑFẑ)
(81.29)

With an application of the transverse gradient to the z-axis field we easily found the relation
between the two field components

∇tFz = i
(
±kẑ −

√
µε
ω

c

)
Ft (81.30)

A left division by the multivector factor gives the total transverse field

Ft =
1

i
(
±kẑ − √µε ωc

)∇tFz (81.31)

Multiplication of both the numerator and denominator by the conjugate normalizes this

Ft =
i

k2 − µε ω
2

c2

(
±kẑ +

√
µε
ω

c

)
∇tFz (81.32)

From this the transverse electric and magnetic fields may be picked off using the projective
grade selection operations of eq. (81.25), and are

Et =
i

µε ω
2

c2 − k2

(
±k∇tEz −

ω

c
ẑ ×∇tBz

)
Bt =

i

µε ω
2

c2 − k2

(
µε
ω

c
ẑ ×∇tEz ± k∇tBz

) (81.33)





82
C O M PA R I N G P H A S O R A N D G E O M E T R I C T R A N S V E R S E
S O L U T I O N S T O T H E M A X W E L L E Q UAT I O N

82.1 motivation

In (80) a phasor like form of the transverse wave equation was found by considering Fourier
solutions of the Maxwell equation. This will be called the “geometric phasor” since it is hard to
refer and compare it without giving it a name. Curiously no perpendicularity condition for E and
B seemed to be required for this geometric phasor. Why would that be the case? In Jackson’s
treatment, which employed the traditional dot and cross product form of Maxwell’s equations,
this followed by back substituting the assumed phasor solution back into the equations. This
back substitution was not done in (80). If we attempt this we should find the same sort of
additional mutual perpendicularity constraints on the fields.

Here we start with the equations from Jackson ([22], ch7), expressed in GA form. Using the
same assumed phasor form we should get the same results using GA. Anything else indicates a
misunderstanding or mistake, so as an intermediate step we should at least recover the Jackson
result.

After using a more traditional phasor form (where one would have to take real parts) we
revisit the geometric phasor found in (80). It will be found that the perpendicular constraints of
the Jackson phasor solution lead to a representation where the geometric phasor is reduced to the
Jackson form with a straight substitution of the imaginary i with the pseudoscalar I = σ1σ2σ3.
This representation however, like the more general geometric phasor requires no selection of
real or imaginary parts to construct a “physical” solution.

82.2 with assumed phasor field

Maxwell’s equations in absence of charge and current ((7.1) of Jackson) can be summarized by

0 = (∇ +
√
µε∂0)F (82.1)
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The F above is a composite electric and magnetic field merged into a single multivector. In
the spatial basic the electric field component E is a vector, and the magnetic component IB is a
bivector (in the Dirac basis both are bivectors).

F = E + IB/
√
µε (82.2)

With an assumed phasor form

F = F ei(k·x−ωt) = (E + IB/
√
µε)ei(k·x−ωt) (82.3)

Although there are many geometric multivectors that square to -1, we do not assume here that
the imaginary i has any specific geometric meaning, and in fact commutes with all multivectors.
Because of this we have to take the real parts later when done.

Operating on F with Maxwell’s equation we have

0 = (∇ +
√
µε∂0)F = i

(
k −
√
µε
ω

c

)
F (82.4)

Similarly, left multiplication of Maxwell’s equation by the conjugate operator ∇ −
√
µε∂0,

we have the wave equation

0 =

(
∇

2 −
µε

c2

∂2

∂t2

)
F (82.5)

and substitution of the assumed phasor solution gives us

0 = (∇2 − µε∂00)F = −

(
k2 − µε

ω2

c2

)
F (82.6)

This provides the relation between the magnitude of k and ω, namely

|k| = ±
√
µε
ω

c
(82.7)

Without any real loss of generality we can pick the positive root, so the result of the Maxwell
equation operator on the phasor is

0 = (∇ +
√
µε∂0)F = i

√
µε
ω

c

(
k̂ − 1

)
F (82.8)
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Rearranging we have the curious property that the field F can “swallow” a left multiplication
by the propagation direction unit vector

k̂F = F (82.9)

Selection of the scalar and pseudoscalar grades of this equation shows that the electric and
magnetic fields E and B are both completely transverse to the propagation direction k̂. For the
scalar grades we have

0 =
〈
k̂F − F

〉
= k̂ ·E

(82.10)

and for the pseudoscalar

0 =
〈
k̂F − F

〉
3

= Ik̂ ·B
(82.11)

From this we have k̂ · B = k̂ · B = 0. Because of this transverse property we see that the k̂
multiplication of F in eq. (82.9) serves to map electric field (vector) components into bivectors,
and the magnetic bivector components into vectors. For the result to be the same means we
must have an additional coupling between the field components. Writing out eq. (82.9) in terms
of the field components we have

E + IB/
√
µε = k̂(E + IB/

√
µε)

= k̂∧E + I(k̂∧B)/
√
µε

= Ik̂ ×E + I2(k̂ ×B)/
√
µε

(82.12)

Equating left and right hand grades we have

E = −(k̂ ×B)/
√
µε

B =
√
µε(k̂ ×E)

(82.13)

Since E and B both have the same phase relationships we also have

E = −(k̂ ×B)/
√
µε

B =
√
µε(k̂ × E)

(82.14)
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With phasors as used in electrical engineering it is usual to allow the fields to have complex
values. Assuming this is allowed here too, taking real parts of F, and separating by grade, we
have for the electric and magnetic fields

EB
 = Re

E
B

 cos(k · x −ωt) + Im

E
B

 sin(k · x −ωt) (82.15)

We will find a slightly different separation into electric and magnetic fields with the geometric
phasor.

82.3 geometrized phasor

Translating from SI units to the CGS units of Jackson the geometric phasor representation of
the field was found previously to be

F = e−Ik̂ωteIk·x(E + IB/
√
µε) (82.16)

As above the transverse requirementE ·k = B ·k = 0 was required. Application of Maxwell’s
equation operator should show if we require any additional constraints. That is

0 = (∇ +
√
µε∂0)F

= (∇ +
√
µε∂0)e−Ik̂ωteIk·x(E + IB/

√
µε)

=
∑

σme−Ik̂ωt(Ikm)eIk·x(E + IB/
√
µε) − Ik̂

√
µε
ω

c
e−Ik̂ωteIk·x(E + IB/

√
µε)

= I
(
k − k̂

√
µε
ω

c

)
e−Ik̂ωteIk·x(E + IB/

√
µε)

(82.17)

This is zero for any combinations of E orB since k = k̂√µεω/c. It therefore appears that this
geometric phasor has a fundamentally different nature than the non-geometric version. We have
two exponentials that commute, but due to the difference in grades of the arguments, it does not
appear that there is any easy way to express this as an single argument exponential. Multiplying
these out, and using the trig product to sum identities helps shed some light on the differences
between the geometric phasor and the one using a generic imaginary. Starting off we have

e−Ik̂ωteIk·x

= (cos(ωt) − Ik̂ sin(ωt))(cos(k · x) + I sin(k · x))

= cos(ωt) cos(k · x) + k̂ sin(ωt) sin(k · x) − Ik̂ sin(ωt) cos(k · x) + I cos(ωt) sin(k · x)

(82.18)
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In this first expansion we see that this product of exponentials has scalar, vector, bivector,
and pseudoscalar grades, despite the fact that we have only vector and bivector terms in the
end result. That will be seen to be due to the transverse nature of F that we multiply with.
Before performing that final multiplication, writing C− = cos(ωt − k · x), C+ = cos(ωt + k · x),
S − = sin(ωt − k · x), and S + = sin(ωt + k · x), we have

e−Ik̂ωteIk·x =
1
2

(
(C− + C+) + k̂(C− −C+) − Ik̂(S − + S +) − I(S − − S +)

)
(82.19)

As an operator the left multiplication of k̂ on a transverse vector has the action

k̂(·) = k̂∧ (·)

= I(k̂ × (·))
(82.20)

This gives

e−Ik̂ωteIk·x =
1
2

(
(C− + C+) + (C− −C+)Ik̂ × +(S − + S +)k̂ × −I(S − − S +)

)
(82.21)

Now, lets apply this to the field with F = E + IB/
√
µε. To avoid dragging around the

√
µε

factors, let us also temporarily work with units where µε = 1. We then have

2e−Ik̂ωteIk·xF = (C− + C+)(E + IB)

+ (C− −C+)(I(k̂ × E) − k̂ ×B)

+ (S − + S +)(k̂ × E + I(k̂ ×B))

+ (S − − S +)(−IE +B)

(82.22)

Rearranging explicitly in terms of the electric and magnetic field components this is

2e−Ik̂ωteIk·xF = (C− + C+)E − (C− −C+)(k̂ ×B) + (S − + S +)(k̂ × E) + (S − − S +)B

+ I
(
(C− + C+)B + (C− −C+)(k̂ × E) + (S − + S +)(k̂ ×B) − (S − − S +)E

)
(82.23)

Quite a mess! A first observation is that the application of the perpendicularity conditions
eq. (82.14) we have a remarkable reduction in complexity. That is

2e−Ik̂ωteIk·xF = (C− + C+)E + (C− −C+)E + (S − + S +)B + (S − − S +)B

+ I ((C− + C+)B + (C− −C+)B − (S − + S +)E − (S − − S +)E)
(82.24)



638 comparing phasor and geometric transverse solutions to the maxwell equation

This wipes out the receding wave terms leaving only the advanced wave terms, leaving

e−Ik̂ωteIk·xF = C−E + S −(k̂ × E) + I
(
C−B + S −k̂ ×B

)
= C−(E + IB) + S −(B − IE)

= (C− − IS −)(E + IB)

(82.25)

We see therefore for this special case of mutually perpendicular (equ-magnitude) field com-
ponents, our geometric phasor has only the advanced wave term

e−Ik̂ωteIk·xF = e−I(ωt−k·x)F (82.26)

If we pick this as the starting point for the assumed solution, it is clear that the same perpen-
dicularity constraints will follow as in Jackson’s treatment, or the GA version of it above. We
have something that is slightly different though, for we have no requirement to take real parts
of this simplified geometric phasor, since the result already contains just the vector and bivector
terms of the electric and magnetic fields respectively.

A small aside, before continuing. Having made this observation that we can write the assumed
phasor for this transverse field in the form of eq. (82.26) an easier way to demonstrate that the
product of exponentials reduces only to the advanced wave term is now clear. Instead of using
eq. (82.14) we could start back at eq. (82.19) and employ the absorption property k̂F = F .
That gives

e−Ik̂ωteIk·xF =
1
2
((C− + C+) + (C− −C+) − I(S − + S +) − I(S − − S +))F

= (C− − IS −)F
(82.27)

That is the same result, obtained in a slicker manner.

82.4 explicit split of geometric phasor into advanced and receding parts

For a more general split of the geometric phasor into advanced and receding wave terms, will
there be interdependence between the electric and magnetic field components? Going back to
eq. (82.19), and rearranging, we have

2e−Ik̂ωteIk·x = (C− − IS −) + k̂(C− − IS −) + (C+ + IS +) − k̂(C+ + IS +) (82.28)

So we have

e−Ik̂ωteIk·x =
1
2

(1 + k̂)e−I(ωt−k·x) +
1
2

(1 − k̂)eI(ωt+k·x) (82.29)
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As observed if we have k̂F = F , the result is only the advanced wave term

e−Ik̂ωteIk·xF = e−I(ωt−k·x)F (82.30)

Similarly, with absorption of k̂ with the opposing sign k̂F = −F , we have only the receding
wave

e−Ik̂ωteIk·xF = eI(ωt+k·x)F (82.31)

Either of the receding or advancing wave solutions should independently satisfy the Maxwell
equation operator. Let us verify both of these, and verify that for either the ± cases the following
is a solution and examine the constraints for that to be the case.

F =
1
2

(1 ± k̂)e±I(ωt±k·x)F (82.32)

Now we wish to apply the Maxwell equation operator ∇ +
√
µε∂0 to this assumed solution.

That is

0 = (∇ +
√
µε∂0)F

= σm
1
2

(1 ± k̂)(±I ± km)e±I(ωt±k·x)F +
1
2

(1 ± k̂)(±I
√
µεω/c)e±I(ωt±k·x)F

=
±I
2

(
±k̂ +

√
µε
ω

c

)
(1 ± k̂)e±I(ωt±k·x)F

(82.33)

By left multiplication with the conjugate of the Maxwell operator ∇ −
√
µε∂0 we have the

wave equation operator, and applying that, we have as before, a magnitude constraint on the
wave number k

0 = (∇ −
√
µε∂0)(∇ +

√
µε∂0)F

= (∇2 − µε∂00)F

=
−1
2

(1 ± k̂)
(
k2 − µε

ω2

c2

)
e±I(ωt±k·x)F

(82.34)

So we have as before |k| = √µεω/c. Substitution into the the first order operator result we
have

0 = (∇ +
√
µε∂0)F

=
±I
2
√
µε
ω

c

(
±k̂ + 1

)
(1 ± k̂)e±I(ωt±k·x)F

(82.35)
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Observe that the multivector 1 ± k̂, when squared is just a multiple of itself

(1 ± k̂)2 = 1 + k̂2 ± 2k̂ = 2(1 ± k̂) (82.36)

So we have

0 = (∇ +
√
µε∂0)F

= ±I
√
µε
ω

c
(1 ± k̂)e±I(ωt±k·x)F

(82.37)

So we see that the constraint again on the individual assumed solutions is again that of ab-
sorption. Separately the advanced or receding parts of the geometric phasor as expressed in
eq. (82.32) are solutions provided

k̂F = ∓F (82.38)

The geometric phasor is seen to be curious superposition of both advancing and receding
states. Independently we have something pretty much like the standard transverse phasor wave
states. Is this superposition state physically meaningful. It is a solution to the Maxwell equation
(without any constraints on E and B).



83
C OVA R I A N T M A X W E L L E Q UAT I O N I N M E D I A

83.1 motivation , some notation , and review

Adjusting to Jackson’s of CGS [22] and Maxwell’s equations in matter takes some work. A first
pass at a GA form was assembled in (66), based on what was in the introduction chapter for
media that includes P, and M properties. He later changes conventions, and also assumes linear
media in most cases, so we want something different than what was previously derived.

The non-covariant form of Maxwell’s equation in absence of current and charge has been
convenient to use in some initial attempts to look at wave propagation. That was

F = E + IB/
√
µε

0 = (∇ +
√
µε∂0)F

(83.1)

To examine the energy momentum tensor, it is desirable to express this in a fashion that has
no such explicit spacetime dependence. This suggests a spacetime gradient definition that varies
throughout the media.

∇ ≡ γm∂m +
√
µεγ0∂0 (83.2)

Observe that this spacetime gradient is adjusted by the speed of light in the media, and is
not one that is naturally relativistic. Even though the differential form of Maxwell’s equation is
implicitly defined only in a neighborhood of the point it is evaluated at, we now have a reason
to say this explicitly, because this non-isotropic condition is now hiding in the (perhaps poor)
notation for the operator. Ignoring the obscuring nature of this operator, and working with it,
we can can that Maxwell’s equation in the neighborhood (where µε is “fixed”) is

∇F = 0 (83.3)

We also want a variant of this that includes the charge and current terms.
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83.2 linear media

Lets pick Jackson’s equation (6.70) as the starting point. A partial translation to GA form, with
D = εE, and B = µH, and ∂0 = ∂/∂ct is

∇ ·B = 0

∇ · εE = 4πρ

−I∇∧E + ∂0B = 0

−I∇∧B/µ − ∂0εE =
4π
c

J

(83.4)

Scaling and adding we have

∇E + ∂0IB =
4πρ
ε

∇B − I∂0µεE =
4πµI

c
J

(83.5)

Once last scaling prepares for addition of these last two equations

∇E +
√
µε∂0IB/

√
µε =

4πρ
ε

∇IB/
√
µε + ∂0

√
µεE = −

4πµ
c
√
µε

J
(83.6)

This gives us a non-covariant assembly of Maxwell’s equations in linear media

(∇ +
√
µε∂0)F =

4π
c

(
cρ
ε
−

√
µ

ε
J
)

(83.7)

Premultiplication by γ0, and utilizing the definition of eq. (83.2) we have

∇F =
4π
c

(
c
ρ

ε
γ0 +

√
µ

ε
Jmγm

)
(83.8)

We can then define

J ≡
cρ
ε
γ0 +

√
µ

ε
Jmγm (83.9)
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and are left with an expression of Maxwell’s equation that puts space and time on a similar
footing. It is probably not really right to call this a covariant expression since it is not naturally
relativistic.

∇F =
4π
c

J (83.10)

83.3 energy momentum tensor

My main goal was to find the GA form of the stress energy tensor in media. With the require-
ment for both an alternate spacetime gradient and the inclusion of the scaling factors for the
media it is not obviously clear to me how to do translate from the vacuum expression in SI units
to the CGS in media form. It makes sense to step back to see how the divergence conservation
equation translates with both of these changes. In SI units our tensor (a four vector parametrized
by another direction vector a) was

T (a) ≡
−1
2ε0

FaF (83.11)

Ignoring units temporarily, let us calculate the media-spacetime divergence of −FaF/2. That
is

−
1
2
∇ · (FaF) = −

1
2
〈∇(FaF)〉

= −
1
2

〈
(F(
→

∇F) + (F
←

∇)F)a
〉

= −
4π
c

〈
1
2

(FJ − JF)a
〉

= −
4π
c

(F · J) · a

(83.12)



644 covariant maxwell equation in media

We want the T µ0 components of the tensor T (γ0). Noting the anticommutation relation for
the pseudoscalar Iγ0 = −γ0I, and the anticommutation behavior for spatial vectors such as
Eγ0 = −γ0 we have

−
1
2

(E + IB/
√
µε)γ0(E + IB/

√
µε) =

γ0

2
(E − IB/

√
µε)(E + IB/

√
µε)

=
γ0

2

(
(E2 + B2/µε) + I

1
√
µε

(EB −BE)
)

=
1
2

(E2 + B2/µε) + γ0I
1
√
µε

(E∧B)

=
γ0

2
(E2 + B2/µε) − γ0

1
√
µε

(E ×B)

=
γ0

2
(E2 + B2/µε) − γ0

1
√
µε
γmγ0(E ×B)m

=
γ0

2
(E2 + B2/µε) +

1
√
µε
γm(E ×B)m

(83.13)

Calculating the divergence of this using the media spacetime gradient we have

∇ ·

(
−

1
2

Fγ0F
)

=

√
µε

c
∂

∂t
1
2

(
E2 +

1
µε

B2
)

+
∑

m

∂

∂xm

(
1
√
µε

(E ×B)m
)

=

√
µε

c
∂

∂t
1
2

(
E2 +

1
µε

B2
)

+∇ ·

(
1
√
µε

(E ×B)m
) (83.14)

Multiplying this by (c/4π)
√
ε/µ, we have

∇ ·

(
−

c
8π

√
ε

µ
Fγ0F

)
=
∂

∂t
1
2
(E ·D + B ·H) +∇ ·

c
4π

(E ×H)

= −

√
ε

µ
(F · J) · γ0

(83.15)

Now expand the RHS. We have

√
ε

µ
(F · J) · γ0 =

(
(E + IB/

√
µε) ·

(
ρ
√
µε
γ0 + Jmγm

))
· γ0

=
〈
Eqγqγ0Jmγmγ0

〉
= E · J

(83.16)



83.3 energy momentum tensor 645

Assembling results the energy conservation relation, first in covariant form is

∇ ·

(
−

c
8π

√
ε

µ
FaF

)
= −

√
ε

µ
(F · J) · a (83.17)

and the same with an explicit spacetime split in vector quantities is

∂

∂t
1
2
(E ·D + B ·H) +∇ ·

c
4π

(E ×H) = −E · J (83.18)

The first of these two eq. (83.17) is what I was after for application to optics where the
radiation field in media can be expressed directly in terms of F instead of E and B. The second
sets the dimensions appropriately and provides some confidence in the result since we can
compare to the well known Poynting results in these units.





84
E L E C T RO M AG N E T I C G AU G E I N VA R I A N C E

At the end of section 12.1 in Jackson [22] he states that it is obvious that the Lorentz force
equations are gauge invariant.

dp
dt

= e
(
E +

u
c
×B

)
dE
dt

= eu ·E
(84.1)

Since I did not remember what Gauge invariance was, it was not so obvious. But if I looking
ahead to one of the problem 12.2 on this invariance we have a Gauge transformation defined in
four vector form as

Aα → Aα + ∂αψ (84.2)

In vector form with A = γαAα, this gauge transformation can be written

A→ A +∇ψ (84.3)

so this is really a statement that we add a spacetime gradient of something to the four vector
potential. Given this, how does the field transform?

F = ∇∧ A

→ ∇∧ (A +∇ψ)

= F +∇∧∇ψ

(84.4)

But ∇∧∇ψ = 0 (assuming partials are interchangeable) so the field is invariant regardless of
whether we are talking about the Lorentz force

∇F = J/ε0c (84.5)

or the field equations themselves

dp
dτ

= eF · v/c (84.6)
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So, once you know the definition of the gauge transformation in four vector form, yes this
justifiably obvious, however, to anybody who is not familiar with Geometric Algebra, perhaps
this is still not so obvious. How does this translate to the more common place tensor or space
time vector notations? The tensor four vector translation is the easier of the two, and there we
have

Fαβ = ∂αAβ − ∂βAα

→ ∂α(Aβ + ∂βψ) − ∂β(Aα + ∂αψ)

= Fαβ + ∂α∂βψ − ∂β∂αψ

(84.7)

As required for ∇ ∧ ∇ψ = 0 interchange of partials means the field components Fαβ are
unchanged by adding this gradient. Finally, in plain old spatial vector form, how is this gauge
invariance expressed?

In components we have

A0 → A0 + ∂0ψ = φ +
1
c
∂ψ

∂t

Ak → Ak + ∂kψ = Ak −
∂ψ

∂xk

(84.8)

This last in vector form is A → A −∇ψ, where the sign inversion comes from ∂k = −∂k =

−∂/∂xk, assuming a + − −− metric.
We want to apply this to the electric and magnetic field components

E = −∇φ −
1
c
∂A
∂t

B = ∇ ×A
(84.9)

The electric field transforms as

E→ −∇
(
φ +

1
c
∂ψ

∂t

)
−

1
c
∂

∂t
(A −∇ψ)

= E −
1
c
∇
∂ψ

∂t
+

1
c
∂

∂t
∇ψ

(84.10)

With partial interchange this is just E. For the magnetic field we have

B→ ∇ × (A −∇ψ)
= B −∇ ×∇ψ

(84.11)

Again since the partials interchange we have ∇ ×∇ψ = 0, so this is just the magnetic field.
Alright. Worked this in three different ways, so now I can say its obvious.
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M U LT I V E C T O R C O M M U TAT O R S A N D L O R E N T Z B O O S T S

85.1 motivation

In some reading there I found that the electrodynamic field components transform in a reversed
sense to that of vectors, where instead of the perpendicular to the boost direction remaining
unaffected, those are the parts that are altered.

To explore this, look at the Lorentz boost action on a multivector, utilizing symmetric and
antisymmetric products to split that vector into portions effected and unaffected by the boost.
For the bivector (electrodynamic case) and the four vector case, examine how these map to dot
and wedge (or cross) products.

The underlying motivator for this boost consideration is an attempt to see where equation
(6.70) of [9] comes from. We get to this by the very end.

85.2 guts

85.2.1 Structure of the bivector boost

Recall that we can write our Lorentz boost in exponential form with

L = eασ/2

X′ = L†XL,
(85.1)

where σ is a spatial vector. This works for our bivector field too, assuming the composite
transformation is an outermorphism of the transformed four vectors. Applying the boost to both
the gradient and the potential our transformed field is then

F′ = ∇′ ∧ A′

= (L†∇L)∧ (L†AL)

=
1
2

(
(L†
→

∇L)(L†AL) − (L†AL)(L†
←

∇L)
)

=
1
2

L†
(
→

∇A − A
←

∇

)
L

= L†(∇∧ A)L.

(85.2)
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Note that arrows were used briefly to indicate that the partials of the gradient are still act-
ing on A despite their vector components being to one side. We are left with the very simple
transformation rule

F′ = L†FL, (85.3)

which has exactly the same structure as the four vector boost.

85.2.2 Employing the commutator and anticommutator to find the parallel and perpendicular
components

If we apply the boost to a four vector, those components of the four vector that commute with
the spatial direction σ are unaffected. As an example, which also serves to ensure we have the
sign of the rapidity angle α correct, consider σ = σ1. We have

X′ = e−ασ/2(x0γ0 + x1γ1 + x2γ2 + x3γ3)(coshα/2 + γ1γ0 sinhα/2) (85.4)

We observe that the scalar and σ1 = γ1γ0 components of the exponential commute with γ2

and γ3 since there is no vector in common, but that σ1 anticommutes with γ0 and γ1. We can
therefore write

X′ = x2γ2 + x3γ3 + (x0γ0 + x1γ1+)(coshα + γ1γ0 sinhα)

= x2γ2 + x3γ3 + γ0(x0 coshα − x1 sinhα) + γ1(x1 coshα − x0 sinhα)
(85.5)

reproducing the familiar matrix result should we choose to write it out. How can we express
the commutation property without resorting to components. We could write the four vector as a
spatial and timelike component, as in

X = x0γ0 + xγ0, (85.6)

and further separate that into components parallel and perpendicular to the spatial unit vector
σ as

X = x0γ0 + (x ·σ)σγ0 + (x∧σ)σγ0. (85.7)

However, it would be nicer to group the first two terms together, since they are ones that are
affected by the transformation. It would also be nice to not have to resort to spatial dot and
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wedge products, since we get into trouble too easily if we try to mix dot and wedge products of
four vector and spatial vector components.

What we can do is employ symmetric and antisymmetric products (the anticommutator and
commutator respectively). Recall that we can write any multivector product this way, and in
particular

Mσ =
1
2

(Mσ +σM) +
1
2

(Mσ −σM). (85.8)

Left multiplying by the unit spatial vector σ we have

M =
1
2

(M +σMσ) +
1
2

(M −σMσ) =
1
2
{M,σ}σ +

1
2
[M,σ]σ. (85.9)

When M = a is a spatial vector this is our familiar split into parallel and perpendicular
components with the respective projection and rejection operators

a =
1
2
{a,σ}σ +

1
2
[a,σ]σ = (a ·σ)σ + (a∧σ)σ. (85.10)

However, the more general split employing symmetric and antisymmetric products in eq. (85.9),
is something we can use for our four vector and bivector objects too.

Observe that we have the commutation and anti-commutation relationships

(
1
2
{M,σ}σ

)
σ = σ

(
1
2
{M,σ}σ

)
(
1
2
[M,σ]σ

)
σ = −σ

(
1
2
[M,σ]σ

)
.

(85.11)

This split therefore serves to separate the multivector object in question nicely into the por-
tions that are acted on by the Lorentz boost, or left unaffected.

85.2.3 Application of the symmetric and antisymmetric split to the bivector field

Let us apply eq. (85.9) to the spacetime event X again with an x-axis boost σ = σ1. The
anticommutator portion of X in this boost direction is

1
2
{X,σ1}σ1 =

1
2

((
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
+ γ1γ0

(
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
γ1γ0

)
= x2γ2 + x3γ3,
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(85.12)

whereas the commutator portion gives us

1
2
[X,σ1]σ1 =

1
2

((
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
− γ1γ0

(
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
γ1γ0

)
= x0γ0 + x1γ1.

(85.13)

We have seen that only these commutator portions are acted on by the boost. We have there-
fore found the desired logical grouping of the four vector X into portions that are left unchanged
by the boost and those that are affected. That is

1
2
[X,σ]σ = x0γ0 + (x ·σ)σγ0

1
2
{X,σ}σ = (x∧σ)σγ0

(85.14)

Let us now return to the bivector field F = ∇ ∧ A = E + IcB, and split that multivector into
boostable and unboostable portions with the commutator and anticommutator respectively.

Observing that our pseudoscalar I commutes with all spatial vectors we have for the anticom-
mutator parts that will not be affected by the boost

1
2
{E + IcB,σ}σ = (E ·σ)σ + Ic(B ·σ)σ, (85.15)

and for the components that will be boosted we have

1
2
[E + IcB,σ]σ = (E∧σ)σ + Ic(B∧σ)σ. (85.16)

For the four vector case we saw that the components that lay “perpendicular” to the boost
direction, were unaffected by the boost. For the field we see the opposite, and the components of
the individual electric and magnetic fields that are parallel to the boost direction are unaffected.

Our boosted field is therefore

F′ = (E ·σ)σ + Ic(B ·σ)σ + ((E∧σ)σ + Ic(B∧σ)σ) (coshα +σ sinhα) (85.17)

Focusing on just the non-parallel terms we have

((E∧σ)σ + Ic(B∧σ)σ) (coshα +σ sinhα)

= (E⊥ + IcB⊥) coshα + (IE ×σ − cB ×σ) sinhα

= E⊥ coshα − c(B ×σ) sinhα + I(cB⊥ coshα + (E ×σ) sinhα)

= γ (E⊥ − c(B ×σ)|v|/c + I(cB⊥ + (E ×σ)|v|/c))

(85.18)



85.2 guts 653

A final regrouping gives us

F′ = E‖ + γ (E⊥ −B × v) + Ic
(
B‖ + γ

(
B⊥ + E × v/c2

))
(85.19)

In particular when we consider the proton, electron system as in equation (6.70) of [9] where
it is stated that the electron will feel a magnetic field given by

B = −
v
c
×E (85.20)

we can see where this comes from. If F = E + Ic(0) is the field acting on the electron, then
application of a v boost to the electron perpendicular to the field (ie: radial motion), we get

F′ = γE + IcγE × v/c2 = γE + −Icγ
v
c2 ×E (85.21)

We also have an additional 1/c factor in our result, but that is a consequence of the choice of
units where the dimensions of E match cB, whereas in the text we have E and B in the same
units. We also have an additional γ factor, so we must presume that |v| << c in this portion of
the text. That is actually a requirement here, for if the electron was already in motion, we would
have to boost a field that also included a magnetic component. A consequence of this is that the
final interaction Hamiltonian of (6.75) is necessarily non-relativistic.





86
A C Y L I N D R I C A L L I E NA R D - W I E C H E RT P OT E N T I A L
C A L C U L AT I O N U S I N G M U LT I V E C T O R M AT R I X P RO D U C T S

86.1 motivation

A while ago I worked the problem of determining the equations of motion for a chain like object
[26]. This was idealized as a set of N interconnected spherical pendulums. One of the aspects
of that problem that I found fun was that it allowed me to use a new construct, factoring vectors
into multivector matrix products, multiplied using the Geometric (Clifford) product. It seemed
at the time that this made the problem tractable, whereas a traditional formulation was much
less so. Later I realized that a very similar factorization was possible with matrices directly [27].
This was a bit disappointing since I was enamored by my new calculation tool, and realized that
the problem could be tackled with much less learning cost if the same factorization technique
was applied using plain old matrices.

I have now encountered a new use for this idea of factoring a vector into a product of mul-
tivector matrices. Namely, a calculation of the four vector Lienard-Wiechert potentials, given
a general motion described in cylindrical coordinates. This I thought I had try since we had a
similar problem on our exam (with the motion of the charged particle additionally constrained
to a circle).

86.2 the goal of the calculation

Our problem is to calculate

A0 =
q

R∗

A =
qvc

cR∗
(86.1)
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where xc(t) is the location of the charged particle, r is the point that the field is measured, and

R∗ = R −
vc

c
·R

R2 = R2 = c2(t − tr)2

R = r − xc(tr)

vc =
∂xc

∂tr
.

(86.2)

86.3 calculating the potentials for an arbitrary cylindrical motion

Suppose that our charged particle has the trajectory

xc(t) = h(t)e3 + a(t)e1eiθ(t) (86.3)

where i = e1e2, and we measure the field at the point

r = ze3 + ρe1eiφ (86.4)

The vector separation between the two is

R = r − xc

= (z − h)e3 + e1(ρeiφ − aeiθ)

=
[
e1eiφ −e1eiθ e3

] 
ρ

a

z − h


(86.5)
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Transposition does not change this at all, so the (squared) length of this vector difference is

R2 =
[
ρ a (z − h)

] 
e1eiφ

−e1eiθ

e3


[
e1eiφ −e1eiθ e3

] 
ρ

a

z − h


=

[
ρ a (z − h)

] 
e1eiφe1eiφ −e1eiφe1eiθ e1eiφe3

−e1eiθe1eiφ e1eiθe1eiθ −e1eiθe3

e3e1eiφ −e3e1eiθ e3e3



ρ

a

z − h


=

[
ρ a (z − h)

] 
1 −ei(θ−φ) e1eiφe3

−ei(φ−θ) 1 −e1eiθe3

e3e1eiφ −e3e1eiθ 1



ρ

a

z − h



(86.6)

86.3.1 A motivation for a Hermitian like transposition operation

There are a few things of note about this matrix. One of which is that it is not symmetric. This
is a consequence of the non-commutative nature of the vector products. What we do have is a
Hermitian transpose like symmetry. Observe that terms like the (1, 2) and the (2, 1) elements of
the matrix are equal after all the vector products are reversed.

Using tilde to denote this reversion, we have

(ei(θ−φ))̃ = cos(θ − φ) + (e1e2)̃ sin(θ − φ)

= cos(θ − φ) + e2e1 sin(θ − φ)

= cos(θ − φ) − e1e2 sin(θ − φ)

= e−i(θ−φ).

(86.7)

The fact that all the elements of this matrix, if non-scalar, have their reversed value in the
transposed position, is sufficient to show that the end result is a scalar as expected. Consider a
general quadratic form where the matrix has scalar and bivector grades as above, where there is
reversion in all the transposed positions. That is

bTAb (86.8)



658 a cylindrical lienard-wiechert potential calculation using multivector matrix products

where A =
∥∥∥Ai j

∥∥∥, a m × m matrix where Ai j = Ã ji and contains scalar and bivector grades,
and b = ‖bi‖, a m × 1 column matrix of scalars. Then the product is

∑
i j

biAi jb j =
∑
i< j

biAi jb j +
∑
j<i

biAi jb j +
∑

k

bkAkkbk

=
∑
i< j

biAi jb j +
∑
i< j

b jA jibi +
∑

k

bkAkkbk

=
∑

k

bkAkkbk + 2
∑
i< j

bi(Ai j + A ji)b j

=
∑

k

bkAkkbk + 2
∑
i< j

bi(Ai j + Ãi j)b j

(86.9)

The quantity in braces Ai j + Ãi j is a scalar since any of the bivector grades in Ai j cancel out.
Consider a similar general product of a vector after the vector has been factored into a product
of matrices of multivector elements

x =
[
a1 a2 . . . am

]

b1

b2
...

bm


(86.10)

The (squared) length of the vector is

x2 = (aibi)(a jb j)

= (aibi)̃a jb j

= b̃iãia jb j

= b̃i(ãia j)b j.

(86.11)

It is clear that we want a transposition operation that includes reversal of its elements, so
with a general factorization of a vector into matrices of multivectors x = Ab, its square will be
x = b̃TÃTAb.

As with purely complex valued matrices, it is convenient to use the dagger notation, and
define

A† = ÃT (86.12)
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where Ã contains the reversed elements of A. By extension, we can define dot and wedge
products of vectors expressed as products of multivector matrices. Given x = Ab, a row vector
and column vector product, and y = Cd, where each of the rows or columns has m elements,
the dot and wedge products are

x · y =
〈
d†C†Ab

〉
x∧ y =

〈
d†C†Ab

〉
2
.

(86.13)

In particular, if b and d are matrices of scalars we have

x · y = dT
〈
C†A

〉
b = dT C†A + A†C

2
b

x∧ y = dT
〈
C†A

〉
2
b = dT C†A − A†C

2
b.

(86.14)

The dot product is seen as a generator of symmetric matrices, and the wedge product a gen-
erator of purely antisymmetric matrices.

86.3.2 Back to the problem

Now, returning to the example above, where we want R2. We have seen that we can drop any
bivector terms from the matrix, so that the squared length can be reduced as

R2 =
[
ρ a (z − h)

] 
1 −ei(θ−φ) 0

−ei(φ−θ) 1 0

0 0 1



ρ

a

z − h


=

[
ρ a (z − h)

] 
1 − cos(θ − φ) 0

− cos(θ − φ) 1 0

0 0 1



ρ

a

z − h


=

[
ρ a (z − h)

] 
ρ − a cos(θ − φ)

−ρ cos(θ − φ) + a

z − h



(86.15)

So we have

R2 = ρ2 + a2 + (z − h)2 − 2aρ cos(θ − φ)

R =

√
ρ2 + a2 + (z − h)2 − 2aρ cos(θ − φ)

(86.16)
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Now consider the velocity of the charged particle. We can write this as

dxc

dt
=

[
e3 e1eiθ e2eiθ

] 
ḣ

ȧ

aθ̇

 (86.17)

To compute vc ·R we have to extract scalar grades of the matrix product

〈
e1eiφ

−e1eiθ

e3


[
e3 e1eiθ e2eiθ

]〉
=

〈
e1eiφ

−e1eiθ

e3


[
e3 e1eiθ e2eiθ

]〉

=

〈
e1eiφe3 e1eiφe1eiθ e1eiφe2eiθ

−e1eiθe3 −e1eiθe1eiθ −e1eiθe2eiθ

e3e3 e3e1eiθ e3e2eiθ


〉

=


0 cos(θ − φ) − sin(θ − φ)

0 −1 0

1 0 0

 .

(86.18)

So the dot product is

R · v =
[
ρ a (z − h)

] 
0 cos(θ − φ) − sin(θ − φ)

0 −1 0

1 0 0




ḣ

ȧ

aθ̇


=

[
ρ a (z − h)

] 
ȧ cos(θ − φ) − aθ̇ sin(θ − φ)

−ȧ

ḣ


= (z − h)ḣ − ȧa + ρȧ cos(θ − φ) − ρaθ̇ sin(θ − φ)

(86.19)

This is the last of what we needed for the potentials, so we have

A0 =
q

R − (z − h)ḣ/c + aȧ/c + ρ cos(θ − φ)ȧ/c − ρa sin(θ − φ)θ̇/c

A =
ḣe3 + (ȧe1 + aθ̇e2)eiθ

c
A0,

(86.20)
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where all the time dependent terms in the potentials are evaluated at the retarded time tr,
defined implicitly by the messy relationship

c(t − tr) =

√
(ρ(tr))2 + (a(tr))2 + (z − h(tr))2 − 2a(tr)ρ cos(θ(tr) − φ). (86.21)

86.4 doing this calculation with plain old cylindrical coordinates

It is worth trying this same calculation without any geometric algebra to contrast it. I had expect
that the same sort of factorization could also be performed. Let us try it

xc =


a cos θ

a sin θ

h


r =


ρ cos φ

ρ sin φ

z


(86.22)

R = r − xc

=


ρ cos φ − a cos θ

ρ sin φ − a sin θ

z − h


=


cos φ − cos θ 0

sin φ − sin θ 0

0 0 1



ρ

a

z − h


(86.23)
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So for R2 we really just need to multiply out two matrices


cos φ sin φ 0

− cos θ − sin θ 0

0 0 1



cos φ − cos θ 0

sin φ − sin θ 0

0 0 1


=


cos2 φ + sin2 φ −(cos φ cos φ + sin φ sin θ) 0

−(cos φ cos θ + sin θ sin φ) cos2 θ + sin2 θ 0

0 0 1


=


1 − cos(φ − θ) 0

− cos(φ − θ) 1 0

0 0 1



(86.24)

So for R2 we have

R2 =
[
ρ a (z − h)

] 
1 − cos(φ − θ) 0

− cos(φ − θ) 1 0

0 0 1



ρ

a

z − h


=

[
ρ a (z − h)

] 
ρ − a cos(φ − θ)

−ρ cos(φ − θ) + a

z − h


= (z − h)2 + ρ2 + a2 − 2aρ cos(φ − θ)

(86.25)

We get the same result this way, as expected. The matrices of multivector products provide
a small computational savings, since we do not have to look up the cos φ cos φ + sin φ sin θ =

cos(φ − θ) identity, but other than that minor detail, we get the same result.
For the particle velocity we have

vc =


ȧ cos θ − aθ̇ sin θ

ȧ sin θ + aθ̇ cos θ

ḣ


=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




ȧ

aθ̇

ḣ


(86.26)



86.5 reflecting on two the calculation methods 663

So the dot product is

vc ·R =
[
ȧ aθ̇ ḣ

] 
cos θ sin θ 0

− sin θ cos θ 0

0 0 1



cos φ − cos θ 0

sin φ − sin θ 0

0 0 1



ρ

a

z − h


=

[
ȧ aθ̇ ḣ

] 
cos θ cos φ + sin θ sin φ − cos2 θ − sin2 θ 0

− cos φ sin θ + cos θ sin φ 0

0 0 1



ρ

a

z − h


=

[
ȧ aθ̇ ḣ

] 
cos(φ − θ) −1 0

sin(φ − θ) 0 0

0 0 1



ρ

a

z − h


= ḣ(z − h) − ȧa + ρȧ cos(φ − θ) + ρaθ̇ sin(φ − θ)

(86.27)

86.5 reflecting on two the calculation methods

With a learning curve to both Geometric Algebra, and overhead required for this new multivec-
tor matrix formalism, it is definitely not a clear winner as a calculation method. Having worked
a couple examples now this way, the first being the N spherical pendulum problem, and now
this potentials problem, I will keep my eye out for new opportunities. If nothing else this can
be a useful private calculation tool, and the translation into more pedestrian matrix methods has
been seen in both cases to not be too difficult.
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88
P L A N E WAV E S O L U T I O N S O F M A X W E L L’ S E Q UAT I O N U S I N G
G E O M E T R I C A L G E B R A

88.1 motivation

Study of reflection and transmission of radiation in isotropic, charge and current free, linear
matter utilizes the plane wave solutions to Maxwell’s equations. These have the structure of
phasor equations, with some specific constraints on the components and the exponents.

These constraints are usually derived starting with the plain old vector form of Maxwell’s
equations, and it is natural to wonder how this is done directly using Geometric Algebra. [10]
provides one such derivation, using the covariant form of Maxwell’s equations. Here’s a slightly
more pedestrian way of doing the same.

88.2 maxwell’s equations in media

We start with Maxwell’s equations for linear matter as found in [17]

∇ ·E = 0 (88.1a)

∇ ×E = −
∂B
∂t

(88.1b)

∇ ·B = 0 (88.1c)

∇ ×B = µε
∂E
∂t
. (88.1d)

We merge these using the geometric identity

∇ · a + I∇ × a = ∇a, (88.2)

667
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where I is the 3D pseudoscalar I = e1e2e3, to find

∇E = −I
∂B
∂t

(88.3a)

∇B = Iµε
∂E
∂t
. (88.3b)

We want dimensions of 1/L for the derivative operator on the RHS of eq. (88.3b), so we
divide through by

√
µεI for

−I
1
√
µε
∇B =

√
µε
∂E
∂t
. (88.4)

This can now be added to eq. (88.3a) for

(
∇ +
√
µε

∂

∂t

) (
E +

I
√
µε

B
)

= 0. (88.5)

This is Maxwell’s equation in linear isotropic charge and current free matter in Geometric
Algebra form.

88.3 phasor solutions

We write the electromagnetic field as

F =

(
E +

I
√
µε

B
)
, (88.6)

so that for vacuum where 1/
√
µε = c we have the usual F = E + IcB. Assuming a phasor

solution of

F̃ = F0ei(k·x−ωt) (88.7)

where F0 is allowed to be complex, and the actual field is obtained by taking the real part

F = Re F̃ = Re(F0) cos(k · x −ωt) − Im(F0) sin(k · x −ωt). (88.8)
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Note carefully that we are using a scalar imaginary i, as well as the multivector (pseudoscalar)
I, despite the fact that both have the square to scalar minus one property.

We now seek the constraints on k, ω, and F0 that allow F̃ to be a solution to eq. (88.5)

0 =

(
∇ +
√
µε

∂

∂t

)
F̃. (88.9)

As usual in the non-geometric algebra treatment, we observe that any such solution F̃ to
Maxwell’s equation is also a wave equation solution. In GA we can do so by right multiplying
an operator that has a conjugate form,

0 =

(
∇ +
√
µε

∂

∂t

)
F̃

=

(
∇ −
√
µε

∂

∂t

) (
∇ +
√
µε

∂

∂t

)
F̃

=

(
∇

2 − µε
∂2

∂t2

)
F̃

=

(
∇

2 −
1
v2

∂2

∂t2

)
F̃,

(88.10)

where v = 1/
√
µε is the speed of the wave described by this solution.

Inserting the exponential form of our assumed solution eq. (88.7) we find

0 = −(k2 −ω2/v2)F0ei(k·x−ωt), (88.11)

which implies that the wave number vector k and the angular frequency ω are related by

v2k2 = ω2. (88.12)

Our assumed solution must also satisfy the first order system eq. (88.9)

0 =

(
∇ +
√
µε

∂

∂t

)
F0ei(k·x−ωt)

= i
(
emkm −

ω

v

)
F0ei(k·x−ωt)

= ik(k̂ − 1)F0ei(k·x−ωt).

(88.13)
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The constraints on F0 must then be given by

0 =
(
k̂ − 1

)
F0. (88.14)

With

F0 = E0 + IvB0, (88.15)

we must then have all grades of the multivector equation equal to zero

0 = (k̂ − 1) (E0 + IvB0) . (88.16)

Writing out all the geometric products, grouping into columns by grade, we have

0 = k̂ ·E0 −E0 +k̂∧E0 Ivk̂ ·B0

+Ivk̂∧B0 +IvB0
(88.17)

We’ve made use of the fact that I commutes with all of k̂, E0, and B0 and employed the
identity ab = a · b + a∧ b.

Collecting the scalar, vector, bivector, and pseudoscalar grades and using a ∧ b = Ia × b
again, we have a set of constraints resulting from the first order system

0 = k̂ ·E0 (88.18a)

E0 = −k̂ × vB0 (88.18b)

vB0 = k̂ ×E0 (88.18c)

0 = k̂ ·B0. (88.18d)

This and eq. (88.12) describe all the constraints on our phasor that are required for it to be
a solution. Note that only one of the two cross product equations in eq. (88.18) are required
because the two are not independent (problem 88.1).
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Writing out the complete expression for F0 we have

F0 = E0 + IvB0

= E0 + Ik̂ ×E0

= E0 + k̂∧E0.

(88.19)

Since k̂ ·E0 = 0, this is

F0 = (1 + k̂)E0. (88.20)

Had we been clever enough this could have been deduced directly from the eq. (88.14) di-
rectly, since we require a product that is killed by left multiplication with k̂ − 1. Our complete
plane wave solution to Maxwell’s equation is therefore given by

F = Re(F̃) = E +
I
√
µε

B

F̃ = (1 ± k̂)E0ei(k·x∓ωt)

0 = k̂ ·E0

k2 = ω2µε.

(88.21)

88.4 problems

Exercise 88.1 Electrodynamic plane wave constraints

It was claimed that

E0 = −k̂ × vB0 (88.22a)

vB0 = k̂ ×E0 (88.22b)

relating the electric and magnetic field of electrodynamic plane waves were dependent. Show
this.

Exercise 88.2 Proving that the wavevectors are all coplanar
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[17] poses the following simple but excellent problem, related to the relationship between the
incident, transmission and reflection phasors, which he states has the following form

()ei(ki·x−ωt) + ()ei(kr ·x−ωt) = ()ei(kt ·x−ωt), (88.25)

He poses the problem (9.15)
Suppose Aeiax + Beibx = Ceicx for some nonzero constants A, B, C, a, b, c, and for all x. Prove

that a = b = c and A + B = C.

88.5 solutions

Answer for Exercise 44.1

Part 1. Two parameter volume, curl of vector

(44.146)

d2x · (∂ ∧ f) = d2u((x1 ∧ x2) · xi) · ∂if
= d2u (x1 · ∂2f − x2 · ∂1f)
= d2u (∂2 f1 − ∂1 f2)
= −d2uεab∂a fb. �

Part 2. Three parameter volume, curl of vector

d3x · (∂ ∧ f) = d3u((x1 ∧ x2 ∧ x3) · xi) · ∂if
= d3u((x1 ∧ x2) · ∂3f + (x3 ∧ x1) · ∂2f + (x2 ∧ x3) · ∂1f)
= d3u((x1∂3f · x2 − x2∂3f · x1) + (x3∂2f · x1 − x1∂2f · x3) + (x2∂1f · x3 − x3∂1f · x2))
= d3u(x1 (−∂2f · x3 + ∂3f · x2) + x2 (−∂3f · x1 + ∂1f · x3) + x3 (−∂1f · x2 + ∂2f · x1))
= d3u(x1 (−∂2 f3 + ∂3 f2) + x2 (−∂3 f1 + ∂1 f3) + x3 (−∂1 f2 + ∂2 f1))
= −d3uεabc∂b fc. �

(44.147)



88.5 solutions 673

Part 3. Four parameter volume, curl of vector

d4x · (∂∧ f) = d4u((x1 ∧ x2 ∧ x3 ∧ x4) · xi) · ∂if
= d4u((x1 ∧ x2 ∧ x3) · ∂4f − (x1 ∧ x2 ∧ x4) · ∂3f + (x1 ∧ x3 ∧ x4) · ∂2f − (x2 ∧ x3 ∧ x4) · ∂1f)
= d4u(

(x1 ∧ x2) x3 · ∂4f − (x1 ∧ x3) x2 · ∂4f + (x2 ∧ x3) x1 · ∂4f
− (x1 ∧ x2) x4 · ∂3f + (x1 ∧ x4) x2 · ∂3f − (x2 ∧ x4) x1 · ∂3f
+ (x1 ∧ x3) x4 · ∂2f − (x1 ∧ x4) x3 · ∂2f + (x3 ∧ x4) x1 · ∂2f
− (x2 ∧ x3) x4 · ∂1f + (x2 ∧ x4) x3 · ∂1f − (x3 ∧ x4) x2 · ∂1f
)

= d4u(x1 ∧ x2∂[4 f3] + x1 ∧ x3∂[2 f4] + x1 ∧ x4∂[3 f2] + x2 ∧ x3∂[4 f1] + x2 ∧ x4∂[1 f3] + x3 ∧ x4∂[2 f1])

= −
1
2

d4uεabcdxa ∧ xb∂c fd. �

(44.148)
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Part 4. Three parameter volume, curl of bivector

d3x · (∂∧ B) = d3u((x1 ∧ x2 ∧ x3) · xi) · ∂iB

= d3u((x1 ∧ x2) · ∂3B + (x3 ∧ x1) · ∂2B + (x2 ∧ x3) · ∂1B)

=
1
2

d3u(x1 · (x2 · ∂3B) − x2 · (x1 · ∂3B)

+ x3 · (x1 · ∂2B) − x1 · (x3 · ∂2B)

+ x2 · (x3 · ∂1B) − x3 · (x2 · ∂1B))

=
1
2

d3u(x1 · (x2 · ∂3B− x3 · ∂2B)

+ x2 · (x3 · ∂1B− x1 · ∂3B)

+ x3 · (x1 · ∂2B− x2 · ∂1B))

=
1
2

d3u(x1 · (∂3 (x2 · B) − ∂2 (x3 · B))

+ x2 · (∂1 (x3 · B) − ∂3 (x1 · B))

+ x3 · (∂2 (x1 · B) − ∂1 (x2 · B)))

=
1
2

d3u(∂2 (x3 · (x1 · B)) − ∂3 (x2 · (x1 · B))

+ ∂3 (x1 · (x2 · B)) − ∂1 (x3 · (x2 · B))

+ ∂1 (x2 · (x3 · B)) − ∂2 (x1 · (x3 · B)))

=
1
2

d3u(∂2B13 − ∂3B12 + ∂3B21 − ∂1B23 + ∂1B32 − ∂2B31)

= d3u(∂2B13 + ∂3B21 + ∂1B32)

= −
1
2

d3uεabc∂aBbc. �

(44.149)
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Part 5. Four parameter volume, curl of bivector To start, we require theorem B.3. For conve-
nience lets also write our wedge products as a single indexed quantity, as in xabc for xa ∧ xb ∧ xc.
The expansion is

d4x · (∂∧ B) = d4u
(
x1234 · xi

)
· ∂iB

= d4u (x123 · ∂4B− x124 · ∂3B + x134 · ∂2B− x234 · ∂1B)

= d4u(x1 (x23 · ∂4B) + x2 (x32 · ∂4B) + x3 (x12 · ∂4B)

− x1 (x24 · ∂3B) − x2 (x41 · ∂3B) − x4 (x12 · ∂3B)

+ x1 (x34 · ∂2B) + x3 (x41 · ∂2B) + x4 (x13 · ∂2B)

− x2 (x34 · ∂1B) − x3 (x42 · ∂1B) − x4 (x23 · ∂1B))

= d4u(x1 (x23 · ∂4B + x42 · ∂3B + x34 · ∂2B)

+ x2 (x32 · ∂4B + x14 · ∂3B + x43 · ∂1B)

+ x3 (x12 · ∂4B + x41 · ∂2B + x24 · ∂1B)

+ x4 (x21 · ∂3B + x13 · ∂2B + x32 · ∂1B))

= −
1
2

d4uεabcdxa∂bBcd. �

(44.150)

This last step uses an intermediate result from the ?? expansion above, since each of the four
terms has the same structure we have previously observed.

Part 6. Four parameter volume, curl of trivector Using the xi jk shorthand again, the initial
expansion gives

(44.151)d4x · (∂ ∧ T ) = d4u (x123 · ∂4T − x124 · ∂3T + x134 · ∂2T − x234 · ∂1T ) .
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Applying theorem B.4 to expand the inner products within the braces we have

x123 · ∂4T−x124 · ∂3T + x134 · ∂2T − x234 · ∂1T

= x1 · (x2 · (x3 · ∂4T )) − x1 · (x2 · (x4 · ∂3T ))

+ x1 · (x3 · (x4 · ∂2T )) − x2 · (x3 · (x4 · ∂1T ))

Apply cyclic permutations

= x1 · (x2 · (x3 · ∂4T )) − x1 · (x2 · (x4 · ∂3T ))

+ x3 · (x4 · (x1 · ∂2T )) − x3 · (x4 · (x2 · ∂1T ))

= x1 · (x2 · (x3 · ∂4T − x4 · ∂3T ))

+ x3 · (x4 · (x1 · ∂2T − x2 · ∂1T ))

= x1 · (x2 · (∂4 (x3 · T ) − ∂3 (x4 · T )))

+ x3 · (x4 · (∂2 (x1 · T ) − ∂1 (x2 · T )))

= x1 · ∂4 (x2 · (x3 · T )) + x2 · ∂3 (x1 · (x4 · T ))

+ x3 · ∂2 (x4 · (x1 · T )) + x4 · ∂1 (x3 · (x2 · T ))

− x1 · ((∂4x2) · (x3 · T )) − x2 · ((∂3x1) · (x4 · T ))

− x3 · ((∂2x4) · (x1 · T )) − x4 · ((∂1x3) · (x2 · T ))

= x1 · ∂4 (x2 · (x3 · T )) + x2 · ∂3 (x1 · (x4 · T ))

+ x3 · ∂2 (x4 · (x1 · T )) + x4 · ∂1 (x3 · (x2 · T ))

+
∂2x

∂u4∂u2 ·(((
((((

((((
((

(x1 · (x3 · T ) + x3 · (x1 · T ))

+
∂2x

∂u1∂u3 ·((((
((((

(((
((

(x2 · (x4 · T ) + x4 · (x2 · T )).

(44.152)

We can cancel those last terms using theorem B.5. Using the same reverse chain rule expan-
sion once more we have

x123 · ∂4T−x124 · ∂3T + x134 · ∂2T − x234 · ∂1T

= ∂4 (x1 · (x2 · (x3 · T ))) + ∂3 (x2 · (x1 · (x4 · T ))) + ∂2 (x3 · (x4 · (x1 · T ))) + ∂1 (x4 · (x3 · (x2 · T )))

− (∂4x1) ·
(((

((((
(((

(((
(x2 · (x3 · T ) + x3 · (x2 · T )) − (∂3x2) ·

((((
((((

((((
(x1 · (x4 · T ) x4 · (x1 · T )),

(44.153)

or

(44.154)d4x · (∂ ∧ T ) = d4u(∂4T321 + ∂3T412 + ∂2T143 + ∂1T234).
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The final result follows after permuting the indices slightly.

Answer for Exercise 88.1
This can be shown by crossing k̂ with eq. (88.22a) and using the identity

a × (a × b) = −a2b + a(a · b). (88.23)

This gives

(88.24)
k̂ × E0 = −k̂ × (k̂ × vB0)

= k̂2vB0 − k̂(��
�k̂ · E0)

= vB0

Answer for Exercise 88.2
If this relation holds for all x, then for x = 0, we have A + B = C. We are left to show that

A
(
eiax − eicx

)
+ B

(
eibx − eicx

)
= 0. (88.26)

Let a = c + δ and b = c + ε, so that

A
(
eiδx − 1

)
+ B

(
eiεx − 1

)
= 0. (88.27)

Now consider some special values of x. For x = 2π/ε we have

A
(
e2πiδ/ε − 1

)
= 0, (88.28)

and because A , 0, we must conclude that δ/ε is an integer.
Similarily, for x = 2π/δ, we have

B
(
e2πiε/δ − 1

)
= 0, (88.29)

and this time must conclude that ε/δ is an integer. These ratios must therefore take one of the
values 0, 1,−1. Consider the points x = 2nπ/ε or x = 2mπ/δ we find that nδ/ε and mε/δ must
be integers for any integers m, n. This only leaves ε = δ = 0, or a = b = c as possibilities.
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89.1 motivation

Reading of [3] is a treatment of the Lorentz transform properties of the Lorentz force equation.
This is not clear to me without working through it myself, so do this.

I also have the urge to try this with the GA formulation of the Lorentz transformation. That
may not end up being simpler if one works with the non-covariant form of the Lorentz force
equation, but only trying it will tell.

89.2 compare forms of the lorentz boost

Working from the Geometric Algebra form of the Lorentz boost, show equivalence to the stan-
dard coordinate matrix form and the vector form from Bohm.

89.2.1 Exponential form

Write the Lorentz boost of a four vector x = xµγµ = ctγ0 + xkγk as

L(x) = e−αv̂/2xeαv̂/2 (89.1)

89.2.2 Invariance property

A Lorentz transformation (boost or rotation) can be defined as those transformation that leave
the four vector square unchanged.

681
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Following [10], work with a + − −− metric signature (1 = γ2
0 = −γ2

k), and σk = γkγ0. Our
four vector square in this representation has the familiar invariant form

x2 = (ctγ0 + xmγm)
(
ctγ0 + xkγk

)
= (ctγ0 + xmγm) γ

2
0

(
ctγ0 + xkγk

)
= (ct + xmσm)

(
ct − xkσk

)
= (ct + x)(ct − x)

= (ct)2 − x2

(89.2)

and we expect this of the Lorentz boost of eq. (89.1). To verify we have

L(x)2 = e−αv̂/2xeαv̂/2e−αv̂/2xeαv̂/2

= e−αv̂/2xxeαv̂/2

= x2e−αv̂/2eαv̂/2

= x2

(89.3)

89.2.3 Sign of the rapidity angle

The factor α will be the rapidity angle, but what sign do we want for a boost along the positive
v̂ direction?

Dropping to coordinates is an easy way to determine the sign convention in effect. Write
v̂ = σ1

L(x) = e−αv̂/2xeαv̂/2

= (cosh(α/2) −σ1 sinh(α/2))(x0γ0 + x1γ1 + x2γ2 + x3γ3)(cosh(α/2) +σ1 sinh(α/2))
(89.4)

σ1 commutes with γ2 and γ3 and anticommutes otherwise, so we have

L(x) =
(
x2γ2 + x3γ3

)
e−αv̂/2eαv̂/2 +

(
x0γ0 + x1γ1

)
eαv̂

= x2γ2 + x3γ3 +
(
x0γ0 + x1γ1

)
eαv̂

= x2γ2 + x3γ3 +
(
x0γ0 + x1γ1

)
(cosh(α) +σ1 sinh(α))

(89.5)

Expanding out just the 0, 1 terms changed by the transformation we have
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(
x0γ0 + x1γ1

)
(cosh(α) + σ1 sinh(α))

= x0γ0 cosh(α) + x1γ1 cosh(α) + x0γ0σ1 sinh(α) + x1γ1σ1 sinh(α)
= x0γ0 cosh(α) + x1γ1 cosh(α) + x0γ0γ1γ0 sinh(α) + x1γ1γ1γ0 sinh(α)
= x0γ0 cosh(α) + x1γ1 cosh(α) − x0γ1 sinh(α) − x1γ0 sinh(α)
= γ0(x0 cosh(α) − x1 sinh(α)) + γ1(x1 cosh(α) − x0 sinh(α))

Writing xµ′ = L(x) · γµ, and xµ = x · γµ, and a substitution of cosh(α) = 1/
√

1 − v2/c2, and
αv̂ = tanh−1(v/c), we have the traditional coordinate expression for the one directional Lorentz
boost


x0′

x1′

x2′

x3′


=


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


(89.6)

Performing this expansion showed initially showed that I had the wrong sign for α in the
exponentials and I went back and adjusted it all accordingly.

89.2.4 Expanding out the Lorentz boost for projective and rejective directions

Two forms of Lorentz boost representations have been compared above. An additional one is
used in the Bohm text (a vector form of the Lorentz transformation not using coordinates). Let
us see if we can derive that from the exponential form.

Start with computation of components of a four vector relative to an observer timelike unit
vector γ0.

x = xγ0γ0

= (xγ0)γ0

= (x · γ0 + x ∧ γ0) γ0

(89.7)

For the spatial vector factor above write x = x ∧ γ0, for

x = (x · γ0) γ0 + xγ0

= (x · γ0) γ0 + xv̂v̂γ0

= (x · γ0) γ0 + (x · v̂)v̂γ0 + (x∧ v̂)v̂γ0

(89.8)
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We have the following commutation relations for the various components

v̂(γ0) = −γ0v̂
v̂(v̂γ0) = −(v̂γ0)v̂

v̂((x∧ v̂)v̂γ0) = ((x∧ v̂)v̂γ0)v̂
(89.9)

For a four vector u that commutes with v̂ we have e−αv̂/2u = ue−αv̂/2, and if it anticommutes
we have the conjugate relation e−αv̂/2u = ueαv̂/2. This gives us

L(x) = (x∧ v̂)v̂γ0 + ((x · γ0)γ0 + (x · v̂)v̂γ0) eαv̂ (89.10)

Now write the exponential as a scalar and spatial vector sum

eαv̂ = coshα + v̂ sinhα

= γ(1 + v̂ tanhα)

= γ(1 + v̂β)

= γ(1 + v/c)

(89.11)

Expanding out the exponential product above, also writing x0 = ct = x · γ0, we have

(x0γ0 + (x · v̂)v̂γ0)eαv̂

= γ(x0γ0 + (x · v̂)v̂γ0)(1 + v/c)

= γ(x0γ0 + (x · v̂)v̂γ0 + x0γ0v/c + (x · v̂)v̂γ0v/c)

(89.12)

So for the total Lorentz boost in vector form we have

L(x) = (x∧ v̂)v̂γ0 + γ
(
x0 − x ·

v
c

)
γ0 + γ

(
x ·

1
v/c
− x0

)
v
c
γ0 (89.13)

Now a visual inspection shows that this does match equation (15-12) from the text:

x′ = x − (v̂ · x)v̂ +
(v̂ · x)v̂ − vt√

1 − (v2/c2)

t′ =
t − (v · x)/c2√

1 − (v2/c2)

(89.14)

but the equivalence of these is perhaps not so obvious without familiarity with the GA con-
structs.
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89.2.5 differential form

Bohm utilizes a vector differential form of the Lorentz transformation for both the spacetime
and energy-momentum vectors. From equation eq. (89.14) we can derive the expressions used.
In particular for the transformed spatial component we have

x′ = x + γ

(
−(v̂ · x)v̂

1
γ

+ (v̂ · x)v̂ − vt
)

= x + γ

(
(v̂ · x)v̂

(
1 −

1
γ

)
− vt

)
= x + (γ − 1)(v̂ · x)v̂ − γvt

(89.15)

So in differential vector form we have

dx′ = dx + (γ − 1)(v̂ · dx)v̂ − γvdt

dt′ = γ(dt − (v · dx) /c2)
(89.16)

and by analogy with dx0 = cdt → dE/c, and dx → dp, we also have the energy momentum
transformation

dp′ = dp + (γ − 1)(v̂ · dp)v̂ − γvdE/c2

dE′ = γ(dE − v · dp)
(89.17)

Reflecting on these forms of the Lorentz transformation, they are quite natural ways to ex-
press the vector results. The terms with γ factors are exactly what we are used to in the co-
ordinate representation (transformation of only the time component and the projection of the
spatial vector in the velocity direction), while the −1 part of the (γ − 1) term just subtracts off

the projection unaltered, leaving dx − (dx · v̂)v̂ = (dx∧ v̂)v̂, the rejection from the v̂ direction.

89.3 lorentz force transformation

Preliminaries out of the way, now we want to examine the transform of the electric and magnetic
field as used in the Lorentz force equation. In CGS units as in the text we have

dp
dt

= q
(
E +

v
c
×H

)
dE
dt

= qE · v
(89.18)
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After writing this in differential form

dp = q
(
Edt +

dx
c
×H

)
dE = qE · dx

(89.19)

and the transformed variation of this equation, also in differential form

dp′ = q
(
E
′dt′ +

dx′

c
×H

′

)
dE′ = qE′ · dx′

(89.20)

A brute force insertion of the transform results of equations eq. (89.16), and eq. (89.17) into
these is performed. This is mostly a mess of algebra.

While the Bohm book covers some of this, other parts are left for the reader. Do the whole
thing here as an exercise.

89.3.1 Transforming the Lorentz power equation

Let us start with the energy rate equation in its entirety without interleaving the momentum
calculation.

1
q

dE′ = E′ · dx′

= E′ ·
(
dx + (γ − 1)(V̂ · dx)V̂ − γVdt

)
= E′ · dx + (γ − 1)(V̂ · dx)E′ · V̂ − γE′ ·Vdt

1
q
γ(dE −V · dp) =

γE · dx − γV ·
(
Edt +

dx
c
×H

)
=

γE · dx − γV · Edt − γ
1
c

dx · (H ×V) =

(89.21)

Grouping dt and dx terms we have

0 = dx ·
(
E
′ + (γ − 1)V̂(E′ · V̂) − γE + γ(H ×V/c)

)
+ dtγV · (E − E′) (89.22)

Now the argument is that both the dt and dx factors must separately equal zero. Assuming
that for now (but come back to this and think it through), and writing E = E‖ + E⊥ for the
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projective and rejective components of the field relative to the boost direction V (same for H
and the transformed fields) we have from the dt term

0 = V · (E‖ + E⊥ − E
′
‖
− E′⊥)

= V · (E‖ − E′‖)
(89.23)

So we can conclude

E
′
‖

= E‖ (89.24)

Now from the dx coefficient, we have

0 = E′
‖
+ E′⊥ + (γ − 1)V̂(E′

‖
· V̂) − γE‖ − γE⊥ + γ(H⊥ ×V/c)

=
(
E
′
‖
− V̂(E′

‖
· V̂)

)
E′
‖
− E′

‖

+ E′⊥ − γ
(
E‖ − V̂(E′

‖
· V̂)

)
E‖ − E‖

− γE⊥ + γ(H⊥ ×V/c) (89.25)

This now completely specifies the transformation properties of the electric field under a V
boost

E
′
⊥ = γ

(
E⊥ +

V
c
×H⊥

)
E
′
‖

= E‖

(89.26)

(it also confirms the typos in the text).

89.3.2 Transforming the Lorentz momentum equation

Now we do the exercise for the reader part, and express the transformed momentum differential
of equation eq. (89.20) in terms of eq. (89.16)

1
q

dp′ = E′dt′ +
dx′

c
×H

′

= γE′dt − γE′(V · dx)/c2 + dx ×H ′/c + (γ − 1)(V̂ · dx)V̂ ×H ′/c − γV ×H ′/cdt
(89.27)
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Now for the LHS using eq. (89.17) and eq. (89.19) we have

1
q

dp′ = dp/q + (γ − 1)(V̂ · dp/q)V̂ − γVdE/qc2

= Edt +
dx
c
×H + (γ − 1)(V̂ · Edt + V̂ · (dx ×H/c))V̂ − γV(E · dx)/c2

= Edt +
dx
c
×H + (γ − 1)(V̂ · E)V̂dt + (γ − 1)(dx · (H × V̂/c))V̂ − γV(E · dx)/c2

(89.28)

Combining these and grouping by dt and dx we have

dt
(
−(E − (V̂ · E)V̂) + γ(E′ − (V̂ · E)V̂) − γV ×H ′/c

)
=
γ

c2 (E′(V · dx) −V(E · dx)) +
dx
c
× (H −H ′)

+
γ − 1

c

(
(dx · (H × V̂))V̂ − (V̂ · dx)(V̂ ×H ′)

) (89.29)

What a mess, and this is after some initial grouping! From the power result we have V̂ · E =

V̂ · E′ so we can write the LHS of this mess as

dt
(
−(E − (V̂ · E)V̂) + γ(E′ − (V̂ · E)V̂) − γV ×H ′/c

)
= dt

(
−(E − (V̂ · E)V̂) + γ(E′ − (V̂ · E′)V̂) − γV ×H ′/c

)
= dt (−E⊥ + γE′⊥ − γV ×H ′/c)
= dt (−E⊥ + γE′⊥ − γV ×H ′⊥/c)

(89.30)

If this can separately equal zero independent of the dx terms we have

E⊥ = γ

(
E
′
⊥ −

V
c
×H

′
⊥

)
(89.31)

Contrast this to the result for E′⊥ in the first of eq. (89.26). It differs only by a sign which has
an intuitive relativistic (anti)symmetry that is not entirely unsurprising. If a boost along V takes
E to E′, then an boost with opposing direction makes sense for the reverse.

Despite being reasonable seeming, a relation likeH ‖ =H ′‖ was expected ... does that follow
from this somehow? Perhaps things will become more clear after examining the mess on the
RHS involving all the dx terms?

The first part of this looks amenable to some algebraic manipulation. Using (E′ ∧V) · dx =

E′(V · dx) −V(E′ · dx), we have

E
′(V · dx) −V(E · dx) = (E′ ∧V) · dx + V(E′ · dx) −V(E · dx)

= (E′ ∧V) · dx + V((E′ − E) · dx)
(89.32)
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and

(E′ ∧V) · dx =
〈
(E′ ∧V)dx

〉
1

=
〈
i(E′ ×V)dx

〉
1

=
〈
i((E′ ×V)∧ dx)

〉
1

=
〈
i2((E′ ×V) × dx)

〉
1

= dx × (E′ ×V)

(89.33)

Putting things back together, does it improve things?

0 = dx ×
(
γ

(
E
′ ×

V
c

)
+ (H −H ′)

)
+
γ

c
V((E′ − E) · dx)

+ (γ − 1)
(
(dx · (H × V̂))V̂ − (V̂ · dx)(V̂ ×H ′)

) (89.34)

Perhaps the last bit can be factored into dx crossed with some function ofH −H ′?





90
L O R E N T Z F O R C E L AW

90.1 some notes on gafp 5.5.3 the lorentz force law

Expand on treatment of [10].
The idea behind this derivation, is to express the vector part of the proper force in covariant

form, and then do the same for the energy change part of the proper momentum. That first part
is:

dp
dτ
∧ γ0 =

d(γp)
dτ

=
d(γp)

dt
dt
dτ

=
dt
dτ

q (E + v ×B)

(90.1)

Now, the spacetime split of velocity is done in the normal fashion:

x = ctγ0 +
∑

xiγi

v =
dx
dτ

= c
dt
dτ
γ0 +

∑ dxi

dτ
γi

v · γ0 = c
dt
dτ

= cγ

v∧ γ0 =
∑ dxi

dt
dt
dτ
γiγ0

= (v · γ0)/c
∑

viσi

= (v · γ0)v/c.

(90.2)

Writing ṗ = dp/dτ, substitute the gamma factor into the force equation:

ṗ∧ γ0 = (v/c · γ0)q (E + v ×B)

691
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Now, GAFP goes on to show that the γE term can be reduced to the form (E · v) ∧ γ0. Their
method is not exactly obvious, for example writing E = (1/2)(E + E) to start. Let us just do this
backwards instead, expanding E · v to see the form of that term:

E · v =
(∑

Eiγi0
)
·
(∑

vµγµ
)

=
∑

Eivµ
〈
γi0µ

〉
1

= v0
∑

Eiγi +
∑

Eiv j
〈
γi0 j

〉
1

−δi jγ0

= v0
∑

Eiγi −
∑

Eiviγ0.

(90.3)

Wedging with γ0 we have the desired result:

(E · v)∧ γ0 = v0
∑

Eiγi0 = (v · γ0)E = cγE

Now, for equation 5.164 there are not any surprising steps, but lets try this backwards too:

(IB) · v =


∑

Bi γ102030i0

γ123i


·
(∑

vµγµ
)

=
∑

Bivµ
〈
γ123iµ

〉
1

(90.4)

That vector selection does yield the cross product as expected:

〈
γ123iµ

〉
1

=



0 µ = 0

0 i = µ

γ1 iµ = 32

−γ2 iµ = 31

γ3 iµ = 21

(with alternation for the missing set of index pairs).
This gives:

(IB) · v = (B3v2 − B2v3)γ1 + (B1v3 − B3v1)γ2 + (B2v1 − B1v2)γ3, (90.5)
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thus, since vi = γdxi/dt, this yields the desired result

((IB) · v)∧ γ0 = γv ×B

In retrospect, for this magnetic field term, the GAFP approach is cleaner and easier than to
try to do it the dumb way.

Combining the results we have:

ṗ∧ γ0 = qγ(E + v ×B)

= q((E + cIB) · (v/c))∧ γ0
(90.6)

Or with F = E + cIB, we have:

ṗ∧ γ0 = q(F · v/c)∧ γ0 (90.7)

It is tempting here to attempt to cancel the ∧γ0 parts of this equation, but that cannot be done
until one also shows:

ṗ · γ0 = q(F · v/c) · γ0

I follow most of the details of GAFP on this fine. I found they omitted a couple steps that
would have been helpful.

For the four momentum we have:

p0 = p · γ0 = E/c

The rate of change work done on the particle by the force is:

dW = qE · dx
dW
dt

= qE ·
dx
dt

= c
dp0

dt
dp0

dt
= qE · v/c

dp0

dτ
=

dt
dτ

v/c · γ0

qE ·
(
v∧ γ0

v · γ0

)
= qE · (v/c∧ γ0)

= q (E + cIB) · (v/c∧ γ0)

(90.8)
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IB has only purely spatial bivectors, γ12, γ13, and γ23. On the other hand v ∧ γ0 =
∑

viγi0

has only spacetime bivectors, so IB · (v/c ∧ γ0) = 0, which is why it can be added above to
complete the field.

That leaves:

dp0

dτ
= qF · (v/c∧ γ0) , (90.9)

but we want to put this in the same form as eq. (90.7). To do so, note how we can reduce the
dot product of two bivectors:

(a∧ b) · (c∧ d) = 〈(a∧ b)(c∧ d)〉

= 〈(a∧ b)(cd − c · d)〉

= 〈((a∧ b) · c)d + ((a∧ b)∧ c)d〉

= ((a∧ b) · c) · d.

(90.10)

Using this, and adding the result to eq. (90.7) we have:

ṗ · γ0 + ṗ∧ γ0 = q(F · v/c) · γ0 + q(F · v/c)∧ γ0

Or

ṗγ0 = q(F · v/c)γ0

Right multiplying by γ0 on both sides to cancel those terms we have our end result, the
covariant form of the Lorentz proper force equation:

ṗ = q(F · v/c) (90.11)

90.2 lorentz force in terms of four potential

If one expresses the Faraday bivector in terms of a spacetime curl of a potential vector:

F = ∇∧ A, (90.12)

then inserting into eq. (90.11) we have:

ṗ = q(F · v/c)

= q(∇∧ A) · v/c

= q (∇(A · v/c) − A(∇ · v/c))

(90.13)
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Let us look at that proper velocity divergence term:

∇ · v/c =
1
c

(
∇ ·

dx
dτ

)
=

1
c

d
dτ
∇ · x

=
1
c

d
dτ

∑ ∂xµ

∂xµ

=
1
c

d4
dτ

= 0

(90.14)

This leaves the proper Lorentz force expressible as the (spacetime) gradient of a scalar quan-
tity:

ṗ = q∇(A · v/c) (90.15)

I believe this dot product is likely an invariant of electromagnetism. Looking from the rest
frame one has:

ṗ = q∇A0 = q
∑

γµ∂µA0 =
∑

Eiγi (90.16)

Wedging with γ0 to calculate E =
∑

Eiγi, we have:

q
∑
−γi0∂iA0 = −q∇A0

So we want to identify this component of the four vector potential with electrostatic potential:

A0 = φ (90.17)

90.3 explicit expansion of potential spacetime curl in components

Having used the gauge condition ∇ · A = 0, to express the Faraday bivector as a gradient, we
should be able to verify that this produces the familiar equations for E, and B in terms of φ, and
A.

First lets do the electric field components, which are easier.
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With F = E + icB = ∇∧ A, we calculate E =
∑
σiEi =

∑
γi0Ei.

Ei = F ·
(
γ0 ∧ γi

)
= F · γ0i

=
(∑

γµ∂µ ∧ γνAν
)
· γ0i

=
∑

∂µAνγµν · γ
0i

= ∂0Aiγ0
i · γ

0i + ∂iA0γi
0 · γ

0i

= −
(
∂0Ai + ∂iA0

)∑
Eiσi = −

(
∂ct

∑
σiAi +

∑
σi∂iA0

)
= −

(
1
c
∂A
∂t

+∇A0
)

(90.18)

Again we see that we should identify A0 = φ, and write:

E +
1
c
∂A
∂t

= −∇φ (90.19)

Now, let us calculate the magnetic field components (setting c = 1 temporarily):

iB = σ123

∑
σiBi

=
∑

σ123iBi

= σ1231B1 +σ1232B2 +σ1233B3

= σ23B1 +σ31B2 +σ12B3

= γ2030B1 + γ3010B2 + γ1020B3

= γ32B1 + γ13B2 + γ21B3

(90.20)

Thus, we can calculate the magnetic field components with:

B1 = F · γ23

B2 = F · γ31

B3 = F · γ12

(90.21)
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Here the components of F of interest are: γi ∧ γ j∂iA j = −γi j∂iA j.

B1 = −∂2A3γ23 · γ
23 − ∂3A2γ32 · γ

23

B2 = −∂3A1γ31 · γ
31 − ∂1A3γ13 · γ

31

B3 = −∂1A2γ12 · γ
12 − ∂2A1γ21 · γ

12

=⇒

B1 = ∂2A3 − ∂3A2

B2 = ∂3A1 − ∂1A3

B3 = ∂1A2 − ∂2A1

(90.22)

Or, with A =
∑
σiAi and ∇ =

∑
σi∂i, this is our familiar:

B = ∇ ×A (90.23)





91
L O R E N T Z F O R C E ROT O R F O R M U L AT I O N

91.1 motivation

Both [1] and [10] cover rotor formulations of the Lorentz force equation. Work through some
of this on my own to better understand it.

91.2 in terms of ga

An active Lorentz transformation can be used to translate from the rest frame of a particle with
worldline x to an observer frame, as in

y = ΛxΛ̃ (91.1)

Here Lorentz transformation is used in the general sense, and can include both spatial rotation
and boost effects, but satisfies ΛΛ̃ = 1. Taking proper time derivatives we have

ẏ = Λ̇xΛ̃ + Λx ˜̇Λ

= Λ
(
Λ̃Λ̇

)
xΛ̃ + Λx

( ˜̇ΛΛ
)

Λ̃
(91.2)

Since Λ̃Λ = ΛΛ̃ = 1 we also have

0 = Λ̇Λ̃ + Λ ˜̇Λ

0 = Λ̃Λ̇ + ˜̇ΛΛ
(91.3)

Here is where a bivector variable

Ω/2 = Λ̃Λ̇ (91.4)

is introduced, from which we have ˜̇ΛΛ = −Ω/2, and

ẏ =
1
2

(
ΛΩxΛ̃ −ΛxΩΛ̃

)
(91.5)

699
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Or

Λ̃ẏΛ =
1
2
(Ωx − xΩ) (91.6)

The inclusion of the factor of two in the definition of Ω was cheating, so that we get the
bivector vector dot product above. Presuming Ω is really a bivector (return to this in a bit), we
then have

Λ̃ẏΛ = Ω · x (91.7)

We can express the time evolution of y using this as a stepping stone, since we have

Λ̃yΛ = x (91.8)

Using this we have

0 =
〈
Λ̃ẏΛ −Ω · x

〉
1

=
〈
Λ̃ẏΛ −Ωx

〉
1

=
〈
Λ̃ẏΛ −ΩΛ̃yΛ

〉
1

=
〈(

Λ̃ẏ − Λ̃ΛΩΛ̃y
)

Λ
〉

1

=
〈
Λ̃

(
ẏ −ΛΩΛ̃y

)
Λ

〉
1

(91.9)

So we have the complete time evolution of our observer frame worldline for the particle, as a
sort of an eigenvalue equation for the proper time differential operator

ẏ =
(
ΛΩΛ̃

)
· y =

(
2Λ̇Λ̃

)
· y (91.10)

Now, what Baylis did in his lecture, and what Doran/Lasenby did as well in the text (but I did
not understand it then when I read it the first time) was to identify this time evolution in terms
of Lorentz transform change with the Lorentz force.

Recall that the Lorentz force equation is

v̇ =
e

mc
F · v (91.11)

where F = E + icB, like Λ̇Λ̃ is also a bivector. If we write the velocity worldline of the
particle in the lab frame in terms of the rest frame particle worldline as

v = Λctγ0Λ̃ (91.12)

http://www.ime.unicamp.br/%7Eicca8/videos/baylis.avi
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Then for the field F observed in the lab frame we are left with a differential equation 2Λ̇Λ̃ =

eF/mc for the Lorentz transformation that produces the observed motion of the particle given
the field that acts on it

Λ̇ =
e

2mc
FΛ (91.13)

Okay, good. I understand now well enough what they have done to reproduce the end result
(with the exception of my result including a factor of c since they have worked with c = 1).

91.2.1 Omega bivector

It has been assumed above that Ω = 2Λ̃Λ̇ is a bivector. One way to confirm this is by examining
the grades of this product. Two bivectors, not necessarily related can only have grades 0, 2, and
4. Because Ω = −Ω̃, as seen above, it can have no grade 0 or grade 4 parts.

While this is a powerful way to verify the bivector nature of this object it is fairly abstract. To
get a better feel for this, let us consider this object in detail for a purely spatial rotation, such as

Rθ(x) = ΛxΛ̃

Λ = exp(−inθ/2) = cos(θ/2) − in sin(θ/2)
(91.14)

where n is a spatial unit bivector, n2 = 1, in the span of {σk = γkγ0}.

91.2.1.1 Verify rotation form

To verify that this has the appropriate action, by linearity two two cases must be considered.
First is the action on n or the components of any vector in this direction.

Rθ(n) = ΛnΛ̃

= (cos(θ/2) − in sin(θ/2)) nΛ̃

= n (cos(θ/2) − in sin(θ/2)) Λ̃

= nΛΛ̃

= n

(91.15)
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The rotation operator does not change any vector colinear with the axis of rotation (the nor-
mal). For a vector m that is perpendicular to axis of rotation n (ie: 2(m · n) = mn + nm = 0), we
have

Rθ(m) = ΛmΛ̃

= (cos(θ/2) − in sin(θ/2))mΛ̃

= (m cos(θ/2) − i(nm) sin(θ/2)) Λ̃

= (m cos(θ/2) + i(mn) sin(θ/2)) Λ̃

= m(Λ̃)2

= m exp(inθ)

(91.16)

This is a rotation of the vector m that lies in the in plane by θ as desired.

91.2.1.2 The rotation bivector

We want derivatives of the Λ object.

Λ̇ =
θ̇

2
(− sin(θ/2) − in cos(θ/2)) − iṅ cos(θ/2)

=
inθ̇
2

(in sin(θ/2) − cos(θ/2)) − iṅ cos(θ/2)

= −
1
2

exp(−inθ/2)inθ̇ − iṅ cos(θ/2)

(91.17)

So we have

Ω = 2Λ̃Λ̇

= −inθ̇ − 2 exp(inθ/2)iṅ cos(θ/2)

= −inθ̇ − 2 cos(θ/2) (cos(θ/2) − in sin(θ/2)) iṅ

= −inθ̇ − 2 cos(θ/2) (cos(θ/2)iṅ + nṅ sin(θ/2))

(91.18)

Since n · ṅ = 0, we have nṅ = n∧ ṅ, and sure enough all the terms are bivectors. Specifically
we have

Ω = −θ̇(in) − (1 + cos θ)(iṅ) − sin θ(n∧ ṅ) (91.19)

91.2.2 Omega bivector for boost

TODO.
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91.3 tensor variation of the rotor lorentz force result

There is not anything in the initial Lorentz force rotor result that intrinsically requires geometric
algebra. At least until one actually wants to express the Lorentz transformation concisely in
terms of half angle or boost rapidity exponentials.

In fact the logic above is not much different than the approach used in [42] for rigid body
motion. Let us try this in matrix or tensor form and see how it looks.

91.3.1 Tensor setup

Before anything else some notation for the tensor work must be established. Similar to eq. (91.1)
write a Lorentz transformed vector as a linear transformation. Since we want only the matrix of
this linear transformation with respect to a specific observer frame, the details of the transfor-
mation can be omitted for now. Write

y = L(x) (91.20)

and introduce an orthonormal frame {γµ}, and the corresponding reciprocal frame {γµ}, where
γµ · γ

ν = δµ
ν. In this basis, the relationship between the vectors becomes

yµγµ = L(xνγν)

= xνL(γν)
(91.21)

Or

yµ = xνL(γν) · γµ (91.22)

The matrix of the linear transformation can now be written as

Λν
µ = L(γν) · γµ (91.23)

and this can now be used to express the coordinate transformation in abstract index notation

yµ = xνΛν
µ (91.24)

Similarly, for the inverse transformation, we can write

x = L−1(y)

Πν
µ = L−1(γν) · γµ

xµ = yνΠν
µ

(91.25)
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I have seen this expressed using primed indices and the same symbol Λ used for both the
forward and inverse transformation ... lacking skill in tricky index manipulation I have avoided
such a notation because I will probably get it wrong. Instead different symbols for the two
different matrices will be used here and Π was picked for the inverse rather arbitrarily.

With substitution

yµ = xνΛν
µ = (yαΠα

ν)Λν
µ

xµ = yνΠν
µ = (xαΛα

ν)Πν
µ

(91.26)

the pair of explicit inverse relationships between the two matrices can be read off as

δα
µ = Πα

νΛν
µ = Λα

νΠν
µ (91.27)

91.3.2 Lab frame velocity of particle in tensor form

In tensor form we want to express the worldline of the particle in the lab frame coordinates.
That is

v = L(ctγ0)

= L(x0γ0)

= x0L(γ0)

(91.28)

Or

vµ = x0L(γ0) · γµ

= x0Λ0
µ

(91.29)

91.3.3 Lorentz force in tensor form

The Lorentz force equation eq. (91.11) in tensor form will also be needed. The bivector F is

F =
1
2

Fµνγ
µ ∧ γν (91.30)
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So we can write

F · v =
1
2

Fµν(γµ ∧ γν) · γαvα

=
1
2

Fµν(γµδνα − γνδµα)vα

=
1
2

(vαFµαγ
µ − vαFανγ

ν)

(91.31)

And

v̇σ =
e

mc
(F · v) · γσ

=
e

2mc
(vαFµαγ

µ − vαFανγ
ν) · γσ

=
e

2mc
vα(Fσα − Fασ)

=
e

mc
vαFσα

(91.32)

Or

v̇σ =
e

mc
vαFσ

α (91.33)

91.3.4 Evolution of Lab frame vector

Given a lab frame vector with all the (proper) time evolution expressed via the Lorentz transfor-
mation

yµ = xνΛν
µ (91.34)

we want to calculate the derivatives as in the GA procedure

ẏµ = xνΛ̇µ
ν

= xαδανΛ̇
µ
ν

= xαΛα
βΠβ

νΛ̇µ
ν

(91.35)

With y = v, this is

v̇σ = vαΠα
νΛ̇σ

ν

= vα
e

mc
Fσ

α

(91.36)
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So we can make the identification of the bivector field with the Lorentz transformation matrix

Πα
νΛ̇σ

ν =
e

mc
Fσ

α (91.37)

With an additional summation to invert we have

Λβ
αΠα

νΛ̇σ
ν = Λβ

α e
mc

Fσ
α (91.38)

This leaves a tensor differential equation that will provide the complete time evolution of the
lab frame worldline for the particle in the field

Λ̇ν
µ =

e
mc

Λµ
αFν

α (91.39)

This is the equivalent of the GA equation eq. (91.13). However, while the GA equation is
directly integrable for constant F, how to do this in the equivalent tensor formulation is not so
clear.

Want to revisit this, and try to perform this integral in both forms, ideally for both the simpler
constant field case, as well as for a more general field. Even better would be to be able to
express F in terms of the current density vector, and then treat the proper interaction of two
charged particles.

91.4 gauge transformation for spin

In the Baylis article eq. (91.13) is transformed as Λ → Λω0 exp(−ie3ω0τ).
Using this we have

Λ̇ →
d
dτ

(Λω0 exp(−ie3ω0τ))

= Λ̇ω0 exp(−ie3ω0τ) −Λω0(ie3ω0) exp(−ie3ω0τ)
(91.40)

For the transformed eq. (91.13) this gives

Λ̇ω0 exp(−ie3ω0τ) −Λω0(ie3ω0) exp(−ie3ω0τ) =
e

2mc
FΛω0 exp(−ie3ω0τ) (91.41)

Canceling the exponentials, and shuffling

Λ̇ω0 =
e

2mc
FΛω0 + Λω0(ie3ω0) (91.42)
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How does he commute the ie3 term with the Lorentz transform? How about instead trans-
forming as Λ → exp(−ie3ω0τ)Λω0 .

Using this we have

Λ̇ →
d
dτ

(exp(−ie3ω0τ)Λω0)

= exp(−ie3ω0τ)Λ̇ω0 − (ie3ω0) exp(−ie3ω0τ)Λω0

(91.43)

then, the transformed eq. (91.13) gives

exp(−ie3ω0τ)Λ̇ω0 − (ie3ω0) exp(−ie3ω0τ)Λω0 =
e

2mc
F exp(−ie3ω0τ)Λω0 (91.44)

Multiplying by the inverse exponential, and shuffling, noting that exp(ie3α) commutes with
ie3, we have

Λ̇ω0 = (ie3ω0)Λω0 +
e

2mc
exp(ie3ω0τ)F exp(−ie3ω0τ)Λω0

=
e

2mc

(
2mc

e
(ie3ω0) + exp(ie3ω0τ)F exp(−ie3ω0τ)

)
Λω0

(91.45)

So, if one writes Fω0 = exp(ie3ω0τ)F exp(−ie3ω0τ), then the transformed differential equa-
tion for the Lorentz transformation takes the form

Λ̇ω0 =
e

2mc

(
2mc

e
(ie3ω0) + Fω0

)
Λω0 (91.46)

This is closer to Baylis’s equation 31. Dropping ω0 subscripts this is

Λ̇ =
e

2mc

(
2mc

e
(ie3ω0) + F

)
Λ (91.47)

A phase change in the Lorentz transformation rotor has introduced an additional term, one
that Baylis appears to identify with the spin vector S. My way of getting there seems fishy, so I
think that I am missing something.

Ah, I see. If we go back to eq. (91.42), then with S = Λω0(ie3)Λ̃ω0 (an application of a
Lorentz transform to the unit bivector for the e2e3 plane), one has

Λ̇ω0 =
1
2

( e
mc

F + 2ω0S
)

Λω0 (91.48)





92
( I N C O M P L E T E ) G E O M E T RY O F M A X W E L L R A D I AT I O N
S O L U T I O N S

92.1 motivation

We have in GA multiple possible ways to parametrize an oscillatory time dependence for a
radiation field.

This was going to be an attempt to systematically solve the resulting eigen-multivector prob-
lem, starting with the a Iẑωt exponential time parametrization, but I got stuck part way. Perhaps
using a plain old Iωt would work out better, but I have spent more time on this than I want for
now.

92.2 setup. the eigenvalue problem

Again following Jackson [22], we use CGS units. Maxwell’s equation in these units, with F =

E + IB/√µε is

0 = (∇ +
√
µε∂0)F (92.1)

With an assumed oscillatory time dependence

F = F eiωt (92.2)

Maxwell’s equation reduces to a multivariable eigenvalue problem

∇F = −F iλ

λ =
√
µε
ω

c
(92.3)

We have some flexibility in picking the imaginary. As well as a non-geometric imaginary i
typically used for a phasor representation where we take real parts of the field, we have addi-
tional possibilities, two of which are

i = x̂ŷẑ = I

i = x̂ŷ = Iẑ
(92.4)
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The first is the spatial pseudoscalar, which commutes with all vectors and bivectors. The
second is the unit bivector for the transverse plane, here parametrized by duality using the
perpendicular to the plane direction ẑ.

Let us examine the geometry required of the object F for each of these two geometric mod-
eling choices.

92.3 using the transverse plane bivector for the imaginary

Assuming no prior assumptions aboutF let us allow for the possibility of scalar, vector, bivector
and pseudoscalar components

F = e−Iẑωt(F0 + F1 + F2 + F3) (92.5)

Writing e−Iẑωt = cos(ωt) − Iẑ sin(ωt) = Cω − IẑSω, an expansion of this product separated
into grades is

F = CωF0 − ISω(ẑ∧ F2)

+ CωF1 − ẑSω(IF3) + Sω(ẑ × F1)

+ CωF2 − IẑSωF0 − ISω(ẑ · F2)

+ CωF3 − ISω(ẑ · F1)

(92.6)

By construction F has only vector and bivector grades, so a requirement for zero scalar and
pseudoscalar for all t means that we have four immediate constraints (with n ⊥ ẑ.)

F0 = 0

F3 = 0

F2 = ẑ∧m
F1 = n

(92.7)

Since we have the flexibility to add or subtract any scalar multiple of ẑ to m we can write
F2 = ẑm where m ⊥ ẑ. Our field can now be written as just

F = Cωn − ISω(ẑ∧ n)

+ Cωẑm − ISω(ẑ · (ẑm))
(92.8)

We can similarly require n ⊥ ẑ, leaving

F = (Cω − IẑSω)n + (Cω − IẑSω)mẑ (92.9)
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So, just the geometrical constraints give us

F = e−Iẑωt(n + mẑ) (92.10)

The first thing to be noted is that this phasor representation utilizing for the imaginary the
transverse plane bivector Iẑ cannot be the most general. This representation allows for only
transverse fields! This can be seen two ways. Computing the transverse and propagation field
components we have

Fz =
1
2

(F + ẑFẑ)

=
1
2

e−Iẑωt(n + mẑ + ẑnẑ + ẑmẑẑ)

=
1
2

e−Iẑωt(n + mẑ − n −mẑ)

= 0

(92.11)

The computation for the transverse field Ft = (F − ẑFẑ)/2 shows that F = Ft as expected
since the propagation component is zero.

Another way to observe this is from the split of F into electric and magnetic field components.
From eq. (92.9) we have

E = cos(ωt)m + sin(ωt)(ẑ ×m)

B = cos(ωt)(ẑ × n) − sin(ωt)n
(92.12)

The space containing each of the E and B vectors lies in the span of the transverse plane. We
also see that there is some potential redundancy in the representation visible here since we have
four vectors describing this span m, n, ẑ ×m, and ẑ × n, instead of just two.

92.3.1 General wave packet

If eq. (92.1) were a scalar equation for F(x, t) it can be readily shown using Fourier transforms
the field propagation in time given initial time description of the field is

F(x, t) =

∫ (
1

(2π)3

∫
F(x′, 0)eik·(x′−x)d3x

)
eickt/

√
µεd3k (92.13)

In traditional complex algebra the vector exponentials would not be well formed. We do not
have the problem in the GA formalism, but this does lead to a contraction since the resulting
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F(x, t) cannot be scalar valued. However, by using this as a motivational tool, and also using
assumed structure for the discrete frequency infinite wavetrain phasor, we can guess that a
transverse only (to z-axis) wave packet may be described by a single direction variant of the
Fourier result above. That is

F(x, t) =
1
√

2π

∫
e−IẑωtF (x, ω)dω (92.14)

Since eq. (92.14) has the same form as the earlier single frequency phasor test solution, we
now know that F is required to anticommute with ẑ. Application of Maxwell’s equation to this
test solution gives us

(∇ +
√
µε∂0)F(x, t) = (∇ +

√
µε∂0)

1
√

2π

∫
F (x, ω)eIẑωtdω

=
1
√

2π

∫ (
∇F +F Iẑ

√
µε
ω

c

)
eIẑωtdω

(92.15)

This means that F must satisfy the gradient eigenvalue equation for all ω

∇F = −F Iẑ
√
µε
ω

c
(92.16)

Observe that this is the single frequency problem of equation eq. (92.3), so for mono-directional
light we can consider the infinite wave train instead of a wave packet with no loss of generality.

92.3.2 Applying separation of variables

While this may not lead to the most general solution to the radiation problem, the transverse
only propagation problem is still one of interest. Let us see where this leads. In order to reduce
the scope of the problem by one degree of freedom, let us split out the ẑ component of the
gradient, writing

∇ = ∇t + ẑ∂z (92.17)

Also introduce a product split for separation of variables for the z dependence. That is

F = G(x, y)Z(z) (92.18)
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Again we are faced with the problem of too many choices for the grades of each of these
factors. We can pick one of these, say Z, to have only scalar and pseudoscalar grades so that the
two factors commute. Then we have

(∇t +∇z)F = (∇tG)Z + ẑG∂zZ = −GZIẑλ (92.19)

With Z in an algebra isomorphic to the complex numbers, it is necessarily invertible (and
commutes with it is derivative). Similar arguments to the grade fixing for F show that G has
only vector and bivector grades, but does G have the inverse required to do the separation of
variables? Let us blindly suppose that we can do this (and if we can not we can probably fudge
it since we multiply again soon after). With some rearranging we have

−
1
G

ẑ(∇tG + GIẑλ) = (∂zZ)
1
Z

= constant (92.20)

We want to separately equate these to a constant. In order to commute these factors we have
only required that Z have only scalar and pseudoscalar grades, so for the constant let us pick an
arbitrary element in this subspace. That is

(∂zZ)
1
Z

= α + kI (92.21)

The solution for the Z factor in the separation of variables is thus

Z ∝ e(α+kI)z (92.22)

For G the separation of variables gives us

∇tG + (Gẑλ + ẑGk)I + ẑGα = 0 (92.23)

We have now reduced the problem to something like a two variable eigenvalue problem,
where the differential operator to find eigenvectors for is the transverse gradient ∇t. We unfor-
tunately have an untidy split of the eigenvalue into left and right hand factors.

While the product GZ was transverse only, we have now potentially lost that nice property for
G itself, and do not know if G is strictly commuting or anticommuting with ẑ. Assuming either
possibility for now, we can split this multivector into transverse and propagation direction fields
G = Gt + Gz

Gt =
1
2

(G − ẑGẑ)

Gz =
1
2

(G + ẑGẑ)
(92.24)
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With this split, noting that ẑGt = −Gtẑ, and ẑGz = Gzẑ a rearrangement of eq. (92.23)
produces

(∇t + ẑ((k − λ)I + α))Gt = −(∇t + ẑ((k + λ)I + α))Gz (92.25)

How do we find the eigen multivectors Gt and Gz? A couple possibilities come to mind
(perhaps not encompassing all solutions). One is for one of Gt or Gz to be zero, and the other
to separately require both halves of eq. (92.25) equal a constant, very much like separation of
variables despite the fact that both of these functions Gt and Gz are functions of x and y. The
easiest non-trivial path is probably letting both sides of eq. (92.25) separately equal zero, so that
we are left with two independent eigen-multivector problems to solve

∇tGt = −ẑ((k − λ)I + α))Gt

∇tGz = −ẑ((k + λ)I + α))Gz
(92.26)

Damn. have to mull this over. Do not know where to go with it.
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R E L AT I V I S T I C C L A S S I C A L P ROT O N E L E C T RO N I N T E R AC T I O N

93.1 motivation

The problem of a solving for the relativistically correct trajectories of classically interacting
proton and electron is one that I have wanted to try for a while. Conceptually this is just about
the simplest interaction problem in electrodynamics (other than motion of a particle in a field),
but it is not obvious to me how to even set up the right equations to solve. I should have the
tools now to at least write down the equations to solve, and perhaps solve them too.

Familiarity with Geometric Algebra, and the STA form of the Maxwell and Lorentz force
equation will be assumed. Writing F = E + cIB for the Faraday bivector, these equations are
respectively

∇F = J/ε0c

m
d2X
dτ

=
q
c

F ·
dX
dτ

(93.1)

The possibility of self interaction will also be ignored here. From what I have read this self
interaction is more complex than regular two particle interaction.

93.2 with only coulomb interaction

With just Coulomb (non-relativistic) interaction setup of the equations of motion for the relative
vector difference between the particles is straightforward. Let us write this out as a reference.
Whatever we come up with for the relativistic case should reduce to this at small velocities.

Fixing notation, lets write the proton and electron positions respectively by rp and re, the
proton charge as Ze, and the electron charge −e. For the forces we have

FIXME: picture

Force on electron = me
d2re

dt2 = −
1

4πε0
Ze2 re − rp∣∣∣re − rp

∣∣∣3
Force on proton = mp

d2rp

dt2 =
1

4πε0
Ze2 re − rp∣∣∣re − rp

∣∣∣3
(93.2)
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Subtracting the two after mass division yields the reduced mass equation for the relative
motion

d2(re − rp)
dt2 = −

1
4πε0

Ze2
(

1
me

+
1

mp

)
re − rp∣∣∣re − rp

∣∣∣3 (93.3)

This is now of the same form as the classical problem of two particle gravitational interaction,
with the well known conic solutions.

93.3 using the divergence equation instead

While use of the Coulomb force above provides the equation of motion for the relative motion of
the charges, how to generalize this to the relativistic case is not entirely clear. For the relativistic
case we need to consider all of Maxwell’s equations, and not just the divergence equation. Let
us back up a step and setup the problem using the divergence equation instead of Coulomb’s
law. This is a bit closer to the use of all of Maxwell’s equations.

To start off we need a discrete charge expression for the charge density, and can use the delta
distribution to express this.

0 =

∫
d3x

(
∇ ·E −

1
ε0

(
Zeδ3(x − rp) − eδ3(x − re)

))
(93.4)

Picking a volume element that only encloses one of the respective charges gives us the
Coulomb law for the field produced by those charges as above

0 =

∫
Volume around proton only

d3x
(
∇ ·Ep −

1
ε0

Zeδ3(x − rp)
)

0 =

∫
Volume around electron only

d3x
(
∇ ·Ee +

1
ε0

eδ3(x − re)
) (93.5)

Here Ep and Ee denote the electric fields due to the proton and electron respectively. Ignoring
the possibility of self interaction the Lorentz forces on the particles are

Force on proton/electron = charge of proton/electron times field due to electron/proton (93.6)

In symbols, this is

mp
d2rp

dt2 = ZeEe

me
d2re

dt2 = −eEp

(93.7)
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If we were to substitute back into the volume integrals we would have

0 =

∫
Volume around proton only

d3x
(
−

me

e
∇ ·

d2re

dt2 −
1
ε0

Zeδ3(x − rp)
)

0 =

∫
Volume around electron only

d3x
mp

Ze
∇ ·

d2rp

dt2 +
1
ε0

eδ3(x − re)
 (93.8)

It is tempting to take the differences of these two equations so that we can write this in
terms of the relative acceleration d2(re − rp)/dt2. I did just this initially, and was surprised by a
mass term of the form 1/me − 1/mp instead of reduced mass, which cannot be right. The key to
avoiding this mistake is the proper considerations of the integration volumes. Since the volumes
are different and can in fact be entirely disjoint, subtracting these is not possible. For this reason
we have to be especially careful if a differential form of the divergence integrals eq. (93.7) were
to be used, as in

∇ ·Ep =
1
ε0

Zeδ3(x − rp)

∇ ·Ee = −
1
ε0

eδ3(x − re)
(93.9)

The domain of applicability of these equations is no longer explicit, since each has to omit
a neighborhood around the other charge. When using a delta distribution to express the point
charge density it is probably best to stick with an explicit integral form.

Comparing how far we can get starting with the Gauss’s law instead of the Coulomb force,
and looking forward to the relativistic case, it seems likely that solving the field equations due
to the respective current densities will be the first required step. Only then can we substitute
that field solution back into the Lorentz force equation to complete the search for the particle
trajectories.

93.4 relativistic interaction

First order of business is an expression for a point charge current density four vector. Following
Jackson [22], but switching to vector notation from coordinates, we can apparently employ an
arbitrary parametrization for the four-vector particle trajectory R = Rµγµ, as measured in the
observer frame, and write

J(X) = qc
∫

dλ
dX
dλ

δ4(X − R(λ)) (93.10)
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Here X = Xµγµ is the four vector event specifying the spacetime position of the current, also
as measured in the observer frame. Reparameterizating in terms of time should get us back
something more familiar looking

J(X) = qc
∫

dt
dX
dt
δ4(X − R(t))

= qc
∫

dt
d
dt

(ctγ0 + γkXk)δ4(X − R(t))

= qc
∫

dt
d
dt

(ct + x)δ4(X − R(t))γ0

= qc
∫

dt(c + v)δ4(X − R(t))γ0

= qc
∫

dt′(c + v(t′))δ3(x − r(t′))δ(ct′ − ct)γ0

(93.11)

Note that the scaling property of the delta function implies δ(ct) = δ(t)/c. With the split of
the four-volume delta function δ4(X − R(t)) = δ3(x − r(t))δ(x0′ − x0), where x0 = ct, we have
an explanation for why Jackson had a factor of c in his representation. I initially thought this
factor of c was due to CGS vs SI units! One more Jackson equation decoded. We are left with
the following spacetime split for a point charge current density four vector

J(X) = q(c + v(t))δ3(x − r(t))γ0 (93.12)

Comparing to the continuous case where we have J = ρ(c + v)γ0, it appears that this works
out right. One thing worth noting is that in this time reparameterization I accidentally mixed
up X, the observation event coordinates of J(X), and R, the spacetime trajectory of the particle
itself. Despite this, I am saved by the delta function since no contributions to the current can
occur on trajectories other than R, the worldline of the particle itself. So in the final result it
should be correct to interpret v as the spatial particle velocity as I did accidentally.

With the time reparameterization of the current density, we have for the field due to our proton
and electron

0 =

∫
d3x

(
ε0c∇F − Ze(c + vp(t))δ3(x − rp(t)) + e(c + ve(t))δ3(x − re(t))γ0

)
(93.13)

How to write this in a more tidy covariant form? If we reparametrize with any of the other
spatial coordinates, say x we end up having to integrate the field gradient with a spacetime three
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form (dtdydz if parametrizing the current density with x). Since the entire equation must be zero
I suppose we can just integrate that once more, and simply write

constant =

∫
d4x

(
∇F −

e
ε0c

∫
dτ

dX
dτ

(
Zδ4(X − Rp(τ)) − δ4(X − Re(τ))

))
(93.14)

Like eq. (93.5) we can pick spacetime volumes that surround just the individual particle
worldlines, in which case we have a Coulomb’s law like split where the field depends on just
the enclosed current. That is

constant =

∫
spacetime volume around only the proton

d4x
(
∇Fp −

Ze
ε0c

∫
dτ

dX
dτ
δ4(X − Re(τ))

)
constant =

∫
spacetime volume around only the electron

d4x
(
∇Fe +

e
ε0c

∫
dτ

dX
dτ
δ4(X − Re(τ))

) (93.15)

Here Fe is the field due to only the electron charge, whereas Fp would be that part of the total
field due to the proton charge.

FIXME: attempt to draw a picture (one or two spatial dimensions) to develop some comfort
with tossing out a phrase like “spacetime volume surrounding a particle worldline”.

Having expressed the equation for the total field eq. (93.14), we are tracking a nice parallel
to the setup for the non-relativistic treatment. Next is the pair of Lorentz force equations. As
in the non-relativistic setup, if we only consider the field due to the other charge we have in in
covariant Geometric Algebra form, the following pair of proper force equations in terms of the
particle worldline trajectories

proper Force on electron = me
d2Re

dτ2 = −eFp ·
dRe

cdτ

proper Force on proton = mp
d2Rp

dτ2 = ZeFe ·
dRp

cdτ

(93.16)

We have the four sets of coupled multivector equations to be solved, so the question remains
how to do so. Each of the two Lorentz force equations supplies four equations with four un-
knowns, and the field equations are really two sets of eight equations with six unknown field
variables each. Then they are all tied up together is a big coupled mess. Wow. How do we solve
this?

With eq. (93.15), and eq. (93.16) committed to pdf at least the first goal of writing down the
equations is done.

As for the actual solution. Well, that is a problem for another night. TO BE CONTINUED (if
I can figure out an attack).





Part IX

E L E C T RO DY NA M I C S S T R E S S E N E R G Y





94
P OY N T I N G V E C T O R A N D E L E C T RO M AG N E T I C E N E R G Y
C O N S E RVAT I O N

94.1 motivation

Clarify Poynting discussion from [10].
Equation 7.59 and 7.60 derives a E×B quantity, the Poynting vector, as a sort of energy flux

through the surface of the containing volume.
There are a couple of magic steps here that were not at all obvious to me. Go through this in

enough detail that it makes sense to me.

94.2 charge free case

In SI units the Energy density is given as

U =
ε0

2

(
E2 + c2B2

)
(94.1)

In 96 the electrostatic energy portion of this energy was observed. FIXME: A magnetostatics
derivation (ie: unchanging currents) is possible for the B2 term, but I have not done this myself
yet.

It is somewhat curious that the total field energy is just this sum without any cross terms
(all those cross terms show up in the field momentum). A logical confirmation of this in a
general non-electrostatics and non-magnetostatics context will not be done here. Instead it will
be assumed that eq. (94.1) has been correctly identified as the field energy (density), and a
mechanical calculation of the time rate of change of this quantity (the power density) will be
performed. In doing so we can find the analogue of the momentum. How to truly identify this
quantity with momentum will hopefully become clear as we work with it.

Given this energy density the rate of change of energy in a volume is then

dU
dt

=
d
dt
ε0

2

∫
dV

(
E2 + c2B2

)
= ε0

∫
dV

(
E ·

∂E
∂t

+ c2B ·
∂B
∂t

) (94.2)
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The next (omitted in the text) step is to utilize Maxwell’s equation to eliminate the time
derivatives. Since this is the charge and current free case, we can write Maxwell’s as

0 = γ0∇F

= γ0(γ0∂0 + γk∂k)F

= (∂0 + γkγ0∂k)F

= (∂0 +σk∂k)F

= (∂0 +∇)F

= (∂0 +∇)(E + icB)

= ∂0E + ic∂0B +∇E + ic∇B

(94.3)

In the spatial (σ) basis we can separate this into even and odd grades, which are separately
equal to zero

0 = ∂0E + ic∇B
0 = ic∂0B +∇E

(94.4)

A selection of just the vector parts is

∂tE = −ic2
∇∧B

∂tB = i∇∧E
(94.5)

Which can be back substituted into the energy flux

dU
dt

= ε0

∫
dV

(
E · (−ic2

∇∧B) + c2B · (i∇∧E)
)

= ε0c2
∫

dV〈Bi∇∧E −Ei∇∧B〉
(94.6)

Since the two divergence terms are zero we can drop the wedges here for

dU
dt

= ε0c2
∫

dV〈Bi∇E −Ei∇B〉

= ε0c2
∫

dV〈(iB)∇E −E∇(iB)〉

= ε0c2
∫

dV∇ · ((iB) ·E)

(94.7)

Justification for this last step can be found below in the derivation of eq. (94.30).
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We can now use Stokes theorem to change this into a surface integral for a final energy flux

dU
dt

= ε0c2
∫

dA · ((iB) ·E) (94.8)

This last bivector/vector dot product is the Poynting vector

(iB) ·E = 〈(iB) ·E〉1
= 〈iBE〉1
= 〈i(B∧E)〉1
= i(B∧E)

= i2(B ×E)

= E ×B

(94.9)

So, we can identity the quantity

P = ε0c2E ×B = ε0c(icB) ·E (94.10)

as a directed energy density flux through the surface of a containing volume.

94.3 with charges and currents

To calculate time derivatives we want to take Maxwell’s equation and put into a form with
explicit time derivatives, as was done before, but this time be more careful with the handling of
the four vector current term. Starting with left factoring out of a γ0 from the spacetime gradient.

∇ = γ0∂0 + γk∂k

= γ0(∂0 − γ
kγ0∂k)

= γ0(∂0 +σk∂k)

(94.11)

Similarly, the γ0 can be factored from the current density

J = γ0cρ + γkJk

= γ0(cρ − γkγ0Jk)

= γ0(cρ −σkJk)

= γ0(cρ − j)

(94.12)
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With this Maxwell’s equation becomes

γ0∇F = γ0J/ε0c

(∂0 +∇)(E + icB) = ρ/ε0 − j/ε0c
(94.13)

A split into even and odd grades including current and charge density is thus

∇E + ∂t(iB) = ρ/ε0

∇(iB)c2 + ∂tE = −j/ε0
(94.14)

Now, taking time derivatives of the energy density gives

∂U
∂t

=
∂

∂t
1
2
ε0

(
E2 − (icB)2

)
= ε0

(
E · ∂tE − c2(iB) · ∂t(iB)

)
= ε0

〈
E(−j/ε0 −∇(iB)c2) − c2(iB)(−∇E + ρ/ε0)

〉
= −E · j + c2ε0〈iB∇E −E∇(iB)〉

= −E · j + c2ε0 ((iB) · (∇∧E) −E · (∇ · (iB)))

(94.15)

Using eq. (94.30), we now have the rate of change of field energy for the general case includ-
ing currents. That is

∂U
∂t

= −E · j + c2ε0∇ · (E · (iB)) (94.16)

Written out in full, and in terms of the Poynting vector this is

∂

∂t
ε0

2

(
E2 + c2B2

)
+ c2ε0∇ · (E ×B) = −E · j (94.17)

94.4 poynting vector in terms of complete field

In eq. (94.10) the individual parts of the complete Faraday bivector F = E + icB stand out. How
would the Poynting vector be expressed in terms of F or in tensor form?

One possibility is to write E×B in terms of F using a conjugate split of the Maxwell bivector

Fγ0 = −γ0(E − icB) (94.18)
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we have

γ0Fγ0 = −(E − icB) (94.19)

and

icB =
1
2

(F + γ0Fγ0)

E =
1
2

(F − γ0Fγ0)
(94.20)

However [10] has the answer more directly in terms of the electrodynamic stress tensor.

T (a) = −
ε0

2
FaF (94.21)

In particular for a = γ0, this is

T (γ0) = −
ε0

2
Fγ0F

=
ε0

2
(E + icB)(E − icB)γ0

=
ε0

2
(E2 + c2B2 + ic(BE −BE))γ0

=
ε0

2
(E2 + c2B2)γ0 + icε0(B∧E)γ0

=
ε0

2
(E2 + c2B2)γ0 + cε0(E ×B)γ0

(94.22)

So one sees that the energy and the Poynting vector are components of an energy density
momentum four vector

T (γ0) = Uγ0 +
1
c

Pγ0 (94.23)

Writing U0 = U and Uk = Pk/c, this is T (γ0) = Uµγµ.
(inventing such a four vector is how Doran/Lasenby started, so this is not be too surprising).

This relativistic context helps justify the Poynting vector as a momentum like quantity, but is not
quite satisfactory. It would make sense to do some classical comparisons, perhaps of interacting
wave functions or something like that, to see how exactly this quantity is momentum like. Also
how exactly is this energy momentum tensor used, how does it transform, ...
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94.5 energy density from lagrangian?

I did not get too far trying to calculate the electrodynamic Hamiltonian density for the general
case, so I tried it for a very simple special case, with just an electric field component in one
direction:

L =
1
2

(Ex)2

=
1
2

(F01)2

=
1
2

(∂0A1 − ∂1A0)2

(94.24)

[16] gives the Hamiltonian density as

π =
∂L

∂ṅ
H = ṅπ −L

(94.25)

If I try calculating this I get

π =
∂

∂(∂0A1)

(
1
2

(∂0A1 − ∂1A0)2
)

= ∂0A1 − ∂1A0

= F01

(94.26)

So this gives a Hamiltonian of

H = ∂0A1F01 −
1
2

(∂0A1 − ∂1A0)F01

=
1
2

(∂0A1 + ∂1A0)F01

=
1
2

((∂0A1)2 − (∂1A0)2)

(94.27)

For a Lagrangian density of E2 − B2 we have an energy density of E2 + B2, so I had have
expected the Hamiltonian density here to stay equal to E2

x/2, but it does not look like that is
what I get (what I calculated is not at all familiar seeming).

If I have not made a mistake here, perhaps I am incorrect in assuming that the Hamiltonian
density of the electrodynamic Lagrangian should be the energy density?
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94.6 appendix . messy details

For both the charge and the charge free case, we need a proof of

(iB) · (∇∧E) −E · (∇ · (iB)) = ∇ · (E · (iB)) (94.28)

This is relativity straightforward, albeit tedious, to do backwards.

∇ · ((iB) ·E) = 〈∇((iB) ·E)〉

=
1
2
〈∇(iBE −EiB)〉

=
1
2

〈
∇̇iḂE + ∇̇iBĖ − ∇̇ĖiB − ∇̇EiḂ

〉
=

1
2

〈
E∇(iB) − (iḂ)∇̇E + Ė∇̇iB − iB∇E

〉
=

1
2

(
E · (∇ · (iB)) − ((iḂ) · ∇̇) ·E + (Ė∧ ∇̇) · (iB) − (iB) · (∇∧E)

)
(94.29)

Grouping the two sets of repeated terms after reordering and the associated sign adjustments
we have

∇ · ((iB) ·E) = E · (∇ · (iB)) − (iB) · (∇∧E) (94.30)

which is the desired identity (in negated form) that was to be proved.
There is likely some theorem that could be used to avoid some of this algebra.

94.7 references for followup study

Some of the content available in the article Energy Conservation looks like it will also be useful
to study (in particular it goes through some examples that convert this from a math treatment to
a physics story).

http://farside.ph.utexas.edu/teaching/em/lectures/node89.html




95
T I M E R AT E O F C H A N G E O F T H E P OY N T I N G V E C T O R , A N D I T S
C O N S E RVAT I O N L AW

95.1 motivation

Derive the conservation laws for the time rate of change of the Poynting vector, which appears
to be a momentum density like quantity.

The Poynting conservation relationship has been derived previously. Additionally a starting
exploration 97 of the related four vector quantity has been related to a subset of the energy
momentum stress tensor. This was incomplete since the meaning of the Tk j terms of the tensor
were unknown and the expected Lorentz transform relationships had not been determined. The
aim here is to try to figure out this remainder.

95.2 calculation

Repeating again from 94, the electrodynamic energy density U and momentum flux density
vectors are related as follows

U =
ε0

2

(
E2 + c2B2

)
P =

1
µ0

E ×B =
1
µ0

(iB) ·E

0 =
∂U
∂t

+∇ · P + E · j

(95.1)

We want to now calculate the time rate of change of this Poynting (field momentum density)
vector.

∂P
∂t

=
∂

∂t

(
1
µ0

E ×B
)

=
∂

∂t

(
1
µ0

(iB) ·E
)

= ∂0

(
1
µ0

(icB) ·E
)

=
1
µ0

(∂0(icB) ·E + (icB) · ∂0E)

(95.2)
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We will want to express these time derivatives in terms of the current and spatial derivatives
to determine the conservation identity. To do this let us go back to Maxwell’s equation once
more, with a premultiplication by γ0 to provide us with an observer dependent spacetime split

γ0∇F = γ0J/ε0c

(∂0 +∇)(E + icB) = ρ/ε0 − j/ε0c
(95.3)

We want the grade one and grade two components for the time derivative terms. For grade
one we have

−j/ε0c = 〈(∂0 +∇)(E + icB)〉1
= ∂0E +∇ · (icB)

(95.4)

and for grade two

0 = 〈(∂0 +∇)(E + icB)〉2
= ∂0(icB) +∇∧E

(95.5)

Using these we can express the time derivatives for back substitution

∂0E = −j/ε0c −∇ · (icB)

∂0(icB) = −∇∧E
(95.6)

yielding

µ0
∂P
∂t

= ∂0(icB) ·E + (icB) · ∂0E

= −(∇∧E) ·E − (icB) · (j/ε0c +∇ · (icB))
(95.7)

Or

0 = ∂0((icB) ·E) + (∇∧E) ·E + (icB) · (∇ · (icB)) + (icB) · j/ε0c

= 〈∂0(icBE) + (∇∧E)E + icB(∇ · (icB)) + icBj/ε0c〉1
= 〈∂0(icBE) + (∇∧E)E + (∇∧ (cB))cB + icBj/ε0c〉1

0 = i∂0(cB∧E) + (∇∧E) ·E + (∇∧ (cB)) · (cB) + i(cB∧ j)/ε0c

(95.8)

This appears to be the conservation law that is expected for the change in vector field mo-
mentum density.

∂t(E ×B) + (∇∧E) ·E + c2(∇∧B) ·B = (B × j)/ε0 (95.9)
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In terms of the original Poynting vector this is

∂P
∂t

+
1
µ0

(∇∧E) ·E + c2 1
µ0

(∇∧B) ·B = c2(B × j) (95.10)

Now, there are a few things to pursue here.

• How to or can we put this in four vector divergence form.

• Relate this to the wikipedia result which is very different looking.

• Find the relation to the stress energy tensor.

• Lorentz transformation relation to Poynting energy momentum conservation law.

95.2.1 Four vector form?

If P = Pmσm, then each of the Pm coordinates could be thought of as the zero coordinate of a
four vector. Can we get a four vector divergence out of eq. (95.9)?

Let us expand the wedge-dot term in coordinates.

((∇∧E) ·E) ·σm = ((σa ∧σb) ·σk) ·σm(∂aEb)Ek

= (δa
mδbk − δbmδ

a
k)(∂aEb)Ek

=
∑

k

(∂mEk − ∂kEm)Ek

= ∂m
E2

2
− (E ·∇)Em

(95.11)

So we have three equations, one for each m = {1, 2, 3}

∂Pm

∂t
+ c2 ∂U

∂xm −
1
µ0

((E ·∇)Em + c2(B ·∇)Bm) = c2(B × j)m (95.12)

Damn. This does not look anything like the four vector divergence that we had with the
Poynting conservation equation. In the second last line of the wedge dot expansion we do see
that we only have to sum over the k , m terms. Can that help simplify this?

95.2.2 Compare to wikipedia form

To compare eq. (95.10) with the wikipedia article , the first thing we have to do is eliminate the
wedge products.

http://en.wikipedia.org/wiki/Electromagnetic_stress-energy_tensor#Conservation_laws
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This can be done in a couple different ways. One, is conversion to cross products

(∇∧ a) · a = 〈(∇∧ a)a〉1
= 〈i(∇ × a)a〉1
= 〈i((∇ × a) · a) + i((∇ × a)∧ a)〉1
= 〈i((∇ × a)∧ a)〉1
= i2((∇ × a) × a)

(95.13)

So we have

(∇∧ a) · a = a × (∇ × a) (95.14)

so we can rewrite the Poynting time change eq. (95.10) as

∂P
∂t

+
1
µ0

(
E × (∇ ×E) + c2B × (∇ ×B)

)
= c2(B × j) (95.15)

However, the wikipedia article has ρE terms, which suggests that a ∇ ·E based expansion has
been used. Take II.

Let us try expanding this wedge dot differently, and to track what is being operated on write
x as a variable vector, and a as a constant vector. Now expand

(∇∧ x) · a = −a · (∇∧ x)

= ∇(a · x) − (a ·∇)∧ x
(95.16)

What we really want is an expansion of (∇∧ x) · x. To get there consider

∇x2 = ∇̇ẋ · x + ∇̇x · ẋ
= 2∇̇x · ẋ

(95.17)

This has the same form as the first term above. We take the gradient and apply it to a dot
product where one of the vectors is kept constant, so we can write

∇x · ẋ =
1
2
∇x2 (95.18)

and finally

(∇∧ x) · x =
1
2
∇x2 − (x ·∇)x (95.19)
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We can now reassemble the equations and write

(∇∧E) ·E + c2(∇∧B) ·B =
1
2
∇E2 − (E ·∇)E + c2

(
1
2
∇B2 − (B ·∇)B

)
=

1
ε0
∇U − (E ·∇)E − c2(B ·∇)B

(95.20)

Now, we have the time derivative of momentum and the spatial derivative of the energy
grouped together in a nice relativistic seeming pairing. For comparison let us also put the energy
density rate change equation with this to observe them together

∂U
∂t

+∇ · P = −j ·E

∂P
∂t

+ c2
∇U = −c2(j ×B) +

1
µ0

(
(E ·∇)E + c2(B ·∇)B

) (95.21)

The second equation here is exactly what we worked out above by coordinate expansion
when looking for a four vector formulation of this equation. This however, appears much closer
to the desired result, which was not actually clear looking at the coordinate expansion.

These equations are not tidy enough seeming, so one can intuit that there is some more
natural way to express those misfit seeming (x · ∇)x terms. It would be logically tidier if we
could express those both in terms of charge and current densities.

Now, it is too bad that it is not true that

(E ·∇)E = E(∇ ·E) (95.22)

If that were the case then we would have on the right hand side

−c2(j ×B) +
1
µ

(
E(∇ ·E) + c2B(∇ ·B)

)
= −c2(j ×B) +

1
µ0

(Eρ + c2B(0))

= −c2(j ×B) +
1
µ0
ρE

(95.23)

This has a striking similarity to the Lorentz force law, and is also fairly close to the wikipedia
equation, with the exception that the j ×B and ρE terms have opposing signs.

Lets instead adding and subtracting this term so that the conservation equation remains cor-
rect

1
c2

∂P
∂t

+∇U − ε0
(
E(∇ ·E) + (E ·∇)E + c2B(∇ ·B) + c2(B ·∇)B

)
= −(j ×B) − ε0ρE

(95.24)



736 time rate of change of the poynting vector , and its conservation law

Now we are left with quantities of the following form.

x(∇ · x) + (x ·∇)x (95.25)

The sum of these for the electric and magnetic fields appears to be what the wiki article calls
∇ ·σ, although it appears there that σ is a scalar so this does not quite make sense.

It appears that we should therefore be looking to express these in terms of a gradient of the
squared fields? We have such E2 and B2 terms in the energy so it would make some logical
sense if this could be done.

The essence of the desired reduction is to see if we can find a scalar function σ(x) such that

∇σ(x) =
1
2
∇x2 − (x(∇ · x) + (x ·∇)x)) (95.26)

95.2.3 stress tensor

From [10] we expect that there is a relationship between the equations eq. (95.12), and FγkF.
Let us see if we can find exactly how these relate.

TODO: ...

95.3 take ii

After going in circles and having a better idea now where I am going, time to restart and make
sure that errors are not compounding.

The starting point will be

∂P
∂t

=
1
µ0

(∂0(icB) ·E + (icB) · ∂0E)

∂0E = −j/ε0c −∇ · (icB)

∂0(icB) = −∇∧E

(95.27)

Assembling we have

∂P
∂t

+
1
µ0

((∇∧E) ·E + (icB) · (j/ε0c +∇ · (icB))) = 0 (95.28)

This is

∂P
∂t

+
1
µ0

((∇∧E) ·E + (icB) · (∇ · (icB))) = −c2(iB) · j. (95.29)
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Now get rid of the pseudoscalars

(iB) · j = 〈iBj〉1
= i(B∧ j)
= i2(B × j)
= −(B × j)

(95.30)

and

(icB) · (∇ · (icB)) = c2〈iB(∇ · (iB))〉1
= c2〈iB〈∇iB〉1〉1
= c2〈iBi(∇∧B)〉1
= −c2〈B(∇∧B)〉1
= −c2B · (∇∧B)

(95.31)

So we have

∂P
∂t
−

1
µ0

(
E · (∇∧E) + c2B · (∇∧B)

)
= c2(B × j) (95.32)

Now we subtract (E(∇ ·E) + c2B(∇ ·B))/µ0 = Eρ/ε0µ0 from both sides yielding

∂P
∂t
−

1
µ0

(
E · (∇∧E) + E(∇ ·E) + c2B · (∇∧B) + c2B(∇ ·B)

)
= −c2(j ×B + ρE) (95.33)

Regrouping slightly

0 =
1
c2

∂P
∂t

+ (j ×B + ρE)

− ε0
(
E · (∇∧E) + E(∇ ·E) + c2B · (∇∧B) + c2B(∇ ·B)

) (95.34)

Now, let us write the E gradient terms here explicitly in coordinates.

−E · (∇∧E) −E(∇ ·E) = −σk · (σm ∧σn)Ek∂mEn − Ekσk∂mEm

= −δm
k σnEk∂mEn + δknσ

mEk∂mEn − Ekσk∂mEm

= −σnEk∂kEn +σmEk∂mEk − Ekσk∂mEm

=
∑
k,m

σk
(
−Em∂mEk + Em∂kEm − Ek∂mEm

) (95.35)

We could do the B terms too, but they will have the same form. Now [39] contains a relativis-
tic treatment of the stress tensor that would take some notation study to digest, but the end result
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appears to have the divergence result that is desired. It is a second rank tensor which probably
explains the ∇ ·σ notation in wikipedia.

For the x coordinate of the ∂P/∂t vector the book says we have a vector of the form

Tx =
1
2

(−E2
x + E2

y + E2
z )σ1 − ExEyσ2 − ExEzσ3 (95.36)

and it looks like the divergence of this should give us our desired mess. Let us try this, writing
k,m, n as distinct indices.

Tk =
1
2

(−(Ek)2 + (Em)2 + (En)2)σk − EkEmσm − EkEnσn (95.37)

∇ ·Tk =
1
2
∂k(−(Ek)2 + (Em)2 + (En)2) − ∂m(EkEm) − ∂n(EkEn)

= −Ek∂kEk + Em∂kEm + En∂kEn − Ek∂mEm − Em∂mEk − Ek∂nEn − En∂nEk

= −Ek∂kEk − Ek∂mEm − Ek∂nEn

− Em∂mEk + Em∂kEm

− En∂nEk + En∂kEn

(95.38)

Does this match? Let us expand our k term above to see if it looks the same. That is

∑
m

(−Em∂mEk + Em∂kEm − Ek∂mEm) = −Ek∂kEk + Ek∂kEk − Ek∂kEk

− Em∂mEk + Em∂kEm − Ek∂mEm

− En∂nEk + En∂kEn − Ek∂nEn

= −Ek∂kEk − Ek∂mEm − Ek∂nEn

− Em∂mEk + Em∂kEm

− En∂nEk + En∂kEn

(95.39)

Yeah! Finally have a form of the momentum conservation equation that is strictly in terms of
gradients and time partials. Summarizing the results, this is

1
c2

∂P
∂t

+ j ×B + ρE +
∑

k

σk∇ ·Tk = 0 (95.40)

Where∑
k

σk∇ ·Tk = −ε0
(
E · (∇∧E) + E(∇ ·E) + c2B · (∇∧B) + c2B(∇ ·B)

)
(95.41)
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For Tk itself, with k , m , n we have

Tk = ε0

(
1
2

(−(Ek)2 + (Em)2 + (En)2)σk − EkEmσm − EkEnσn

)
+

1
µ0

(
1
2

(−(Bk)2 + (Bm)2 + (Bn)2)σk − BkBmσm − BkBnσn

) (95.42)





96
F I E L D A N D WAV E E N E R G Y A N D M O M E N T U M

96.1 motivation

The concept of energy in the electric and magnetic fields I am getting closer to understanding,
but there is a few ways that I would like to approach it.

I have now explored the Poynting vector energy conservation relationships in 94, and 97 ,
but hhad not understood fully where the energy expressions in the electro and magneto statics
cases came from separately. I also do not yet know where the FγkF terms of the stress tensor
fit in the big picture? I suspect that they can be obtained by Lorentz transforming the rest frame
expression Fγ0F (the energy density, Poynting momentum density four vector).

It also ought to be possible to relate the field energies to a Lagrangian and Hamiltonian, but
I have not had success doing so.

The last thing that I had like to understand is how the energy and momentum of a wave can be
expressed, both in terms of the abstract conjugate field momentum concept and with a concrete
example such as the one dimensional oscillating rod that can be treated in a limiting coupled
oscillator approach as in [16].

Once I have got all these down I think I will be ready to revisit Bohm’s Rayleigh-Jeans law
treatment in [2]. Unfortunately, each time I try perusing some interesting aspect of QM I find
that I end up back studying electrodynamics, and suspect that needs to be my focus for the
foreseeable future (perhaps working thoroughly through Feynman’s volume II).

96.2 electrostatic energy in a field

Feynman’s treatment in [12] of the energy ε0
2 E2 associated with the electrostatic E field is very

easy to understand. Here is a write up of this myself without looking at the book to see if I really
understood the ideas.

The first step is consideration of the force times distance for two charges gives you the energy
required (or gained) by moving one of those charges from infinity to some given separation

W =
1

4πε0

∫ r

∞

q1q2

x2 e1 · (−e1dx)

=
q1q2

4πε0r

(96.1)

741
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This provides a quantization for an energy in a field concept. A distribution of charge requires
energy to assemble and it is possible to enumerate that energy separately by considering all the
charges, or alternatively, by not looking at the final charge distribution, but only considering
the net field associated with this charge distribution. This is a pretty powerful, but somewhat
abstract seeming idea.

The generalization to continuous charge distribution from there was pretty straightforward,
requiring a double integration over all space

W =
1
2

∫
1

4πε0

ρ1dV1ρ2dV2

r12

=
1
2

∫
ρ1φ2dV1

(96.2)

The 1/2 factor was due to double counting all "pairs" of charge elements. The next step was
to rewrite the charge density by using Maxwell’s equations. In terms of the four vector potential
Maxwell’s equation (with the ∇ · A = 0 gauge) is

∇2A =
1
ε0c

(cργ0 + Jkγk) (96.3)

So, to write ρ in terms of potential A0 = φ, we have

(
1
c2

∂2

(∂t)2 −∇
2
)
φ =

1
ε0
ρ (96.4)

In the statics case, where ∂φ
∂t = 0, we can thus write the charge density in terms of the potential

ρ = −ε0∇
2φ (96.5)

and substitute back into the energy summation

W =
1
2

∫
ρφdV

=
−ε0

2

∫
φ∇2φdV

(96.6)

Now, Feynman’s last step was a bit sneaky, which was to convert the φ∇2φ term into a diver-
gence integral. Working backwards to derive the identity that he used

∇ · (φ∇φ) = 〈∇(φ∇φ)〉

= 〈(∇φ)∇φ + φ∇(∇φ)〉

= (∇φ)2 + φ∇2φ

(96.7)
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This can then be used with Stokes theorem in its dual form to convert our φ∇2φ the into plain
volume and surface integral

W =
ε0

2

∫ (
(∇φ)2 −∇ · (φ∇φ)

)
dV

=
ε0

2

∫
(∇φ)2dV −

ε0

2

∫
∂V

(φ∇φ) · n̂dA
(96.8)

Letting the surface go to infinity and employing a limiting argument on the magnitudes of
the φ and ∇φ terms was enough to produce the final electrostatics energy result

W =
ε0

2

∫
(∇φ)2dV

=
ε0

2

∫
E2dV

(96.9)

96.3 magnetostatic field energy

Feynman’s energy discussion of the magnetic field for a constant current loop (magnetostatics),
is not so easy to follow. He considers the dipole moment of a small loop, obtained by compari-
son to previous electrostatic results (that I had have to go back and read or re-derive) and some
subtle seeming arguments about the mechanical vs. total energy of the system.

96.3.1 Biot Savart

As an attempt to understand all this, let us break it up into pieces. First, is calculation of the field
for a current loop. Let us also use this as an opportunity to see how one would work directly
and express the Biot-Savart law in the STA formulation.

Going back to Maxwell’s equation (with the ∇ · A gauge again), we have

∇F = ∇(∇∧ A)

= ∇2Aµ

= Jµ/ε0c

(96.10)

For a static current configuration with J0 = cρ = 0, we have ∂Aµ/∂t = 0, and our vector
potential equations are

∇
2Ak = −Jk/ε0c (96.11)
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Recall that the solution of Ak can be expressed as the impulse response of a function of the
following form

Ak = C
1
r

(96.12)

and that ∇ · (∇(1/r)) is zero for all r , 0. Performing a volume integral of the expected
Laplacian we can integrate over an infinitesimal spherical volume of radius R

∫
∇

2AkdV = C
∫
∇ ·∇

1
r

dV

= C
∫
∇ ·

(
−r̂

1
r2

)
dV

= −C
∫
∂V

r̂
1
r2 · r̂dA

= −C
1

R2 4πR2

= −4πC

(96.13)

Equating we can solve for C

−4πC = −Jk/ε0c

C =
1

4πε0c
Jk (96.14)

Note that this is cheating slightly since C was kind of treated as a constant, whereas this
equality makes it a function. It works because the infinitesimal volume can be made small
enough that Jk can be treated as a constant. This therefore provides our potential function in
terms of this impulse response

Ak =
1

4πε0c

∫
Jk

r
dV (96.15)

Now, this could have all been done with a comparison to the electrostatic result. Regardless,
it now leaves us in the position to calculate the field bivector

F = ∇∧ A

= (γµ ∧ γk)∂µAk

= −(γm ∧ γk)∂mAk

(96.16)
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So our field in terms of components is

F = (σm ∧σk)∂mAk (96.17)

Which in terms of spatial vector potential A = Akσk is also

F = ∇∧A (96.18)

From eq. (96.17) we can calculate the field in terms of our potential directly

∂mAk =
1

4πε0c

∫
dV∂m

Jk

r

=
1

4πε0c

∫
dV

(
Jk∂m

1
r

+
1
r
∂mJk

)
=

1
4πε0c

∫
dV

Jk∂m

∑
j

((x j)2)−1/2

 +
1
r
∂mJk


=

1
4πε0c

∫
dV

(
Jk

(
−

1
2

)
2xm 1

r3 +
1
r
∂mJk

)
=

1
4πε0c

∫
1
r3 dV

(
−xmJk + r2∂mJk

)

(96.19)

So with j = Jkσk we have

F =
1

4πε0c

∫
1
r3 dV

(
−r∧ j + r2(∇∧ j)

)
=

1
4πε0c

∫
dV

(
j∧ r̂
r2 +

1
r

(∇∧ j)
) (96.20)

The first term here is essentially the Biot Savart law once the current density is converted to
current

∫
jdV = I

∫
ĵdl, so we expect the second term to be zero.

To calculate the current density divergence we first need the current density in vector form

j = −ε0c∇2A
= −ε0c〈∇(∇A)〉1
= −ε0c∇(∇ ·A) +∇ · (∇∧A)

(96.21)

Now, recall the gauge choice was

0 = ∇ · A

= ∂0A0 + ∂kAk

=
1
c
∂A0

∂t
+∇ ·A

(96.22)
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So, provided we also have ∂A0/∂t = 0, we also have ∇ · A = 0, which is true due to the
assumed static conditions, we are left with

j = −ε0c∇ · (∇∧A) (96.23)

Now we can take the curl of j, also writing this magnetic field F in its dual form F = icB, we
see that the curl of our static current density vector is zero:

∇∧ j = ∇∧ (∇ · F)

= c∇∧ (∇ · (iB))

=
c
2
∇∧ (∇(iB) − iḂ∇̇)

= c∇∧ (i∇∧B)

= c∇∧ (i2∇ ×B)

= −ci∇ × (∇ ×B)

= 0

(96.24)

This leaves us with

F =
1

4πε0c

∫
j∧ r̂
r2 dV (96.25)

Which with the current density expressed in terms of current is the desired Biot-Savart law

F =
1

4πε0c

∫
Ids∧ r̂

r2 (96.26)

Much shorter derivations are possible than this one which was essentially done from first
principles. The one in [10], which also uses the STA formulation, is the shortest I have ever seen,
utilizing a vector Green’s function for the Laplacian. However, that requires understanding the
geometric calculus chapter of that book, which is a battle for a different day.

96.3.2 Magnetic field torque and energy

TODO: work out on paper and write up.
I created a PF thread, electric and magnetic field energy , to followup on these ideas, and now

have an idea how to proceed.

http://www.physicsforums.com/showthread.php?p=2072561
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96.4 complete field energy

Can a integral of the Lorentz force coupled with Maxwell’s equations in their entirety produce
the energy expression ε0

2

(
E2 + c2B2

)
? It seems like cheating to add these arbitrarily and then

follow the Poynting derivation by taking derivatives. That shows this quantity is a conserved
quantity, but does it really show that it is the energy? One could imagine that there could be
other terms in a total energy expression such as E ·B.

Looking in more detail at the right hand side of the energy/Poynting relationship is the key.
That is

∂

∂t
ε0

2

(
E2 + c2B2

)
+ c2ε0∇ · (E ×B) = −E · j (96.27)

Two questions to ask. The first is that if the left hand side is to be a conserved quantity then
we need the right hand side to be one too? Is that really the case? Second, how can this be
related to work done (a line integral of the Lorentz force).

The second question is easiest, and the result actually follows directly.

Work done moving a charge against the Lorentz force =

∫
F · (−dx)

=

∫
q(E + v ×B) · (−dx)

= −

∫
q(E + v ×B) · vdt

= −

∫
qE · vdt

= −

∫
E · jdtdV

(96.28)

From this we see that −E · j is the rate of change of power density in an infinitesimal volume!
Let us write

U =
ε0

2

(
E2 + c2B2

)
P =

1
µ0

(E ×B)
(96.29)

and now take eq. (96.27) and integrate over a (small) volume

∫
V

∂U
∂t

dV +

∫
∂V

P · n̂dA = −

∫
V

(E · j)dV (96.30)
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So, for a small time increment ∆t = t1 − t0, corresponding to the start and end times of the
particle at the boundaries of the work line integral, we have

Work done on particle against field =

∫ t1

t0

∫
V

∂U
∂t

dVdt +

∫ t1

t0

∫
∂V

P · n̂dAdt

=

∫
V

(U(t1) −U(t0))dV +

∫ t1

t0

∫
∂V

P · n̂dAdt

=

∫
V

∆UdV +

∫ t1

t0

∫
∂V

P · n̂dAdt

(96.31)

Roughly speaking, it appears that the energy provided to move a charge against the field is
absorbed into the field in one of two parts, one of which is what gets identified as the energy of
the field

∫
UdV . The other part is the time integral of the flux through the surface of the volume

of this Poynting vector P.

96.4.1 Dimensional analysis

That is a funny looking term though? Where would we see momentum integrated over time in
classical mechanics?

∫
mvdt = mx (96.32)

Let us look at the dimensions of all the terms in the conservation equation. We have identified
the j ·E term with energy density, and should see this

[jE] = [(qv/x3)(F/q)]

= [(x/(x3t))(mx/t2)]

= [m(x2/t2)/(x3t)]

=
Energy

Volume × Time

(96.33)

Good. That is what should have been the case.
Now, for the U term we must then have

[U] =
Energy
Volume

(96.34)
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Okay, that is good too, since we were calling U energy density. Now for the Poynting term
we have

[∇ · P] = [1/x][P] (96.35)

So we have

[P] = [1/x][P]

=
Energy × velocity

Volume

(96.36)

For uniform dimensions of all the terms this suggests that it is perhaps more natural to work
with velocity scaled quantity, with

[P]
Velocity

=
Energy
Volume

(96.37)

Rewriting the conservation equation scaling by a velocity, for which the obvious generic
velocity choice is naturally c, we have

1
c
∂

∂t
U +∇ ·

P
c

= −
j
c
·E (96.38)

Written this way we have 1/ct with dimensions of inverse distance matching the divergence,
and the dimensions of U, and P/c are both energy density. Now it makes a bit more sense to
say that the work done moving the charge against the field supplies energy to the field in some
fashion between these two terms.

96.4.2 A note on the scalar part of the covariant Lorentz force

The covariant formulation of the Lorentz force equation, when wedged with γ0 has been seen
to recover the traditional Lorentz force equation (with a required modification to use relativistic
momentum), but there was a scalar term that was unaccounted for.

Recall that the covariant Lorentz force, with derivatives all in terms of proper time, was

mṗ = qF · (v/c)

=
q
2c

(Fv − vF)

=
q
2c

((E + icB)γ0(ẋ0 − ẋkσk) − γ0(ẋ0 − ẋkσk)(E + icB))

(96.39)
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In terms of time derivatives, where factors of γ can be canceled on each side, we have

m
dp
dt

=
q
2
γ0((−E + icB)(1 − v/c) − (1 − v/c)(E + icB)) (96.40)

After some reduction this is

m
dp
dt

= q(−E · v/c + (E + v ×B))γ0 (96.41)

Or, with an explicit spacetime split for all components

mc
dγ
dt

= −qE · v/c

m
dγv
dt

= q(E + v ×B))
(96.42)

We have got the spatial vector Lorentz force in the second term, and now have an idea what
this −j ·E term is in the energy momentum vector. It is not a random thing, but an intrinsic part
(previously ignored) of the covariant Lorentz force.

Now recall that when the time variation of the Poynting was studied in 95 we had what
looked like the Lorentz force components in all the right hand side terms. Let us reiterate that
here, putting all the bits together

1
c
∂

∂t
U +∇ ·

P
c

= −
j
c
·E

1
c2

∂P
∂t

+
∑

k

σk∇ ·Tk = −(j ×B + ρE)
(96.43)

We have four scalar equations, where each one contains exactly one of the four vector compo-
nents of the Lorentz force. This makes the stress energy tensor seem a lot less random. Now the
interesting thing about this is that each of these equations required nothing more than a bunch
of algebra applied to the Maxwell equation. Doing so required no use of the Lorentz force, but
it shows up magically as an intrinsic quantity associated with the Maxwell equation. Before
this I thought that one really needed both Maxwell’s equation and the Lorentz force equation
(or their corresponding Lagrangians), but looking at this result the Lorentz force seems to more
of a property of the field than a fundamental quantity in its own right (although some means to
relate this stress energy tensor to force is required).
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97.1 expanding out the stress energy vector in tensor form

[10] defines (with ε0 omitted), the energy momentum stress tensor as a vector to vector mapping
of the following form:

T (a) =
ε0

2
FaF̃ = −

ε0

2
FaF (97.1)

This quantity can only have vector, trivector, and five vector grades.Â The grade five term
must be zero

〈T (a)〉5 =
ε0

2
F ∧ a∧ F̃

=
ε0

2
a∧ (F ∧ F̃)

= 0

(97.2)

Since (T (a))̃ = T (a), the grade three term is also zero (trivectors invert on reversion), so this
must therefore be a vector.

As a vector this can be expanded in coordinates

T (a) = (T (a) · γν) γν
= (T (aµγµ) · γν) γν
= aµγν (T (γµ) · γν)

(97.3)

It is this last bit that has the form of a traditional tensor, so we can write

T (a) = aµγνTµν

Tµν = T (γµ) · γν
(97.4)

Let us expand this tensor Tµν explicitly to verify its form.
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We want to expand, and dot with γν, the following

−2
1
ε0

(T (γµ) · γν) γν =
〈
(∇∧ A)γµ(∇∧ A)

〉
1

=
〈
(∇∧ A) · γµ(∇∧ A) + (∇∧ A)∧ γµ(∇∧ A)

〉
1

= ((∇∧ A) · γµ) · (∇∧ A) + ((∇∧ A)∧ γµ) · (∇∧ A)

(97.5)

Both of these will get temporarily messy, so let us do them in parts.Â Starting with

(∇∧ A) · γµ = (γα ∧ γβ) · γµ∂αAβ
= (γαδβµ − γβδαµ)∂αAβ
= γα∂αAµ − γβ∂µAβ
= γα(∂αAµ − ∂µAα)

= γαFαµ

(97.6)

((∇∧ A) · γµ) · (∇∧ A) = (γαFαµ) · (γβ ∧ γλ)∂βAλ

= ∂βAλFαµ(δαβγλ − δαλγβ)

= (∂αAβFαµ − ∂
βAαFαµ)γβ

= FαβFαµγβ

(97.7)

So, by dotting with γν we have

((∇∧ A) · γµ) · (∇∧ A) · γν = FανFαµ (97.8)

Moving on to the next bit, (((∇∧ A)∧ γµ) · (∇∧ A)) · γν. By inspection the first part of this is

(∇∧ A)∧ γµ = (γµ)2(γα ∧ γβ)∧ γµ∂αAβ (97.9)

so dotting with ∇∧ A, we have

((∇∧ A)∧ γµ) · (∇∧ A) = (γµ)2∂αAβ∂λAδ(γα ∧ γβ ∧ γµ) · (γλ ∧ γδ)

= (γµ)2∂αAβ∂λAδ((γα ∧ γβ ∧ γµ) · γλ) · γδ
(97.10)

Expanding just the dot product parts of this we have

(((γα ∧ γβ)∧ γµ) · γλ) · γδ
= (γα ∧ γβ)δµλ − (γα ∧ γµ)δβλ + (γβ ∧ γµ)δαλ) · γδ
= γα(δβδδµλ − δµδδβλ) + γβ(δµδδαλ − δαδδµλ) + γµ(δαδδβλ − δβδδαλ)

(97.11)
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This can now be applied to ∂λAδ

∂λAδ(((γα ∧ γβ)∧ γµ) · γλ) · γδ
= ∂µAβγα − ∂βAµγα + ∂αAµγβ − ∂µAαγβ + ∂βAαγµ − ∂αAβγµ

= (∂µAβ − ∂βAµ)γα + (∂αAµ − ∂µAα)γβ + (∂βAα − ∂αAβ)γµ

= Fµβγα + Fαµγβ + Fβαγµ

(97.12)

This is getting closer, and we can now write

((∇∧ A)∧ γµ) · (∇∧ A) = (γµ)2∂αAβ(Fµβγα + Fαµγβ + Fβαγµ)

= (γµ)2∂βAαFµαγβ + (γµ)2∂αAβFαµγβ + (γµ)2∂αAβFβαγµ

= FβαFµαγβ + ∂αAβFβαγµ

(97.13)

This can now be dotted with γν,

((∇∧ A)∧ γµ) · (∇∧ A) · γν = FβαFµαδβ
ν + ∂αAβFβαδµ

ν (97.14)

which is

((∇∧ A)∧ γµ) · (∇∧ A) · γν = FναFµα +
1
2

FαβFβαδµ
ν (97.15)

The final combination of results eq. (97.8), and eq. (97.15) gives

(FγµF) · γν = 2FανFαµ +
1
2

FαβFβαδµ
ν (97.16)

Yielding the tensor

Tµν = ε0

(
1
4

FαβFαβδµ
ν − FαµFαν

)
(97.17)

97.2 validate against previously calculated poynting result

In 94, the electrodynamic energy density U and momentum flux density vectors were related as
follows

U =
ε0

2

(
E2 + c2B2

)
P = ε0c2E ×B = ε0c(icB) ·E

0 =
∂

∂t
ε0

2

(
E2 + c2B2

)
+ c2ε0∇ · (E ×B) + E · j

(97.18)
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Additionally the energy and momentum flux densities are components of this stress tensor
four vector

T (γ0) = Uγ0 +
1
c

Pγ0 (97.19)

From this we can read the first row of the tensor elements

T0
0 = U =

ε0

2

(
E2 + c2B2

)
T0

k =
1
c

(Pγ0) · γk = ε0cEaBbεkab

(97.20)

Let us compare these to eq. (97.17), which gives

T0
0 = ε0

(
1
4

FαβFαβ − Fα0Fα0
)

=
ε0

4

(
Fα jFα j − 3F j0F j0

)
=
ε0

4

(
Fm jFm j + F0 jF0 j − 3F j0F j0

)
=
ε0

4

(
Fm jFm j − 2F j0F j0

)
T0

k = −ε0Fα0Fαk

= −ε0F j0F jk

(97.21)

Now, our field in terms of electric and magnetic coordinates is

F = E + icB
= Ekγkγ0 + icBkγkγ0

= Ekγkγ0 − cεabkBkγaγb

(97.22)

so the electric field tensor components are

F j0 = (F · γ0) · γ j

= Ekδk
j

= E j

(97.23)

and

F j0 = (γ j)2(γ0)2F j0

= −E j (97.24)
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and the magnetic tensor components are

Fm j = Fm j

= −cεabkBk((γaγb) · γ j) · γm

= −cεm jkBk

(97.25)

This gives

T0
0 =

ε0

4

(
2c2BkBk + 2E jE j

)
=
ε0

2

(
c2B2 + E2

)
T0

k = ε0E jF jk

= ε0cεke f EeB f

= ε0(cE ×B)k

=
1
c

(P ·σk)

(97.26)

Okay, good. This checks 4 of the elements of eq. (97.17) against the explicit E and B based
representation of T (γ0) in eq. (97.18), leaving only 6 unique elements in the remaining parts of
the (symmetric) tensor to verify.

97.3 four vector form of energy momentum conservation relationship

One can observe that there is a spacetime divergence hiding there directly in the energy conser-
vation equation of eq. (97.18). In particular, writing the last of those as

0 = ∂0
ε0

2

(
E2 + c2B2

)
+∇ · P/c + E · j/c (97.27)

We can then write the energy-momentum parts as a four vector divergence

∇ ·

(
ε0γ0

2

(
E2 + c2B2

)
+

1
c

Pkγk

)
= −E · j/c (97.28)

Since we have a divergence relationship, it should also be possible to convert a spacetime
hypervolume integration of this quantity into a time-surface integral or a pure volume integral.
Pursing this will probably clarify how the tensor is related to the hypersurface flux as mentioned
in the text here, but making this concrete will take a bit more thought.

Having seen that we have a divergence relationship for the energy momentum tensor in the
rest frame, it is clear that the Poynting energy momentum flux relationship should follow much
more directly if we play it backwards in a relativistic setting.
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This is a very sneaky way to do it since we have to have seen the answer to get there, but it
should avoid the complexity of trying to factor out the spacial gradients and recover the diver-
gence relationship that provides the Poynting vector. Our sneaky starting point is to compute

∇ · (Fγ0F̃) =
〈
∇(Fγ0F̃)

〉
=

〈
(∇F)γ0F̃ + ∇̇Fγ0

˙̃F
〉

=
〈
(∇F)γ0F̃ + ˙̃F∇̇Fγ0

〉 (97.29)

Since this is a scalar quantity, it is equal to its own reverse and we can reverse all factors in
this second term to convert the left acting gradient to a more regular right acting form. This is

∇ · (Fγ0F̃) =
〈
(∇F)γ0F̃ + γ0F̃(∇F)

〉
(97.30)

Now using Maxwell’s equation ∇F = J/ε0c, we have

∇ · (Fγ0F̃) =
1
ε0c

〈
Jγ0F̃ + γ0F̃J

〉
=

2
ε0c

〈
Jγ0F̃

〉
=

2
ε0c

(J ∧ γ0) · F̃

(97.31)

Now, J = γ0cρ + γkJk, so J ∧ γ0 = Jkγkγ0 = Jkσk = j, and dotting this with F̃ = −E − icB
will pick up only the (negated) electric field components, so we have

(J ∧ γ0) · F̃ = j · (−E) (97.32)

Although done in 94, for completeness let us re-expand Fγ0F̃ in terms of the electric and
magnetic field vectors.

Fγ0F̃ = −(E + icB)γ0(E + icB)

= γ0(E − icB)(E + icB)

= γ0(E2 + c2B2 + ic(EB −BE))

= γ0(E2 + c2B2 + 2ic(E∧B))

= γ0(E2 + c2B2 − 2c(E ×B))

(97.33)
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Next, we want an explicit spacetime split of the gradient

∇γ0 = (γ0∂0 + γk∂k)γ0

= ∂0 − γkγ0∂k

= ∂0 −σk∂k

= ∂0 −∇

(97.34)

We are now in shape to assemble all the intermediate results for the left hand side

∇ · (Fγ0F̃) =
〈
∇(Fγ0F̃)

〉
=

〈
(∂0 −∇)(E2 + c2B2 − 2c(E ×B))

〉
= ∂0(E2 + c2B2) + 2c∇ · (E ×B)

(97.35)

With a final reassembly of the left and right hand sides of ∇ · T (γ0), the spacetime divergence
of the rest frame stress vector we have

1
c
∂t(E2 + c2B2) + 2c∇ · (E ×B) = −

2
cε0

j ·E (97.36)

Multiplying through by ε0c/2 we have the classical Poynting vector energy conservation
relationship.

∂

∂t
ε0

2
(E2 + c2B2) +∇ ·

1
µ0

(E ×B) = −j ·E (97.37)

Observe that the momentum flux density, the Poynting vector P = (E × B)/µ0, is zero in the
rest frame, which makes sense since there is no magnetic field for a static charge distribution.
So with no currents and therefore no magnetic fields the field energy is a constant.

97.3.1 Transformation properties

Equation (97.37) is the explicit spacetime expansion of the equivalent relativistic equation

∇ · (cT (γ0)) = ∇ ·

(cε0

2
Fγ0F̃

)
=

〈
Jγ0F̃

〉
(97.38)

This has all the same content, but in relativistic form seems almost trivial. While the stress
vector T (γ0) is not itself a relativistic invariant, this divergence equation is.
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Suppose we form a Lorentz transformation L(x) = RxR̃, applied to this equation we have

F′ = (R∇R̃)∧ (RAR̃)

=
〈
R∇R̃RAR̃

〉
2

=
〈
R∇AR̃

〉
2

= R(∇∧ A)R̃

= RFR̃

(97.39)

Transforming all the objects in the equation we have

∇′ ·

(cε0

2
F′γ′0F̃′

)
=

〈
J′γ′0F̃′

〉
(R∇R̃) ·

(cε0

2
RFR̃Rγ0RR̃(RFR̃)̃

)
=

〈
RJR̃Rγ0R̃(RFR̃)̃

〉 (97.40)

This is nothing more than the original untransformed quantity

∇ ·

(cε0

2
Fγ0F̃

)
=

〈
Jγ0F̃

〉
(97.41)

97.4 validate with relativistic transformation

As a relativistic quantity we should be able to verify the messy tensor relationship by Lorentz
transforming the energy density from a rest frame to a moving frame.

Now let us try the Lorentz transformation of the energy density.
FIXME: TODO.
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L O R E N T Z F O R C E R E L AT I O N T O T H E E N E R G Y M O M E N T U M
T E N S O R

98.1 motivation

Have now made a few excursions related to the concepts of electrodynamic field energy and
momentum.

In 94 the energy density rate and Poynting divergence relationship was demonstrated using
Maxwell’s equation. That was:

∂

∂t
ε0

2

(
E2 + c2B2

)
+∇ ·

1
µ0

(E ×B) = −E · j (98.1)

In terms of the field energy density U, and Poynting vector P, this is

U =
ε0

2

(
E2 + c2B2

)
P =

1
µ0

(E ×B)

∂U
∂t

+∇ · P = −E · j

(98.2)

In 97 this was related to the energy momentum four vectors

T (a) =
ε0

2
FaF̃ (98.3)

as defined in [10], but the big picture view of things was missing.
Later in 95 the rate of change of Poynting vector was calculated, with an additional attempt

to relate this to T (γµ).
These relationships, and the operations required to factoring out the divergence were consid-

erably messier.
Finally, in 96 the four vector T (γµ) was related to the Lorentz force and the work done

moving a charge against a field. This provides the natural context for the energy momentum
tensor, since it appears that the spacetime divergence of each of the T (γµ) four vectors appears
to be a component of the four vector Lorentz force (density).
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In these notes the divergences will be calculated to confirm the connection between the
Lorentz force and energy momentum tensor directly. This is actually expected to be simpler
than the previous calculations.

It is also potentially of interest, as shown in 119, and 120 that the energy density and Poynting
vectors, and energy momentum four vector, were seen to be naturally expressible as Hermitian
conjugate operations

F† = γ0F̃γ0 (98.4)

T (γ0) =
ε0

2
FF†γ0 (98.5)

U = T (γ0) · γ0 =
ε0

4

(
FF† + F†F

)
P/c = T (γ0)∧ γ0 =

ε0

4

(
FF† − F†F

) (98.6)

It is conceivable that a generalization of Hermitian conjugation, where the spatial basis vec-
tors are used instead of γ0, will provide a mapping and driving structure from the Four vector
quantities and the somewhat scrambled seeming set of relationships observed in the split spatial
and time domain. That will also be explored here.

98.2 spacetime divergence of the energy momentum four vectors

The spacetime divergence of the field energy momentum four vector T (γ0) has been calculated
previously. Let us redo this calculation for the other components.

∇ · T (γµ) =
ε0

2

〈
∇(FγµF̃)

〉
=
ε0

2

〈
(∇F)γµF̃ + (F̃∇)Fγµ

〉
=
ε0

2

〈
(∇F)γµF̃ + γµF̃(∇F)

〉
= ε0

〈
(∇F)γµF̃

〉
=

1
c

〈
JγµF̃

〉
(98.7)

The ability to perform cyclic reordering of terms in a scalar product has been used above.
Application of one more reverse operation (which does not change a scalar), gives us

∇ · T (γµ) =
1
c

〈
FγµJ

〉
(98.8)
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Let us expand the right hand size first.

1
c

〈
FγµJ

〉
=

1
c

〈
(E + icB)γµ(cργ0 + jγ0)

〉
(98.9)

The µ = 0 term looks the easiest, and for that one we have

1
c
〈(E + icB)(cρ − j)〉 = −j ·E (98.10)

Now, for the other terms, say µ = k, we have

1
c
〈(E + icB)(cρσk −σkj)〉 = Ekρ − 〈iBσkj〉

= Ekρ − JaBb〈σ1σ2σ3σbσkσa〉

= Ekρ − JaBbεakb

= Ekρ + JaBbεkab

= (ρE + j ×B) ·σk

(98.11)

Summarizing the two results we have

1
c
〈Fγ0J〉 = −j ·E

1
c
〈FγkJ〉 = (ρE + j ×B) ·σk

(98.12)

The second of these is easily recognizable as components of the Lorentz force for an element
of charge (density). The first of these is actually the energy component of the four vector Lorentz
force, so expanding that in terms of spacetime quantities is the next order of business.

98.3 four vector lorentz force

The Lorentz force in covariant form is

mẍ = qF · ẋ/c (98.13)

Two verifications of this are in order. One is that we get the traditional vector form of the
Lorentz force equation from this and the other is that we can get the traditional tensor form
from this equation.
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98.3.1 Lorentz force in tensor form

Recovering the tensor form is probably the easier of the two operations. We have

mẍµγµ =
q
2

Fαβ ẋσ(γα ∧ γβ) · γσ

=
q
2

Fαβ ẋσ(γαδβσ − γβδασ)

=
q
2

Fαβ ẋβγα −
q
2

Fαβ ẋαγβ

(98.14)

Dotting with γµ the right hand side is

q
2

Fµβ ẋβ −
q
2

Fαµ ẋα = qFµα ẋα (98.15)

Which recovers the tensor form of the equation

mẍµ = qFµα ẋα (98.16)

98.3.2 Lorentz force components in vector form

mγ
d
dt
γ

(
c +σk

dxk

dt

)
γ0 =

q
2c

(Fv − vF)

=
qγ
2c

(E + icB)
(
c +σk

dxk

dt

)
γ0

−
qγ
2c

(
c +σk

dxk

dt

)
γ0(E + icB)

(98.17)

Right multiplication by γ0/γ we have

m
d
dt
γ (c + v) =

q
2c

((E + icB) (c + v) − (c + v) (−E + icB))

=
q
2c

(+2Ec + Ev + vE + ic(Bv − vB))
(98.18)

After a last bit of reduction this is

m
d
dt
γ (c + v) = q(E + v ×B) + qE · v/c (98.19)

In terms of four vector momentum this is

ṗ = q(E · v/c + E + v ×B)γ0 (98.20)
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98.3.3 Relation to the energy momentum tensor

It appears that to relate the energy momentum tensor to the Lorentz force we have to work with
the upper index quantities rather than the lower index stress tensor vectors. Doing so our four
vector force per unit volume is

∂ ṗ
∂V

= (j ·E + ρE + j ×B)γ0

= −
1
c
〈
FγµJ

〉
γµ

= −(∇ · T (γµ))γµ

(98.21)

The term 〈FγµJ〉γµ appears to be expressed simply has F · J in [10]. Understanding that
simple statement is now possible now that an exploration of some of the underlying ideas has
been made. In retrospect having seen the bivector product form of the Lorentz force equation,
it should have been clear, but some of the associated trickiness in their treatment obscured this
fact ( Although their treatment is only two pages, I still only understand half of what they are
doing!)

98.4 expansion of the energy momentum tensor

While all the components of the divergence of the energy momentum tensor have been expanded
explicitly, this has not been done here for the tensor itself. A mechanical expansion of the
tensor in terms of field tensor components Fµν has been done previously and is not particularly
enlightening. Let us work it out here in terms of electric and magnetic field components. In
particular for the T 0µ and T µ0 components of the tensor in terms of energy density and the
Poynting vector.

98.4.1 In terms of electric and magnetic field components

Here we want to expand

T (γµ) =
−ε0

2
(E + icB)γµ(E + icB) (98.22)

It will be convenient here to temporarily work with ε0 = c = 1, and put them back in
afterward.
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98.4.1.1 First row

First expanding T (γ0) we have

T (γ0) =
1
2

(E + iB)(E − iB)γ0

=
1
2

(E2 + B2 + i(BE −EB))γ0

=
1
2

(E2 + B2)γ0 + i(B∧E)γ0

(98.23)

Using the wedge product dual a ∧ b = i(a × b), and putting back in the units, we have our
first stress energy four vector,

T (γ0) =

(
ε0

2
(E2 + c2B2) +

1
µ0c

(E ×B)
)
γ0 (98.24)

In particular the energy density and the components of the Poynting vector can be picked off

by dotting with each of the γµ vectors. That is

U = T (γ0) · γ0

P/c ·σk = T (γ0) · γk (98.25)

98.4.1.2 First column

We have Poynting vector terms in the T 0k elements of the matrix. Let us quickly verify that we
have them in the T k0 positions too.

To do so, again with c = ε0 = 1 temporarily this is a computation of

T (γk) · γ0 =
1
2

(T (γk)γ0 + γ0T (γk))

=
−1
4

(FγkFγ0 + γ0FγkF)

=
1
4

(Fσkγ0Fγ0 − γ0Fγ0σkF)

=
1
4

(Fσk(−E + iB) − (−E + iB)σkF)

=
1
4
〈σk(−E + iB)(E + iB) −σk(E + iB)(−E + iB)〉

=
1
4

〈
σk(−E2 −B2 + 2(E ×B)) −σk(−E2 −B2 − 2(E ×B))

〉

(98.26)
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Adding back in the units we have

T (γk) · γ0 = ε0c(E ×B) ·σk =
1
c

P ·σk (98.27)

As expected, these are the components of the Poynting vector (scaled by 1/c for units of
energy density).

98.4.1.3 Diagonal and remaining terms

T (γa) · γb =
1
2

(T (γa)γb + γbT (γa))

=
−1
4

(FγaFγb + γaFγbF)

=
1
4

(Fσaγ0Fγb − γaFγ0σbF)

=
1
4

(Fσa(−E + iB)σb +σa(−E + iB)σbF)

=
1
2
〈σa(−E + iB)σb(E + iB)〉

(98.28)

From this point is there any particularly good or clever way to do the remaining reduction?
Doing it with coordinates looks like it would be easy, but also messy. A decomposition of E and
B that are parallel and perpendicular to the spatial basis vectors also looks feasible.

Let us try the dumb way first

T (γa) · γb =
1
2

〈
σa(−Ekσk + iBkσk)σb(Emσm + iBmσm)

〉
=

1
2

(BkEm − EkBm)〈iσaσkσbσm〉 −
1
2

(EkEm + BkBm)〈σaσkσbσm〉

(98.29)

Reducing the scalar operations is going to be much different for the a = b, and a , b cases.
For the diagonal case we have

T (γa) · γa =
1
2

(BkEm − EkBm)〈iσaσkσaσm〉 −
1
2

(EkEm + BkBm)〈σaσkσaσm〉

= −
1
2

∑
m,k,a

1
2

(BkEm − EkBm)〈iσkσm〉 +
1
2

∑
m,k,a

(EkEm + BkBm)〈σkσm〉

+
1
2

∑
m

(BaEm − EaBm)〈iσaσm〉 −
1
2

∑
m

(EaEm + BaBm)〈σaσm〉

(98.30)
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Inserting the units again we have

T (γa) · γa =
ε0

2

∑
k,a

(
(Ek)2 + c2(Bk)2

)
−

(
(Ea)2 + c2(Ba)2

) (98.31)

Or, adding and subtracting, we have the diagonal in terms of energy density (minus a fudge)

T (γa) · γa = U − ε0
(
(Ea)2 + c2(Ba)2

)
(98.32)

Now, for the off diagonal terms. For a , b this is

T (γa) · γb =
1
2

∑
m

(BaEm − EaBm)〈iσbσm〉 +
1
2

∑
m

(BbEm − EbBm)〈iσaσm〉

−
1
2

∑
m

(EaEm + BaBm)〈σbσm〉 −
1
2

∑
m

(EbEm + BbBm)〈σaσm〉

+
1
2

∑
m,k,a,b

(BkEm − EkBm)〈iσaσkσbσm〉 −
1
2

∑
m,k,a,b

(EkEm + BkBm)〈σaσkσbσm〉

(98.33)

The first two scalar filters that include i will be zero, and we have deltas 〈σbσm〉 = δbm in the
next two. The remaining two terms have only vector and bivector terms, so we have zero scalar
parts. That leaves (restoring units)

T (γa) · γb = −
ε0

2

(
EaEb + EbEa + c2(BaBb + BbBa)

)
(98.34)

98.4.2 Summarizing

Collecting all the results, with T µν = T (γµ) · γν, we have

T 00 =
ε0

2

(
E2 + c2B2

)
T aa =

ε0

2

(
E2 + c2B2

)
− ε0

(
(Ea)2 + c2(Ba)2

)
T k0 = T 0k =

1
c

(
1
µ0

(E ×B)
)
·σk

T ab = T ba = −
ε0

2

(
EaEb + EbEa + c2(BaBb + BbBa)

)
(98.35)
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98.4.3 Assembling a four vector

Let us see what one of the T aµγµ rows of the tensor looks like in four vector form. Let f , g , h
represent an even permutation of the integers 1, 2, 3. Then we have

T f = T fµγµ

=
ε0

2
c(EgBh − EhBg)γ0

+
ε0

2

(
−(E f )2 + (Eg)2 + (Eh)2 + c2(−(B f )2 + (Bg)2 + (Bh)2)

)
γ f

−
ε0

2

(
E f Eg + EgE f + c2(B f Bg + BgB f )

)
γg

−
ε0

2

(
E f Eh + EhE f + c2(B f Bh + BhB f )

)
γh

(98.36)

It is pretty amazing that the divergence of this produces the f component of the Lorentz force
(density)

∂µT fµ = (ρE + j ×B) ·σ f (98.37)

Demonstrating this directly without having STA as an available tool would be quite tedious,
and looking at this expression inspires no particular attempt to try!

98.5 conjugation?

98.5.1 Followup: energy momentum tensor

This also suggests a relativistic generalization of conjugation, since the time basis vector should
perhaps not have a distinguishing role. Something like this:

F†µ = γµF̃γµ (98.38)

Or perhaps:

F†µ = γµF̃γµ (98.39)

may make sense for consideration of the other components of the general energy momentum
tensor, which had roughly the form:

T µν ∝ T (γµ) · γν (98.40)

(with some probable adjustments to index positions). Think this through later.





99
E N E R G Y M O M E N T U M T E N S O R R E L AT I O N T O L O R E N T Z F O R C E

99.1 motivation

In 98 the energy momentum tensor was related to the Lorentz force in STA form. Work the
same calculation strictly in tensor form, to develop more comfort with tensor manipulation.
This should also serve as a translation aid to compare signs due to metric tensor differences in
other reading.

99.1.1 Definitions

The energy momentum “tensor”, really a four vector, is defined in [10] as

T (a) =
ε0

2
FaF̃ = −

ε0

2
FaF (99.1)

We have seen that the divergence of the T (γµ) vectors generate the Lorentz force relations.
Let us expand this with respect to index lower basis vectors for use in the divergence calcula-

tion.

T (γµ) = (T (γµ) · γν) γν (99.2)

So we define

T µν = T (γµ) · γν (99.3)

and can write these four vectors in tensor form as

T (γµ) = T µνγν (99.4)

99.1.2 Expanding out the tensor

An expansion of T µν was done in 97, but looking back that seems a peculiar way, using the four
vector potential.
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Let us try again in terms of Fµν instead. Our field is

F =
1
2

Fµνγµ ∧ γν (99.5)

So our tensor components are

T µν = T (γµ) · γν

= −
ε0

8
FλσFαβ

〈
(γλ ∧ γσ)γµ(γα ∧ γβ)γν

〉 (99.6)

Or

−8
1
ε0

T µν = FλσFαβ
〈
(γλδσµ − γσδλµ)(γαδβν − γβδαν)

〉
+ FλσFαβ

〈
(γλ ∧ γσ ∧ γµ)(γα ∧ γβ ∧ γν)

〉 (99.7)

Expanding only the first term to start with

FλσFαβ(γλδσµ) · (γαδβν) + FλσFαβ(γσδλµ) · (γβδαν)

− FλσFαβ(γλδσµ) · (γβδαν) − FλσFαβ(γσδλµ) · (γαδβν)

= FλµFανγλ · γα + FµσFνβγσ · γβ − FλµFνβγλ · γβ − FµσFανγσ · γα

= ηαβ(FλµFανγλ · γ
β + FµσFναγσ · γ

β − FλµFναγλ · γ
β − FµσFανγσ · γ

β)

= ηαλFλµFαν + ηασFµσFνα − ηαλFλµFνα − ηασFµσFαν

= 2(ηαλFλµFαν + ηασFµσFνα)

= 2(ηαβFβµFαν + ηαβFµβFνα)

= 4ηαβFβµFαν

= 4FβµFβ
ν

= 4FαµFα
ν

(99.8)

For the second term after a shuffle of indices we have

FλσFαβη
µµ′

〈
(γλ ∧ γσ ∧ γµ)(γα ∧ γβ ∧ γν)

〉
(99.9)

This dot product is reducible with the identity

(a∧ b∧ c) · (d ∧ e∧ f ) = (((a∧ b∧ c) · d) · e) · f (99.10)

leaving a completely antisymmetized sum

FλσFαβη
µµ′(δλνδσβδµ′α − δλνδσαδµ′β − δλβδσνδµ′α + δλ

αδσ
νδµ′

β + δλ
βδσ

αδµ′
ν − δλ

αδσ
βδµ′

ν)

= FνβFµ′βη
µµ′ − FναFαµ′η

µµ′ − FβνFµ′βη
µµ′ + FανFαµ′η

µµ′ + FβαFαβη
µµ′δµ′

ν − FαβFαβη
µµ′δµ′

ν

= 4FναFµ′αη
µµ′ + 2FβαFαβη

µµ′δµ′
ν

= 4FναFµ
α + 2FβαFαβη

µν
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(99.11)

Combining these we have

T µν = −
ε0

8

(
4FαµFα

ν + 4FναFµ
α + 2FβαFαβη

µν
)

=
ε0

8

(
−4FαµFα

ν + 4FαµFν
α + 2FαβFαβη

µν
) (99.12)

If by some miracle all the index manipulation worked out, we have

T µν = ε0

(
FαµFν

α +
1
4

FαβFαβη
µν

)
(99.13)

99.1.2.1 Justifying some of the steps

For justification of some of the index manipulations of the F tensor components it is helpful to
think back to the definitions in terms of four vector potentials

F = ∇∧ A

= ∂µAνγµ ∧ γν
= ∂µAνγµ ∧ γν

= ∂µAνγµ ∧ γν
= ∂µAνγµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

(99.14)

So with the shorthand

Fµν = ∂µAν − ∂νAµ

Fµν = ∂µAν − ∂νAµ
Fµ

ν = ∂µAν − ∂νAµ
Fµ

ν = ∂µAν − ∂νAµ

(99.15)



772 energy momentum tensor relation to lorentz force

We have

F =
1
2

Fµνγµ ∧ γν

=
1
2

Fµνγ
µ ∧ γν

=
1
2

Fµ
νγµ ∧ γν

=
1
2

Fµ
νγµ ∧ γ

ν

(99.16)

In particular, and perhaps not obvious without the definitions handy, the following was used
above

Fµ
ν = −Fν

µ (99.17)

99.1.3 The divergence

What is our divergence in tensor form? This would be

∇ · T (γµ) = (γα∂α) · (T µνγν) (99.18)

So we have

∇ · T (γµ) = ∂νT µν (99.19)

Ignoring the ε0 factor for now, chain rule gives us

(∂νFαµ)Fν
α + Fαµ(∂νFν

α) +
1
2

(∂νFαβ)Fαβη
µν

= (∂νFαµ)Fν
α + Fα

µ(∂νFνα) +
1
2

(∂νFαβ)Fαβη
µν

(99.20)

Only this center term is recognizable in terms of current since we have

∇ · F = J/ε0c (99.21)

Where the LHS is

∇ · F = γα∂α ·

(
1
2

Fµνγµ ∧ γν

)
=

1
2
∂αFµν(δαµγν − δανγµ)

= ∂µFµνγν

(99.22)
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So we have

∂µFµν = (J · γν)/ε0c

= ((Jαγα) · γν)/ε0c

= Jν/ε0c

(99.23)

Or

∂µFµν = Jν/ε0c (99.24)

So we have

∇ · T (γµ) = ε0

(
(∂νFαµ)Fν

α +
1
2

(∂νFαβ)Fαβη
µν

)
+ Fα

µJα/c (99.25)

So, to get the expected result the remaining two derivative terms must somehow cancel. How
to reduce these? Let us look at twice that

2(∂νFαµ)Fν
α + (∂νFαβ)Fαβη

µν

= 2(∂νFαµ)Fνα + (∂µFαβ)Fαβ

= (∂νFαµ)(Fνα − Fαν) + (∂µFαβ)Fαβ

= (∂αFβµ)Fαβ + (∂βFµα)Fαβ + (∂µFαβ)Fαβ

= (∂αFβµ + ∂βFµα + ∂µFαβ)Fαβ

(99.26)

Ah, there is the trivector term of Maxwell’s equation hiding in there.

0 = ∇∧ F

= γµ∂
µ ∧

(
1
2

Fαβ(γα ∧ γβ)
)

=
1
2

(∂µFαβ)(γµ ∧ γα ∧ γβ)

=
1
3!

(
∂µFαβ + ∂αFβµ + ∂βFµα

)
(γµ ∧ γα ∧ γβ)

(99.27)

Since this is zero, each component of this trivector must separately equal zero, and we have

∂µFαβ + ∂αFβµ + ∂βFµα = 0 (99.28)

So, where T µν is defined by eq. (99.13), the final result is

∂νT µν = FαµJα/c (99.29)





100
D C P OW E R C O N S U M P T I O N F O R M U L A F O R R E S I S T I V E L OA D

100.1 motivation

Despite a lot of recent study of electrodynamics, faced with a simple electrical problem:
“What capacity generator would be required for an arc welder on a 30 Amp breaker using a

220 volt circuit”.
I could not think of how to answer this off the top of my head. Back in school without

hesitation I would have been able to plug into P = IV to get a capacity estimation for the
generator.

Having forgotten the formula, let us see how we get that P = IV relationship from Maxwell’s
equations.

100.2

Having just derived the Poynting energy momentum density relationship from Maxwell’s equa-
tions, let that be the starting point

d
dt

(
ε0

2

(
E2 + c2B2

))
= −

1
µ0

(E ×B) −E · j (100.1)

The left hand side is the energy density time variation, which is power per unit volume, so we
can integrate this over a volume to determine the power associated with a change in the field.

P = −

∫
dV

(
1
µ0

(E ×B) + E · j
)

(100.2)

As a reminder, let us write the magnetic and electric fields in terms of potentials.
In terms of the “native” four potential our field is

F = E + icB
= ∇∧ A

= γ0γk∂0Ak + γ jγ0∂ jA0 + γm ∧ γn∂mAn

(100.3)
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776 dc power consumption formula for resistive load

The electric field is

E =
∑

k

(∇∧ A) · (γ0γk)γkγ0 (100.4)

From this, with φ = A0, and A = σkAk we have

E = −
1
c
∂A
∂t
−∇φ

iB = ∇∧A
(100.5)

Now, the arc welder is (I think) a DC device, and to get a rough idea of what it requires lets
just assume that its a rectifier that outputs RMS DC. So if we make this simplification, and
assume that we have a purely resistive load (ie: no inductance and therefore no magnetic fields)
and a DC supply and constant current, then we eliminate the vector potential terms.

This wipes out the B and the Poynting vector, and leaves our electric field specified in terms
of the potential difference across the load E = −∇φ.

That is

P =

∫
dV(∇φ) · j (100.6)

Suppose we are integrating over the length of a uniformly resistive load with some fixed cross
sectional area. jdV is then the magnitude of the current directed along the wire for its length.
This basically leaves us with a line integral over the length of the wire that we are measuring
our potential drop over so we are left with just

P = (δφ)I (100.7)

This δφ is just our voltage drop V , and this gives us the desired P = IV equation. Now, I
also recall from school now that I think about it that P = IV also applied to inductive loads,
but it required that I and V be phasors that represented the sinusoidal currents and sources. A
good followup exercise would be to show from Maxwell’s equations that this is in fact valid.
Eventually I will know the origin of all the formulas from my old engineering courses.



101
R AY L E I G H - J E A N S L AW N OT E S

101.1 motivation

Fill in the gaps for a reading of the initial parts of the Rayleigh-Jeans discussion of [2].

101.2 2. electromagnetic energy

Energy of the field given to be:

E =
1

8π

∫
(E2 +H2) (101.1)

I still do not really know where this comes from. Could perhaps justify this with a Hamilto-
nian of a field (although this is uncomfortably abstract).

With the particle Hamiltonian we have

H = q̇i pi −L (101.2)

What is the field equivalent of this? Try to get the feel for this with some simple fields (such
as the one dimensional vibrating string), and the Coulomb field. For the physical case, do this
with both the Hamiltonian approach and a physical limiting argument.

101.3 3. electromagnetic potentials

Bohm writes Maxwell’s equations in non-SI units, and also, naturally, not in STA form which
would be somewhat more natural for a gauge discussion.

∇ × E = −
1
c
∂tH

∇ · E = 4πρ

∇ ×H =
1
c
∂tE + 4πj

∇ ·H = 0

(101.3)
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In STA form this is

∇E = −∂0iH + 4πρ

∇iH = −∂0E − 4πj
(101.4)

Or

∇(E + iH) + ∂0(E + iH) = 4π(ρ − j) (101.5)

Left multiplying by γ0 gives

γ0∇ = γ0

∑
k

σk∂k

= γ0

∑
k

γkγ0∂k

= −
∑

k

γk∂k

= γk∂k

(101.6)

and

γ0j =
∑

k

γ0σk jk

= −
∑

k

γk jk,
(101.7)

so with J0 = ρ, Jk = jk and J = γµJµ, we have

γµ∂µ(E + iH) = 4πJ (101.8)

and finally with F = E + iH , we have Maxwell’s equation in covariant form

∇F = 4πJ. (101.9)

Next it is stated that general solutions can be expressed as

H = ∇ × a

E = −
1
c
∂a
∂t
−∇φ

(101.10)
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Let us double check that this jives with the bivector potential solution F = ∇ ∧ A = E + iH .
Let us split our bivector into spacetime and spatial components by the conjugate operation

F∗ = γ0Fγ0

= γ0γ
µ ∧ γν∂µAµγ0

=


0 if µ = ν

γµγν∂µAν if µ ∈ {1, 2, 3}, and ν ∈ {1, 2, 3}

−γµγν∂µAν one of µ = 0 or ν = 0

(101.11)

F = E + iH

=
1
2

(F − F∗) +
1
2

(F + F∗)

=
(
γk ∧ γ0∂kA0 + γ0 ∧ γk∂0Ak

)
+

(
γa ∧ γb∂aAb

)
= −

∑
k

σk∂kA0 + ∂0σkAk

 + i (εabcσa∂bAc)

(101.12)

So, with a = σkAk, and φ = A0, we do have equations eq. (101.10) as identical to F = ∇∧ A.
Now how about the gauge variations of the fields? Bohm writes that we can alter the potentials

by

a′ = a −∇ψ

φ′ = φ +
1
c
∂ψ

∂t

(101.13)

How does this translate to an alteration of the four potential? For the vector potential we have

σkAk′ = σkAk −σk∂ψ

γkγ0Ak′ = γkγ0Ak − γkγ0∂kψ

−γ0γkAk′ = −γ0γkAk − γ0γ
k∂kψ

γkAk′ = γkAk + γk∂kψ

(101.14)

with φ = A0, add in the φ term

γ0φ
′ = γ0φ + γ0

∂ψ

∂x0

γ0φ
′ = γ0φ + γ0 ∂ψ

∂x0

(101.15)
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For

γµAµ′ = γµAµ + γµ∂µψ (101.16)

Which is just a statement that we can add a spacetime gradient to our vector potential without
altering the field equation:

A′ = A +∇ψ (101.17)

Let us verify that this does in fact not alter Maxwell’s equation.

∇(∇∧ (A +∇ψ) = 4πJ∇(∇∧ A) +∇(∇∧∇ψ) = (101.18)

Since ∇∧∇ = 0 we have

∇(∇∧ A′) = ∇(∇∧ A) (101.19)

Now the statement that ∇∧∇ as an operator equals zero, just by virtue of ∇ being a vector is
worth explicit confirmation. Let us expand that to verify

∇∧∇ψ = γµ ∧ γν∂µ∂νψ

=

∑
µ<ν

+
∑
ν<µ

 γµ ∧ γν∂µ∂νψ
=

∑
µ<ν

γµ ∧ γν(∂µ∂νψ − ∂ν∂µψ)

(101.20)

So, we see that we additionally need the field variable ψ to be sufficiently continuous for
mixed partial equality for the statement that ∇∧∇ = 0 to be valid. Assuming that continuity is
taken as a given the confirmation of the invariance under this transformation is thus complete.

Now, Bohm says it is possible to pick ∇ · a′ = 0. From eq. (101.13) that implies

∇ · a′ = ∇ · a −∇ ·∇ψ
= ∇ · a −∇2ψ = 0

(101.21)

So, provided we can find a solution to the Poisson equation

∇
2ψ = ∇ · a (101.22)
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one can find a ψ, a gauge transformation that has the particular quality that ∇ · a′ = 0.
That solution, from eq. (101.53) is

ψ(r) = −
1

4π

∫
(∇′ · a(r′))dV ′

1
|r − r′|

(101.23)

The corollary to this is that one may similarly impose a requirement that ∇ · a = 0, since if
that is not the case, some a′ can be added to the vector potential to make that the case.

FIXME: handwaving description here. Show with a math statement with a→ a′.

101.3.1 Free space solutions

From eq. (101.5) and eq. (101.10) the free space solution to Maxwell’s equation must satisfy

0 = (∇ + ∂0) (E + iH)

= (∇ + ∂0) (−∂0a −∇φ +∇∧ a)
= −∇∂0a −∇2φ +∇(∇∧ a) − ∂00a − ∂0∇φ + ∂0(∇∧ a)

= −∇ · ∂0a −∇2φ +∇ · (∇∧ a) − ∂00a − ∂0∇φ

(101.24)

Since the scalar and vector parts of this equation must separately equal zero we have

0 = −∂0∇ · a −∇2φ

0 = ∇ · (∇∧ a) − ∂00a − ∂0∇φ
(101.25)

If one picks a gauge transformation such that ∇ · a = 0 we then have

0 = ∇2φ

0 = ∇2a − ∂00a − ∂0∇φ
(101.26)

For the first Bohm argues that “It is well known that the only solution of this equation that
is regular over all space is φ = 0”, and anything else implies charge in the region. What does
regular mean here? I suppose this seems like a reasonable enough statement, but I think the
proper way to think about this is really that one has picked the covariant gauge ∇ · A = 0 (that is
simpler anyhow). With an acceptance of the φ = 0 argument one is left with the vector potential
wave equation which was the desired goal of that section.

Note: The following physicsforums thread discusses some of the confusion I had in this bit
of text.

http://www.physicsforums.com/showthread.php?t=281874
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101.3.2 Doing this all directly

Now, the whole point of the gauge transformation appears to be to show that one can find
the four wave equation solutions for Maxwell’s equation by picking a specific gauge. This is
actually trivial to do from the STA Maxwell equation:

∇(∇∧ A) = ∇(∇A −∇ · A) = ∇2A −∇(∇ · A) = 4πJ (101.27)

So, if one picks a gauge transformation with ∇ · A = 0, one has

∇2A = 4πJ (101.28)

This is precisely the four wave equations desired

∂ν∂
νAµ = 4πJµ (101.29)

FIXME: show the precise gauge transformation A→ A′ that leads to ∇ · A = 0.

101.4 energy density. get the units right with these cgs equations

We will want to calculate the equivalent of

U =
ε0

2
(E2 + c2B2) (101.30)

but are faced with the alternate units of Bohm’s text. Let us repeat the derivation of the electric
field energy from 96 in the CGS units directly from Maxwell’s equation

F = E + iH

J = (ρ + j)γ0

∇F = 4πJ

(101.31)

to ensure we get it right.
To start with we our spacetime split of eq. (101.31) is

(∂0 +∇)(E +H) = 4π(ρ − j) (101.32)
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The scalar part gives us Coulomb’s law

∇ · E = 4πρ (101.33)

Gauss’s theorem applied to a spherical constant density charge distribution gives us∫
∇ · EdV = 4π

∫
ρdV

=⇒∫
E · n̂dA = 4πQ

=⇒

|E|4πr2 = 4πQ

(101.34)

so we have the expected “unitless” Coulomb law force equation

F = qE =
qQ
r2 r̂ (101.35)

So far so good. Next introduction of a potential. For statics we do not care about the four
vectors and stick with the old fashion definition of the potential φ indirectly in terms of E. That
is

E = −∇φ (101.36)

A line integral of this gives us φ in terms of E

−

∫
E · r =

∫
∇φ · dr

= φ − φ0

(101.37)

With φ(∞) = 0 this is

φ(d) = −

∫ d

r=∞

E · dr

= −

∫ d

r=∞

Q
r2 r̂ · dr

= −

∫ d

r=∞

Q
r2 dr

=
Q
d

(101.38)
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Okay. Now onto the electrostatic energy. The work done to move one charge from infinite to
some separation d of another like sign charge is

∫ d

r=∞

F · dr =

∫ d

r=∞

qQ
r2 r̂ · (−dr)

= −

∫ d

r=∞

qQ
r2 dr

=
qQ
d

= q1φ2(d)

(101.39)

For a distribution of discrete charges we have to sum over all pairs

W =
∑
i, j

qiq j

di j

=
∑
i, j

1
2

qiq j

di j

(101.40)

In a similar fashion we can do a continuous variation, employing a double summation over
all space. Note first that we can also write one of the charge densities in terms of the potential

E = −∇φ

=⇒

∇ · E = −∇ ·∇φ

= −∇2φ

= 4πρ

(101.41)

W =
1
2

∫
ρφ(r)dV

= −
1

8π

∫
φ∇2φdV

=
1

8π

∫
((∇φ)2 −∇ · (φ∇φ))dV

=
1

8π

∫
(−E)2 −

1
8π

∫
(φ∇φ) · n̂dA

(101.42)
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Here the one and two subscripts could be dropped with a switch to the total charge density
and the potential from this complete charge superposition. For our final result we have an energy
density of

dW
dV

=
1

8π
E

2 (101.43)

101.5 auxiliary details

101.5.1 Confirm Poisson solution to Laplacian

Bohm lists the solution for eq. (101.22) (a Poisson integral), but I forget how one shows this.
I can not figure out how to integrate this Laplacian, but it is simple enough to confirm this by
back substitution.

Suppose one has

ψ =

∫
ρ(r′)
|r − r′|

dV ′ (101.44)

We can take the Laplacian by direct differentiation under the integration sign

∇
2ψ =

∫
ρ(r′)dV ′∇2 1

|r − r′|
(101.45)

To evaluate the Laplacian we need

∂|r − r′|k

∂xi
=

∂

∂xi

∑
j

(x j − x′j)
2


k/2

= k2
∣∣∣r − r′

∣∣∣k−2 ∂

∂xi

∑
j

(x j − x′j)
2


= k

∣∣∣r − r′
∣∣∣k−2(xi − x′i)

(101.46)

So we have

∂

∂xi

∂

∂xi

∣∣∣r − r′
∣∣∣−1

= −(xi − x′i)
∂

∂xi

1

|r − r′|3
−

1

|r − r′|3
∂(xi − x′i)

∂xi

= 3(xi − x′i)
2 1

|r − r′|5
−

1

|r − r′|3

(101.47)
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So, provided r , r′ we have

∇
2ψ = 3(r − r′)2 1

|r − r′|5
− 3

1

|r − r′|3

= 0
(101.48)

Observe that this is true only for R3. Now, one is left with only an integral around a neigh-
borhood around the point r which can be made small enough that ρ(r′) = ρ(r) in that volume
can be taken as constant.

∇
2ψ = ρ(r)

∫
dV ′∇2 1

|r − r′|

= ρ(r)
∫

dV ′∇ ·∇
1

|r − r′|

= −ρ(r)
∫

dV ′∇ ·
(r − r′)
|r − r′|3

(101.49)

Now, if the divergence in this integral was with respect to the primed variable that ranges
over the infinitesimal volume, then this could be converted to a surface integral. Observe that a
radial expansion of this divergence allows for convenient change of variables to the primed x′i
coordinates

∇ ·
(r − r′)
|r − r′|3

=

(
r − r′

|r − r′|
∂

∂|r − r′|

)
·

(
r − r′

|r − r′|
1

|r − r′|2

)
=

∂

∂|r′ − r|
∣∣∣r′ − r

∣∣∣−2

=

(
r′ − r
|r′ − r|

∂

∂|r′ − r|

)
·

(
r′ − r
|r′ − r|

1

|r′ − r|2

)
= ∇′ ·

(r′ − r)

|r′ − r|3

(101.50)

Now, since r′ − r is in the direction of the outwards normal the divergence theorem can be
used

∇
2ψ = −ρ(r)

∫
dV ′∇′ ·

(r′ − r)

|r′ − r|3

= −ρ(r)
∫
∂V′

dA′
1

|r′ − r|2

(101.51)
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Picking a spherical integration volume, for which the radius is constant R = |r′ − r|, we have

∇
2ψ = −ρ(r)4πR2 1

R2
(101.52)

In summary this is

ψ =

∫
ρ(r′)
|r − r′|

dV ′

∇
2ψ = −4πρ(r)

(101.53)

Having written this out I recall that the same approach was used in [39] (there it was to
calculate ∇ ·E in terms of the charge density, but the ideas are all the same.)





102
E N E R G Y A N D M O M E N T U M F O R C O M P L E X E L E C T R I C A N D
M AG N E T I C F I E L D P H A S O R S

102.1 motivation

In [22] a complex phasor representations of the electric and magnetic fields is used

E = Ee−iωt

B = Be−iωt.
(102.1)

Here the vectors E and B are allowed to take on complex values. Jackson uses the real part
of these complex vectors as the true fields, so one is really interested in just these quantities

Re E = Er cos(ωt) + Ei sin(ωt)

Re B = Br cos(ωt) +Bi sin(ωt),
(102.2)

but carry the whole thing in manipulations to make things simpler. It is stated that the energy
for such complex vector fields takes the form (ignoring constant scaling factors and units)

Energy ∝ E ·E∗ + B ·B∗. (102.3)

In some ways this is an obvious generalization. Less obvious is how this and the Poynting
vector are related in their corresponding conservation relationships.

Here I explore this, employing a Geometric Algebra representation of the energy momentum
tensor based on the real field representation found in [10]. Given the complex valued fields and
a requirement that both the real and imaginary parts of the field satisfy Maxwell’s equation,
it should be possible to derive the conservation relationship between the energy density and
Poynting vector from first principles.

102.2 review of ga formalism for real fields

In SI units the Geometric algebra form of Maxwell’s equation is

∇F = J/ε0c, (102.4)
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where one has for the symbols

F = E + cIB
I = γ0γ1γ2γ3

E = Ekγkγ0

B = Bkγkγ0

(γ0)2 = −(γk)2 = 1

γµ · γν = δµν

J = cργ0 + Jkγk

∇ = γµ∂µ = γµ∂/∂xµ.

(102.5)

The symmetric electrodynamic energy momentum tensor for real fields E and B is

(102.6)
T (a) =

−ε0

2
FaF

=
ε0

2
FaF̃.

It may not be obvious that this is in fact a four vector, but this can be seen since it can only
have grade one and three components, and also equals its reverse implying that the grade three
terms are all zero. To illustrate this explicitly consider the components of T µ0

2
ε0

T
(
γ0

)
= − (E + cIB) γ0 (E + cIB)

= (E + cIB) (E − cIB) γ0

=
(
E2 + c2B2 + cI (BE −EB)

)
γ0

=
(
E2 + c2B2

)
γ0 + 2cI (B∧E) γ0

=
(
E2 + c2B2

)
γ0 + 2c (E ×B) γ0

(102.7)

Our result is a four vector in the Dirac basis as expected

T
(
γ0

)
= T µ0γµ

T 00 =
ε0

2

(
E2 + c2B2

)
T k0 = cε0 (E ×B)k

(102.8)

Similar expansions are possible for the general tensor components T µν but lets defer this
more general expansion until considering complex valued fields. The main point here is to
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remind oneself how to express the energy momentum tensor in a fashion that is natural in a GA
context. We also know that one has a conservation relationship associated with the divergence
of this tensor ∇ ·T (a) (ie. ∂µT µν), and want to rederive this relationship after guessing what form
the GA expression for the energy momentum tensor takes when one allows the field vectors to
take complex values.

102.3 computing the conservation relationship for complex field vectors

As in eq. (102.3), if one wants

T 00 ∝ E ·E∗ + c2B ·B∗, (102.9)

it is reasonable to assume that our energy momentum tensor will take the form

T (a) =
ε0

4
(F∗aF̃ + F̃aF∗) =

ε0

2
Re (F∗aF̃) (102.10)

For real vector fields this reduces to the previous results and should produce the desired mix
of real and imaginary dot products for the energy density term of the tensor. This is also a real
four vector even when the field is complex, so the energy density and power density terms will
all be real valued, which seems desirable.

102.3.1 Expanding the tensor. Easy parts

As with real fields expansion of T (a) in terms of E and B is simplest for a = γ0. Let us start
with that.

4
ε0

T (γ0)γ0 = −(E∗ + cIB∗)γ0(E + cIB)γ0 − (E + cIB)γ0(E∗ + cIB∗)γ0

= (E∗ + cIB∗)(E − cIB) + (E + cIB)(E∗ − cIB∗)
= E∗E + EE∗ + c2(B∗B + BB∗) + cI(B∗E −E∗B + BE∗ −EB∗)
= 2E ·E∗ + 2c2B ·B∗ + 2c(E ×B∗ + E∗ ×B).

(102.11)

This gives

T (γ0) =
ε0

2

(
E ·E∗ + c2B ·B∗

)
γ0 +

ε0c
2

(E ×B∗ + E∗ ×B)γ0 (102.12)
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The sum of F∗aF and its conjugate has produced the desired energy density expression. An
implication of this is that one can form and take real parts of a complex Poynting vector S ∝
E × B∗ to calculate the momentum density. This is stated but not demonstrated in Jackson,
perhaps considered too obvious or messy to derive.

Observe that the a choice to work with complex valued vector fields gives a nice consistency,
and one has the same factor of 1/2 in both the energy and momentum terms. While the energy
term is obviously real, the momentum terms can be written in an explicitly real notation as
well since one has a quantity plus its conjugate. Using a more conventional four vector notation
(omitting the explicit Dirac basis vectors), one can write this out as a strictly real quantity.

(102.13)T (γ0) = ε0

(
1
2

(
E · E∗ + c2B · B∗

)
, c Re(E × B∗)

)
Observe that when the vector fields are restricted to real quantities, the conjugate and real

part operators can be dropped and the real vector field result ?? is recovered.

102.3.2 Expanding the tensor. Messier parts

I intended here to compute T (γk), and my starting point was a decomposition of the field vectors
into components that anticommute or commute with γk

E = E‖ + E⊥
B = B‖ + B⊥.

(102.14)

The components parallel to the spatial vector σk = γkγ0 are anticommuting γkE‖ = −E‖γk,
whereas the perpendicular components commute γkE⊥ = E⊥γk. The expansion of the tensor
products is then

(F∗γkF̃ + F̃γkF∗)γk = −(E∗ + IcB∗)γk(E‖ + E⊥ + cI(B‖ + B⊥))γk

− (E + IcB)γk(E‖∗ + E⊥∗ + cI(B‖∗ + B⊥∗))γk

= (E∗ + IcB∗)(E‖ −E⊥ + cI(−B‖ + B⊥))

+ (E + IcB)(E‖∗ −E⊥∗ + cI(−B‖∗ + B⊥∗))

(102.15)

This is not particularly pretty to expand out. I did attempt it, but my result looked wrong. For
the application I have in mind I do not actually need anything more than T µ0, so rather than
show something wrong, I will just omit it (at least for now).
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102.3.3 Calculating the divergence

Working with eq. (102.10), let us calculate the divergence and see what one finds for the corre-
sponding conservation relationship.

4
ε0
∇ · T (a) =

〈
∇(F∗aF̃ + F̃aF∗)

〉
= −

〈
F
↔

∇F∗a + F∗
↔

∇Fa
〉

= −

〈
F
↔

∇F∗ + F∗
↔

∇F
〉

1
· a

= −

〈
F
→

∇F∗ + F
←

∇F∗ + F∗
←

∇F + F∗
→

∇F
〉

1
· a

= −
1
ε0c

〈
FJ∗ − JF∗ − J∗F + F∗J

〉
1 · a

=
2
ε0c

a · (J · F∗ + J∗ · F)

=
4
ε0c

a ·Re(J · F∗).

(102.16)

We have then for the divergence

∇ · T (a) = a ·
1
c

Re (J · F∗) . (102.17)

Lets write out J · F∗ in the (stationary) observer frame where J = (cρ + J)γ0. This is

J · F∗ =
〈
(cρ + J)γ0(E∗ + IcB∗)

〉
1

= −(J ·E∗)γ0 − c (ρE∗ + J ×B∗) γ0
(102.18)

Writing out the four divergence relationships in full one has

∇ · T (γ0) = −
1
c

Re(J ·E∗)

∇ · T (γk) = −Re
(
ρ(Ek)

∗
+ (J ×B∗)k

) (102.19)

Just as in the real field case one has a nice relativistic split into energy density and force
(momentum change) components, but one has to take real parts and conjugate half the terms
appropriately when one has complex fields.
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Combining the divergence relation for T (γ0) with eq. (102.13) the conservation relation for
this subset of the energy momentum tensor becomes

1
c
∂

∂t
ε0

2
(E ·E∗ + c2B ·B∗) + cε0 Re∇ · (E ×B∗) = −

1
c

Re(J ·E∗) (102.20)

Or

∂

∂t
ε0

2
(E ·E∗ + c2B ·B∗) + Re∇ ·

1
µ0

(E ×B∗) + Re(J ·E∗) = 0 (102.21)

It is this last term that puts some meaning behind Jackson’s treatment since we now know
how the energy and momentum are related as a four vector quantity in this complex formalism.

While I have used geometric algebra to get to this final result, I would be interested to com-
pare how the intermediate mess compares with the same complex field vector result obtained
via traditional vector techniques. I am sure I could try this myself, but am not interested enough
to attempt it.

Instead, now that this result is obtained, proceeding on to application is now possible. My
intention is to try the vacuum electromagnetic energy density example from [2] using complex
exponential Fourier series instead of the doubled sum of sines and cosines that Bohm used.
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E L E C T RO DY NA M I C F I E L D E N E R G Y F O R VAC U U M

103.1 motivation

From 102 how to formulate the energy momentum tensor for complex vector fields (ie. phasors)
in the Geometric Algebra formalism is now understood. To recap, for the field F = E + IcB,
where E and B may be complex vectors we have for Maxwell’s equation

∇F = J/ε0c. (103.1)

This is a doubly complex representation, with the four vector pseudoscalar I = γ0γ1γ2γ3

acting as a non-commutatitive imaginary, as well as real and imaginary parts for the electric
and magnetic field vectors. We take the real part (not the scalar part) of any bivector solution
F of Maxwell’s equation as the actual solution, but allow ourself the freedom to work with the
complex phasor representation when convenient. In these phasor vectors, the imaginary i, as in
E = Re(E) + i Im(E), is a commuting imaginary, commuting with all the multivector elements
in the algebra.

The real valued, four vector, energy momentum tensor T (a) was found to be

T (a) =
ε0

4
(F∗aF̃ + F̃aF∗) = −

ε0

2
Re(F∗aF). (103.2)

To supply some context that gives meaning to this tensor the associated conservation relation-
ship was found to be

∇ · T (a) = a ·
1
c

Re (J · F∗) . (103.3)

and in particular for a = γ0, this four vector divergence takes the form

∂

∂t
ε0

2
(E ·E∗ + c2B ·B∗) +∇ ·

1
µ0

Re(E ×B∗) + Re(J ·E∗) = 0, (103.4)

relating the energy term T 00 = T (γ0) · γ0 and the Poynting spatial vector T (γ0)∧ γ0 with the
current density and electric field product that constitutes the energy portion of the Lorentz force
density.
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Let us apply this to calculating the energy associated with the field that is periodic within a
rectangular prism as done by Bohm in [2]. We do not necessarily need the Geometric Algebra
formalism for this calculation, but this will be a fun way to attempt it.

103.2 setup

Let us assume a Fourier representation for the four vector potential A for the field F = ∇ ∧ A.
That is

A =
∑

k
Ak(t)eik·x, (103.5)

where summation is over all angular wave number triplets k = 2π(k1/λ1, k2/λ2, k3/λ3). The
Fourier coefficients Ak = Ak

µγµ are allowed to be complex valued, as is the resulting four vector
A, and the associated bivector field F.

Fourier inversion, with V = λ1λ2λ3, follows from

δk′,k =
1
V

∫ λ1

0

∫ λ2

0

∫ λ3

0
eik′·xe−ik·xdx1dx2dx3, (103.6)

but only this orthogonality relationship and not the Fourier coefficients themselves

Ak =
1
V

∫ λ1

0

∫ λ2

0

∫ λ3

0
A(x, t)e−ik·xdx1dx2dx3, (103.7)

will be of interest here. Evaluating the curl for this potential yields

F = ∇∧ A =
∑

k

(
1
c
γ0 ∧ Ȧk + γm ∧ Ak

2πikm

λm

)
eik·x. (103.8)

Since the four vector potential has been expressed using an explicit split into time and space
components it will be natural to re express the bivector field in terms of scalar and (spatial)
vector potentials, with the Fourier coefficients. Writing σm = γmγ0 for the spatial basis vectors,
Ak

0 = φk, and A = Akσk, this is

Ak = (φk + Ak)γ0. (103.9)
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The Faraday bivector field F is then

F =
∑

k

(
−

1
c

Ȧk − ikφk + ik∧Ak

)
eik·x. (103.10)

This is now enough to express the energy momentum tensor T (γµ)

T (γµ)

= −
ε0

2

∑
k,k′

Re
((
−

1
c

(Ȧk′)
∗

+ ik′φk′
∗ − ik′ ∧Ak′

∗

)
γµ

(
−

1
c

Ȧk − ikφk + ik∧Ak

)
ei(k−k′)·x

)
.

(103.11)

It will be more convenient to work with a scalar plus bivector (spatial vector) form of this
tensor, and right multiplication by γ0 produces such a split

T (γµ)γ0 =
〈
T (γµ)γ0

〉
+σa

〈
σaT (γµ)γ0

〉
(103.12)

The primary object of this treatment will be consideration of the µ = 0 components of the
tensor, which provide a split into energy density T (γ0) · γ0, and Poynting vector (momentum
density) T (γ0)∧ γ0.

Our first step is to integrate Equation 103.12 over the volume V . This integration and the
orthogonality relationship Equation 103.6, removes the exponentials, leaving

∫
T (γµ) · γ0 = −

ε0V
2

∑
k

Re
〈(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

)
γµ

(
−

1
c

Ȧk − ikφk + ik∧Ak

)
γ0

〉
∫

T (γµ)∧ γ0 = −
ε0V
2

∑
k

Reσa

〈
σa

(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

)
γµ

(
−

1
c

Ȧk − ikφk + ik∧Ak

)
γ0

〉
(103.13)

Because γ0 commutes with the spatial bivectors, and anticommutes with the spatial vectors,
the remainder of the Dirac basis vectors in these expressions can be eliminated
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∫
T (γ0) · γ0 = −

ε0V
2

∑
k

Re
〈(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

) (
1
c

Ȧk + ikφk + ik∧Ak

)〉
(103.14a)∫

T (γ0)∧ γ0 = −
ε0V
2

∑
k

Reσa

〈
σa

(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

) (
1
c

Ȧk + ikφk + ik∧Ak

)〉
(103.14b)∫

T (γm) · γ0 =
ε0V
2

∑
k

Re
〈(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

)
σm

(
1
c

Ȧk + ikφk + ik∧Ak

)〉
(103.14c)∫

T (γm)∧ γ0 =
ε0V
2

∑
k

Reσa

〈
σa

(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

)
σm

(
1
c

Ȧk + ikφk + ik∧Ak

)〉
.

(103.14d)

103.3 expanding the energy momentum tensor components

103.3.1 Energy

In Equation 103.14a only the bivector-bivector and vector-vector products produce any scalar
grades. Except for the bivector product this can be done by inspection. For that part we utilize
the identity

〈(k∧ a)(k∧ b)〉 = (a · k)(b · k) − k2(a · b). (103.15)

This leaves for the energy H =
∫

T (γ0) · γ0 in the volume

H =
ε0V
2

∑
k

(
1
c2

∣∣∣Ȧk
∣∣∣2 + k2

(
|φk|

2 + |Ak|
2
)
− |k ·Ak|

2 +
2
c

Re
(
iφk
∗ · Ȧk

))
(103.16)

We are left with a completely real expression, and one without any explicit Geometric Alge-
bra. This does not look like the Harmonic oscillator Hamiltonian that was expected. A gauge
transformation to eliminate φk and an observation about when k ·Ak equals zero will give us
that, but first lets get the mechanical jobs done, and reduce the products for the field momentum.
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103.3.2 Momentum

Now move on to Equation 103.14b. For the factors other than σa only the vector-bivector prod-
ucts can contribute to the scalar product. We have two such products, one of the form

σa〈σaa(k∧ c)〉 = σa(c ·σa)(a · k) −σa(k ·σa)(a · c)

= c(a · k) − k(a · c),
(103.17)

and the other

σa〈σa(k∧ c)a〉 = σa(k ·σa)(a · c) −σa(c ·σa)(a · k)

= k(a · c) − c(a · k).
(103.18)

The momentum P =
∫

T (γ0)∧ γ0 in this volume follows by computation of

σa

〈
σa

(
−

1
c

(Ȧk)∗ + ikφk
∗ − ik∧Ak

∗

) (
1
c

Ȧk + ikφk + ik∧Ak

)〉
= iAk

((
−

1
c

(Ȧk)∗ + ikφk
∗

)
· k

)
− ik

((
−

1
c

(Ȧk)∗ + ikφk
∗

)
·Ak

)
− ik

((
1
c

Ȧk + ikφk

)
·Ak

∗

)
+ iAk

∗

((
1
c

Ȧk + ikφk

)
· k

) (103.19)

All the products are paired in nice conjugates, taking real parts, and premultiplication with
−ε0V/2 gives the desired result. Observe that two of these terms cancel, and another two have
no real part. Those last are

−
ε0Vk

2c
Re

(
i(Ȧk

∗
·Ak + Ȧk ·Ak

∗
)

= −
ε0Vk

2c
Re

(
i

d
dt

Ak ·Ak
∗

)
(103.20)

Taking the real part of this pure imaginary i|Ak|
2 is zero, leaving just

P = ε0V
∑

k
Re

(
iAk

(
1
c

Ȧ∗k · k
)

+ k2φkAk
∗ − kφk

∗(k ·Ak)
)

(103.21)

I am not sure why exactly, but I actually expected a term with |Ak|
2, quadratic in the vector

potential. Is there a mistake above?
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103.3.3 Gauge transformation to simplify the Hamiltonian

In Equation 103.16 something that looked like the Harmonic oscillator was expected. On the
surface this does not appear to be such a beast. Exploitation of gauge freedom is required to
make the simplification that puts things into the Harmonic oscillator form.

If we are to change our four vector potential A→ A +∇ψ, then Maxwell’s equation takes the
form

J/ε0c = ∇(∇∧ (A +∇ψ) = ∇(∇∧ A) +∇( ∇∧∇ψ

= 0

), (103.22)

which is unchanged by the addition of the gradient to any original potential solution to the
equation. In coordinates this is a transformation of the form

Aµ → Aµ + ∂µψ, (103.23)

and we can use this to force any one of the potential coordinates to zero. For this problem, it
appears that it is desirable to seek a ψ such that A0 + ∂0ψ = 0. That is

∑
k
φk(t)eik·x +

1
c
∂tψ = 0. (103.24)

Or,

ψ(x, t) = ψ(x, 0) −
1
c

∑
k

eik·x
∫ t

τ=0
φk(τ). (103.25)

With such a transformation, the φk and Ȧk cross term in the Hamiltonian Equation 103.16
vanishes, as does the φk term in the four vector square of the last term, leaving just

H =
ε0

c2 V
∑

k

(
1
2

∣∣∣Ȧk
∣∣∣2 +

1
2
((ck)2|Ak|

2 + |(ck) ·Ak|
2 + |ck ·Ak|

2)

)
. (103.26)

Additionally, wedging Equation 103.5 with γ0 now does not loose any information so our
potential Fourier series is reduced to just

A =
∑

k
Ak(t)e2πik·x

Ak =
1
V

∫ λ1

0

∫ λ2

0

∫ λ3

0
A(x, t)e−ik·xdx1dx2dx3.

(103.27a)
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The desired harmonic oscillator form would be had in Equation 103.26 if it were not for the
k · Ak term. Does that vanish? Returning to Maxwell’s equation should answer that question,
but first it has to be expressed in terms of the vector potential. While A = A∧ γ0, the lack of an
A0 component means that this can be inverted as

A = Aγ0 = −γ0A. (103.28)

The gradient can also be factored scalar and spatial vector components

∇ = γ0(∂0 +∇) = (∂0 −∇)γ0. (103.29)

So, with this A0 = 0 gauge choice the bivector field F is

F = ∇∧ A =
1
2

(
→

∇A − A
←

∇

)
(103.30)

From the left the gradient action on A is

→

∇A = (∂0 −∇)γ0(−γ0A)

= (−∂0 +
→

∇)A,
(103.31)

and from the right

A
←

∇ = Aγ0γ
0(∂0 +∇)

= A(∂0 +∇)

= ∂0A + A
←

∇

(103.32)

Taking the difference we have

F =
1
2
(−∂0A +

→

∇A − ∂0A −A
←

∇). (103.33)

Which is just

F = −∂0A +∇∧A. (103.34)
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For this vacuum case, premultiplication of Maxwell’s equation by γ0 gives

0 = γ0∇(−∂0A +∇∧A)

= (∂0 +∇)(−∂0A +∇∧A)

= −
1
c2 ∂ttA − ∂0∇ ·A − ∂0∇∧A + ∂0(∇∧A) + ∇ · (∇∧A)

∇2A −∇(∇ ·A)

+ ∇∧ (∇∧A)

= 0

(103.35)

The spatial bivector and trivector grades are all zero. Equating the remaining scalar and vector
components to zero separately yields a pair of equations in A

0 = ∂t(∇ ·A)

0 = −
1
c2 ∂ttA +∇2A +∇(∇ ·A)

(103.36a)

If the divergence of the vector potential is constant we have just a wave equation. Let us see
what that divergence is with the assumed Fourier representation

∇ ·A =
∑

k,(0,0,0)

Ak
m2πi

km

λm
eik·x

= i
∑

k,(0,0,0)

(Ak · k)eik·x

= i
∑

k
(Ak · k)eik·x

(103.37)

Since Ak = Ak(t), there are two ways for ∂t(∇ ·A) = 0. For each k there must be a require-
ment for either Ak · k = 0 or Ak = constant. The constant Ak solution to the first equation
appears to represent a standing spatial wave with no time dependence. Is that of any interest?

The more interesting seeming case is where we have some non-static time varying state. In
this case, if Ak · k, the second of these Maxwell’s equations is just the vector potential wave
equation, since the divergence is zero. That is

0 = −
1
c2 ∂ttA +∇2A (103.38)
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Solving this is not really what is of interest, since the objective was just to determine if the
divergence could be assumed to be zero. This shows then, that if the transverse solution to
Maxwell’s equation is picked, the Hamiltonian for this field, with this gauge choice, becomes

H =
ε0

c2 V
∑

k

(
1
2

∣∣∣Ȧk
∣∣∣2 +

1
2

(ck)2|Ak|
2
)
. (103.39)

How does the gauge choice alter the Poynting vector? From Equation 103.21, all the φk
dependence in that integrated momentum density is lost

P = ε0V
∑

k
Re

(
iAk

(
1
c

Ȧ∗k · k
))
. (103.40)

The Ak · k solutions to Maxwell’s equation are seen to result in zero momentum for this
infinite periodic field. My expectation was something of the form cP = Hk̂, so intuition is
either failing me, or my math is failing me, or this contrived periodic field solution leads to
trouble.

What do we really know about the energy and momentum components of T (γ0)? For vacuum,
we have

1
c
∂T (γ0) · γ0

∂t
+∇ · (T (γ0)∧ γ0) = 0. (103.41)

However, integration over the volume has been performed. That is different than integrating
this four divergence. What we can say is

1
c

∫
d3x

∂T (γ0) · γ0

∂t
+

∫
d3x∇ · (T (γ0)∧ γ0) = 0. (103.42)

It is not obvious that the integration and differentiation order can be switched in order to
come up with an expression containing H and P. This is perhaps where intuition is failing me.

103.4 conclusions and followup

The objective was met, a reproduction of Bohm’s Harmonic oscillator result using a complex
exponential Fourier series instead of separate sine and cosines.

The reason for Bohm’s choice to fix zero divergence as the gauge choice upfront is now clear.
That automatically cuts complexity from the results. Figuring out how to work this problem
with complex valued potentials and also using the Geometric Algebra formulation probably also
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made the work a bit more difficult since blundering through both simultaneously was required
instead of just one at a time.

This was an interesting exercise though, since doing it this way I am able to understand
all the intermediate steps. Bohm employed some subtler argumentation to eliminate the scalar
potential φ upfront, and I have to admit I did not follow his logic, whereas blindly following
where the math leads me all makes sense.

As a bit of followup, I had like to consider the constant Ak case in more detail, and any
implications of the freedom to pick A0.

The general calculation of T µν for the assumed Fourier solution should be possible too, but
was not attempted. Doing that general calculation with a four dimensional Fourier series is
likely tidier than working with scalar and spatial variables as done here.

Now that the math is out of the way (except possibly for the momentum which does not seem
right), some discussion of implications and applications is also in order. My preference is to let
the math sink-in a bit first and mull over the momentum issues at leisure.



104
F O U R I E R T R A N S F O R M S O L U T I O N S A N D A S S O C I AT E D E N E R G Y
A N D M O M E N T U M F O R T H E H O M O G E N E O U S M A X W E L L
E Q UAT I O N

104.1 motivation and notation

In 103, building on 102 a derivation for the energy and momentum density was derived for
an assumed Fourier series solution to the homogeneous Maxwell’s equation. Here we move
to the continuous case examining Fourier transform solutions and the associated energy and
momentum density.

A complex (phasor) representation is implied, so taking real parts when all is said and done is
required of the fields. For the energy momentum tensor the Geometric Algebra form, modified
for complex fields, is used

T (a) = −
ε0

2
Re(F∗aF). (104.1)

The assumed four vector potential will be written

A(x, t) = Aµ(x, t)γµ =
1

(
√

2π)3

∫
A(k, t)eik·xd3k. (104.2)

Subject to the requirement that A is a solution of Maxwell’s equation

∇(∇∧ A) = 0. (104.3)

To avoid latex hell, no special notation will be used for the Fourier coefficients,

A(k, t) =
1

(
√

2π)3

∫
A(x, t)e−ik·xd3x. (104.4)

When convenient and unambiguous, this (k, t) dependence will be implied.
Having picked a time and space representation for the field, it will be natural to express both

the four potential and the gradient as scalar plus spatial vector, instead of using the Dirac basis.
For the gradient this is

∇ = γµ∂µ = (∂0 −∇)γ0 = γ0(∂0 +∇), (104.5)
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and for the four potential (or the Fourier transform functions), this is

A = γµAµ = (φ + A)γ0 = γ0(φ −A). (104.6)

104.2 setup

The field bivector F = ∇∧ A is required for the energy momentum tensor. This is

∇∧ A =
1
2

(
→

∇A − A
←

∇

)
=

1
2

(
(
→

∂0 −
→

∇)γ0γ0(φ −A) − (φ + A)γ0γ0(
←

∂0 +
←

∇)
)

= −∇φ − ∂0A +
1
2

(
→

∇A −A
←

∇)

(104.7)

This last term is a spatial curl and the field is then

F = −∇φ − ∂0A +∇∧A (104.8)

Applied to the Fourier representation this is

F =
1

(
√

2π)3

∫ (
−

1
c

Ȧ − ikφ + ik∧A
)

eik·xd3k. (104.9)

It is only the real parts of this that we are actually interested in, unless physical meaning can
be assigned to the complete complex vector field.

104.3 constraints supplied by maxwell’s equation

A Fourier transform solution of Maxwell’s vacuum equation ∇F = 0 has been assumed. Having
expressed the Faraday bivector in terms of spatial vector quantities, it is more convenient to do
this back substitution into after pre-multiplying Maxwell’s equation by γ0, namely

0 = γ0∇F

= (∂0 +∇)F.
(104.10)

Applied to the spatially decomposed field as specified in Equation 104.8, this is

0 = −∂0∇φ − ∂00A + ∂0∇∧A −∇2φ −∇∂0A +∇ · (∇∧A)

= −∂0∇φ −∇
2φ − ∂00A −∇ · ∂0A +∇2A −∇(∇ ·A)

(104.11)
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All grades of this equation must simultaneously equal zero, and the bivector grades have
canceled (assuming commuting space and time partials), leaving two equations of constraint
for the system

0 = ∇2φ +∇ · ∂0A (104.12a)

0 = ∂00A −∇2A +∇∂0φ +∇(∇ ·A) (104.12b)

It is immediately evident that a gauge transformation could be immediately helpful to sim-
plify things. In [2] the gauge choice ∇ ·A = 0 is used. From Equation 104.12a this implies that
∇2φ = 0. Bohm argues that for this current and charge free case this implies φ = 0, but he also
has a periodicity constraint. Without a periodicity constraint it is easy to manufacture non-zero
counterexamples. One is a linear function in the space and time coordinates

φ = px + qy + rz + st (104.13)

This is a valid scalar potential provided that the wave equation for the vector potential is also
a solution. We can however, force φ = 0 by making the transformation Aµ → Aµ + ∂µψ, which
in non-covariant notation is

φ→ φ +
1
c
∂tψ

A→ φ −∇ψ
(104.14)

If the transformed field φ′ = φ + ∂tψ/c can be forced to zero, then the complexity of the
associated Maxwell equations are reduced. In particular, antidifferentiation of φ = −(1/c)∂tψ,
yields

ψ(x, t) = ψ(x, 0) − c
∫ t

τ=0
φ(x, τ)dτ. (104.15)

Dropping primes, the transformed Maxwell equations now take the form

0 = ∂t(∇ ·A) (104.16a)

0 = ∂00A −∇2A +∇(∇ ·A). (104.16b)

There are two classes of solutions that stand out for these equations. If the vector potential is
constant in time A(x, t) = A(x), Maxwell’s equations are reduced to the single equation

0 = −∇2A +∇(∇ ·A). (104.17)
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Observe that a gradient can be factored out of this equation

−∇2A +∇(∇ ·A) = ∇(−∇A +∇ ·A)

= −∇(∇∧A).
(104.18)

The solutions are then those As that satisfy both

0 = ∂tA (104.19a)

0 = ∇(∇∧A). (104.19b)

In particular any non-time dependent potential A with constant curl provides a solution to
Maxwell’s equations. There may be other solutions to Equation 104.17 too that are more general.
Returning to Equation 104.16 a second way to satisfy these equations stands out. Instead of
requiring of A constant curl, constant divergence with respect to the time partial eliminates
Equation 104.16a. The simplest resulting equations are those for which the divergence is a
constant in time and space (such as zero). The solution set are then spanned by the vectors A
for which

constant = ∇ ·A (104.20a)

0 =
1
c2 ∂ttA −∇2A. (104.20b)

Any A that both has constant divergence and satisfies the wave equation will via Equa-
tion 104.8 then produce a solution to Maxwell’s equation.

104.4 maxwell equation constraints applied to the assumed fourier solutions

Let us consider Maxwell’s equations in all three forms, Equation 104.12, Equation 104.19a, and
Equation 104.20 and apply these constraints to the assumed Fourier solution.

In all cases the starting point is a pair of Fourier transform relationships, where the Fourier
transforms are the functions to be determined

φ(x, t) = (2π)−3/2
∫

φ(k, t)eik·xd3k (104.21a)

A(x, t) = (2π)−3/2
∫

A(k, t)eik·xd3k (104.21b)
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104.4.1 Case I. Constant time vector potential. Scalar potential eliminated by gauge transfor-
mation

From Equation 104.21a we require

0 = (2π)−3/2
∫

∂tA(k, t)eik·xd3k. (104.22)

So the Fourier transform also cannot have any time dependence, and we have

A(x, t) = (2π)−3/2
∫

A(k)eik·xd3k (104.23)

What is the curl of this? Temporarily falling back to coordinates is easiest for this calculation

∇∧A(k)eik·x = σm∂m ∧σnAn(k)eix·x

= σm ∧σnAn(k)ikmeix·x

= ik∧A(k)eix·x
(104.24)

This gives

∇∧A(x, t) = (2π)−3/2
∫

ik∧A(k)eik·xd3k. (104.25)

We want to equate the divergence of this to zero. Neglecting the integral and constant factor
this requires

0 = ∇ ·
(
ik∧Aeik·x

)
=

〈
σm∂mi(k∧A)eik·x

〉
1

= −
〈
σm(k∧A)kmeik·x

〉
1

= −k · (k∧A)eik·x

(104.26)

Requiring that the plane spanned by k and A(k) be perpendicular to k implies that A ∝ k.
The solution set is then completely described by functions of the form

A(x, t) = (2π)−3/2
∫

kψ(k)eik·xd3k, (104.27)
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where ψ(k) is an arbitrary scalar valued function. This is however, an extremely uninteresting
solution since the curl is uniformly zero

F = ∇∧A

= (2π)−3/2
∫

(ik)∧ kψ(k)eik·xd3k.
(104.28)

Since k ∧ k = 0, when all is said and done the φ = 0, ∂tA = 0 case appears to have no
non-trivial (zero) solutions. Moving on, ...

104.4.2 Case II. Constant vector potential divergence. Scalar potential eliminated by gauge
transformation

Next in the order of complexity is consideration of the case Equation 104.20. Here we also have
φ = 0, eliminated by gauge transformation, and are looking for solutions with the constraint

constant = ∇ ·A(x, t)

= (2π)−3/2
∫

ik ·A(k, t)eik·xd3k.
(104.29)

How can this constraint be enforced? The only obvious way is a requirement for k ·A(k, t)
to be zero for all (k, t), meaning that our to be determined Fourier transform coefficients are
required to be perpendicular to the wave number vector parameters at all times.

The remainder of Maxwell’s equations, Equation 104.20b impose the addition constraint on
the Fourier transform A(k, t)

0 = (2π)−3/2
∫ (

1
c2 ∂ttA(k, t) − i2k2A(k, t)

)
eik·xd3k. (104.30)

For zero equality for all x it appears that we require the Fourier transforms A(k) to be har-
monic in time

∂ttA(k, t) = −c2k2A(k, t). (104.31)

This has the familiar exponential solutions

A(k, t) = A±(k)e±ic|k|t, (104.32)
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also subject to a requirement that k · A(k) = 0. Our field, where the A±(k) are to be deter-
mined by initial time conditions, is by Equation 104.8 of the form

F(x, t) = Re
i

(
√

2π)3

∫
(−|k|A+(k) + k∧A+(k)) exp(ik · x + ic|k|t)d3k

+ Re
i

(
√

2π)3

∫
(|k|A−(k) + k∧A−(k)) exp(ik · x − ic|k|t)d3k.

(104.33)

Since 0 = k · A±(k), we have k ∧ A±(k) = kA±. This allows for factoring out of |k|. The
structure of the solution is not changed by incorporating the i(2π)−3/2|k| factors into A±, leaving
the field having the general form

F(x, t)

= Re
∫

(k̂ − 1)A+(k) exp(ik · x + ic|k|t)d3k + Re
∫

(k̂ + 1)A−(k) exp(ik · x − ic|k|t)d3k.

(104.34)

The original meaning of A± as Fourier transforms of the vector potential is obscured by the
tidy up change to absorb |k|, but the geometry of the solution is clearer this way.

It is also particularly straightforward to confirm that γ0∇F = 0 separately for either half of
Equation 104.34.

104.4.3 Case III. Non-zero scalar potential. No gauge transformation

Now lets work from Equation 104.12. In particular, a divergence operation can be factored from
Equation 104.12a, for

0 = ∇ · (∇φ + ∂0A). (104.35)

Right off the top, there is a requirement for

constant = ∇φ + ∂0A. (104.36)

In terms of the Fourier transforms this is

constant =
1

(
√

2π)3

∫
(ikφ(k, t) +

1
c
∂tA(k, t))eik·xd3k. (104.37)
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Are there any ways for this to equal a constant for all x without requiring that constant to be
zero? Assuming no for now, and that this constant must be zero, this implies a coupling between
the φ and A Fourier transforms of the form

φ(k, t) = −
1

ick
∂tA(k, t) (104.38)

A secondary implication is that ∂tA(k, t) ∝ k or else φ(k, t) is not a scalar. We had a transverse
solution by requiring via gauge transformation that φ = 0, and here we have instead the vector
potential in the propagation direction.

A secondary confirmation that this is a required coupling between the scalar and vector po-
tential can be had by evaluating the divergence equation of Equation 104.35

0 =
1

(
√

2π)3

∫
(−k2φ(k, t) +

ik
c
· ∂tA(k, t))eik·xd3k. (104.39)

Rearranging this also produces Equation 104.38. We want to now substitute this relationship
into Equation 104.12b.

Starting with just the ∂0φ −∇ ·A part we have

∂0φ +∇ ·A =
1

(
√

2π)3

∫
(

i
c2k

∂ttA(k, t) + ik ·A)eik·xd3k. (104.40)

Taking the gradient of this brings down a factor of ik for

∇(∂0φ +∇ ·A) = −
1

(
√

2π)3

∫
(

1
c2 ∂ttA(k, t) + k(k ·A))eik·xd3k. (104.41)

Equation 104.12b in its entirety is now

0 =
1

(
√

2π)3

∫
(−(ik)2A + k(k ·A))eik·xd3k. (104.42)

This is not terribly pleasant looking. Perhaps going the other direction. We could write

φ =
i

ck
∂A
∂t

=
i
c
∂ψ

∂t
, (104.43)

so that

A(k, t) = kψ(k, t). (104.44)
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0 =
1

(
√

2π)3

∫
(

1
c2 kψtt −∇

2kψ +∇
i

c2ψtt +∇(∇ · (kψ)))eik·xd3k (104.45)

Note that the gradients here operate on everything to the right, including and especially the
exponential. Each application of the gradient brings down an additional ik factor, and we have

1

(
√

2π)3

∫
k(

1
c2ψtt − i2k2ψ +

i2

c2ψtt + i2k2ψ)eik·xd3k. (104.46)

This is identically zero, so we see that this second equation provides no additional informa-
tion. That is somewhat surprising since there is not a whole lot of constraints supplied by the
first equation. The function ψ(k, t) can be anything. Understanding of this curiosity comes from
computation of the Faraday bivector itself. From Equation 104.8, that is

F =
1

(
√

2π)3

∫
(−ik

i
c
ψt −

1
c

kψt + ik∧ kψ)eik·xd3k. (104.47)

All terms cancel, so we see that a non-zero φ leads to F = 0, as was the case when considering
Equation 104.21a (a case that also resulted in A(k) ∝ k).

Can this Fourier representation lead to a non-transverse solution to Maxwell’s equation? If
so, it is not obvious how.

104.5 the energy momentum tensor

The energy momentum tensor is then

T (a) = −
ε0

2(2π)3 Re
" (

−
1
c

Ȧ∗(k′, t) + ik′φ∗(k′, t) − ik′ ∧A∗(k′, t)
)

a
(
−

1
c

Ȧ(k, t) − ikφ(k, t) + ik∧A(k, t)
)

ei(k−k′)·xd3kd3k′.
(104.48)
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Observing that γ0 commutes with spatial bivectors and anticommutes with spatial vectors,
and writing σµ = γµγ0, the tensor splits neatly into scalar and spatial vector components

T (γµ) · γ0 =
ε0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′〈(
1
c

Ȧ∗(k′, t) − ik′φ∗(k′, t) + ik′ ∧A∗(k′, t)
)
σµ

(
1
c

Ȧ(k, t) + ikφ(k, t) + ik∧A(k, t)
)〉

T (γµ)∧ γ0 =
ε0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′〈(
1
c

Ȧ∗(k′, t) − ik′φ∗(k′, t) + ik′ ∧A∗(k′, t)
)
σµ

(
1
c

Ȧ(k, t) + ikφ(k, t) + ik∧A(k, t)
)〉

1
.

(104.49)

In particular for µ = 0, we have

H ≡ T (γ0) · γ0 =
ε0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′((
1
c

Ȧ∗(k′, t) − ik′φ∗(k′, t)
)
·

(
1
c

Ȧ(k, t) + ikφ(k, t)
)
− (k′ ∧A∗(k′, t)) · (k∧A(k, t))

)
P ≡ T (γµ)∧ γ0 =

ε0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′(
i
(
1
c

Ȧ∗(k′, t) − ik′φ∗(k′, t)
)
· (k∧A(k, t)) − i

(
1
c

Ȧ(k, t) + ikφ(k, t)
)
· (k′ ∧A∗(k′, t))

)
.

(104.50)

Integrating this over all space and identification of the delta function

δ(k) ≡
1

(2π)3

∫
eik·xd3x, (104.51)

reduces the tensor to a single integral in the continuous angular wave number space of k.

∫
T (a)d3x = −

ε0

2
Re

∫ (
−

1
c

Ȧ∗ + ikφ∗ − ik∧A∗
)

a
(
−

1
c

Ȧ − ikφ + ik∧A
)

d3k. (104.52)

Or,

∫
T (γµ)γ0d3x =

ε0

2
Re

∫ 〈(
1
c

Ȧ∗ − ikφ∗ + ik∧A∗
)
σµ

(
1
c

Ȧ + ikφ + ik∧A
)〉

0,1
d3k. (104.53)
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Multiplying out Equation 104.53 yields for
∫

H

∫
Hd3x =

ε0

2

∫
d3k

(
1
c2

∣∣∣Ȧ∣∣∣2 + k2(|φ|2 + |A|2) − |k ·A|2 + 2
k
c
·Re(iφ∗Ȧ)

)
(104.54)

Recall that the only non-trivial solution we found for the assumed Fourier transform repre-
sentation of F was for φ = 0, k ·A(k, t) = 0. Thus we have for the energy density integrated
over all space, just

∫
Hd3x =

ε0

2

∫
d3k

(
1
c2

∣∣∣Ȧ∣∣∣2 + k2|A|2
)
. (104.55)

Observe that we have the structure of a Harmonic oscillator for the energy of the radiation
system. What is the canonical momentum for this system? Will it correspond to the Poynting
vector, integrated over all space?

Let us reduce the vector component of Equation 104.53, after first imposing the φ = 0, and
k ·A = 0 conditions used to above for our harmonic oscillator form energy relationship. This is

∫
Pd3x =

ε0

2c
Re

∫
d3k (iA∗t · (k∧A) + i(k∧A∗) ·At)

=
ε0

2c
Re

∫
d3k (−i(A∗t ·A)k + ik(A∗ ·At))

(104.56)

This is just

∫
Pd3x =

ε0

c
Re i

∫
k(A∗ ·At)d3k. (104.57)

Recall that the Fourier transforms for the transverse propagation case had the form A(k, t) =

A±(k)e±ic|k|t, where the minus generated the advanced wave, and the plus the receding wave.
With substitution of the vector potential for the advanced wave into the energy and momentum
results of Equation 104.55 and Equation 104.57 respectively, we have

∫
Hd3x = ε0

∫
k2|A(k)|2d3k∫

Pd3x = ε0

∫
k̂k2|A(k)|2d3k.

(104.58)

After a somewhat circuitous route, this has the relativistic symmetry that is expected. In
particular the for the complete µ = 0 tensor we have after integration over all space

∫
T (γ0)γ0d3x = ε0

∫
(1 + k̂)k2|A(k)|2d3k. (104.59)
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The receding wave solution would give the same result, but directed as 1 − k̂ instead.
Observe that we also have the four divergence conservation statement that is expected

∂

∂t

∫
Hd3x +∇ ·

∫
cPd3x = 0. (104.60)

This follows trivially since both the derivatives are zero. If the integration region was to be
more specific instead of a 0 + 0 = 0 relationship, we would have the power flux ∂H/∂t equal
in magnitude to the momentum change through a bounding surface. For a more general surface
the time and spatial dependencies should not necessarily vanish, but we should still have this
radiation energy momentum conservation.
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105
B O H R M O D E L

105.1 motivation

The Bohr model is taught as early as high school chemistry when the various orbitals are dis-
cussed (or maybe it was high school physics). I recall that the first time I saw this I did not see
where all the ideas came from. With a bit more math under my belt now, reexamine these ideas
as a lead up to the proper wave mechanics.

105.2 calculations

105.2.1 Equations of motion

A prerequisite to discussing electron orbits is first setting up the equations of motion for the two
charged particles (ie: the proton and electron).

With the proton position at rp, and the electron at re, we have two equations, one for the
force on the proton from the electron and the other for the force on the proton from the electron.
These are respectively

1
4πε0

e2 re − rp∣∣∣re − rp
∣∣∣3 = mp

d2rp

dt2

−
1

4πε0
e2 re − rp∣∣∣re − rp

∣∣∣3 = me
d2re

dt2

(105.1)

In lieu of a picture, setting rp = 0 works to check signs, leaving an inwards force on the
electron as desired.

As usual for a two body problem, use of the difference vector and center of mass vector is
desirable. That is

x = re − rp

M = me + mp

R =
1
M

(mere + mprp)

(105.2)
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Solving for rp and re in terms of R and x we have

re =
mp

M
x + R

rp =
−me

M
x + R

(105.3)

Substitution back into eq. (105.1) we have

1
4πε0

e2 x
|x|3

= mp
d2

dt2

(
−me

M
x + R

)
−

1
4πε0

e2 x
|x|3

= me
d2

dt2

(mp

M
x + R

)
,

(105.4)

and sums and (scaled) differences of that give us our reduced mass equation and constant
center-of-mass velocity equation

d2x
dt2 = −

1
4πε0

e2 x
|x|3

(
1

me
+

1
mp

)
d2R
dt2 = 0

(105.5)

writing 1/µ = 1/me + 1/mp, and k = e2/4πε0, our difference vector equation is thus

µ
d2x
dt2 = −k

x
|x|3

(105.6)

105.2.2 Circular solution

The Bohr model postulates that electron orbits are circular. It is easy enough to verify that a
circular orbit in the center of mass frame is a solution to equation eq. (105.6). Write the path in
terms of the unit bivector for the plane of rotation i and an initial vector position x0

x = x0eiωt (105.7)

For constant i and ω, we have

µx0(iω)2eiωt = −k
x0

|x0|
3 eiωt (105.8)
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This provides the angular velocity in terms of the reduced mass of the system and the charge
constants

ω2 =
k

µ|x0|
3 =

e2

4πε0µ|x0|
3 . (105.9)

Although not relevant to the quantum theme, it is hard not to call out the observation that this
is a Kepler’s law like relation for the period of the circular orbit given the radial distance from
the center of mass

T 2 =
16π3ε0µ

e2 |x0|
3 (105.10)

Kepler’s law also holds for elliptical orbits, but this takes more work to show.

105.2.3 Angular momentum conservation

Now, the next step in the Bohr argument was that the angular momentum, a conserved quantity
is also quantized. To give real meaning to the conservation statement we need the equivalent
Lagrangian formulation of eq. (105.6). Anti-differentiation gives

∇v

(
1
2
µv2

)
= kx̂∂x

1
x

= −∇x

(
−k

1
|x|

)
= φ

(105.11)

So, our Lagrangian is

L = K − φ =
1
2
µv2 + k

1
|x|

(105.12)

The essence of the conservation argument, an application of Noether’s theorem, is that a ro-
tational transformation of the Lagrangian leaves this energy relationship unchanged. Repeating
the angular momentum example from [23] (which was done for the more general case of any
radial potential), we write B̂ for the unit bivector associated with a rotational plane. The position
vector is transformed by rotation in this plane as follows

x→ x′

x′ = RxR†

R = exp B̂θ/2

(105.13)
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The magnitude of the position vector is rotation invariant

(x′)2 = RxR†RxR† = x2, (105.14)

as is our the square of the transformed velocity. The transformed velocity is

dx′

dt
= ṘxR + RẋR† + RxṘ† (105.15)

but with θ̇ = 0, Ṙ = 0 its square is just

(v′)2 = RvR†Rv̇R† = v2. (105.16)

We therefore have a Lagrangian that is invariant under this rotational transformation

L → L′ = L, (105.17)

and by Noether’s theorem (essentially application of the chain rule), we have

dL′

dθ
=

d
dt

(
dx′

dθ
· ∇v′L

)
=

d
dt

(
(B̂ · x′) · µv′

)
.

(105.18)

But dL′/dθ = 0, so we have for any B̂

(B̂ · x′) · (µv′) = B̂ · (x′ ∧ (µv′)) = constant (105.19)

Dropping primes this is

L = x∧ (µv) = constant, (105.20)

a constant bivector for the conserved center of mass (reduced-mass) angular momentum as-
sociated with the Lagrangian of this system.
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105.2.4 Quantized angular momentum for circular solution

In terms of the circular solution of eq. (105.7) the angular momentum bivector is

L = x∧ (µv) =
〈
x0eiωtµx0iωeiωt

〉
2

=
〈
e−iωtx0µx0ωeiωti

〉
2

= (x0)2µωi

= ie

√
µ|x0|

4πε0

(105.21)

Now if this angular momentum is quantized with quantum magnitude l we have we have for
the bivector angular momentum the values

L = inl = ie

√
µ|x0|

4πε0
(105.22)

Which with l = ~ (where experiment in the form of the spectral hydrogen line values is
required to fix this constant and relate it to Plank’s black body constant) is the momentum
equation in terms of the Bohr radius x0 at each energy level. Writing that radius rn = |x0|

explicitly as a function of n, we have

rn =
4πε0

µ

(
n ~
e

)2
(105.23)

105.2.4.1 Velocity

One of the assumptions of this treatment is a |ve| << c requirement so that Coulombs law is
valid (ie: slow enough that all the other Maxwell’s equations can be neglected). Let us evaluate
the velocity numerically at the some of the quantization levels and see how this compares to the
speed of light.

First we need an expression for the velocity itself. This is

v2 = (x0iωeiωt)2

=
e2

4πε0µrn

=
e4

(4πε0)2(n ~)2 .

(105.24)
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For

vn =
e2

4πε0n ~
= 2.1 × 106m/s

(105.25)

This is the 1/137 of the speed of light value that one sees googling electron speed in hydrogen,
and only decreases with quantum number so the non-relativistic speed approximation holds (γ =

1.00002663). This speed is still pretty zippy, even if it is not relativistic, so it is not unreasonable
to attempt to repeat this treatment trying to incorporate the remainder of Maxwell’s equations.

Interestingly the velocity is not a function of the reduced mass at all, but just the charge and
quantum numbers. One also gets a good hint at why the Bohr theory breaks down for larger
atoms. An electron in circular orbit around an ion of Gold would have a velocity of 79/137 the
speed of light!
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S C H RÖ D I N G E R E Q UAT I O N P RO BA B I L I T Y C O N S E RVAT I O N

106.1 motivation

In [33] is a one dimensional probability conservation derivation from Schrödinger’s equation.
Do this for the three dimensional case.

106.2

Consider the time rate of change of the probability as expressed in terms of the wave function

∂ρ

∂t
=
∂ψ∗ψ

∂t

=
∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t

(106.1)

This can be calculated from Schrödinger’s equation and its complex conjugate

∂tψ =

(
−
~

2mi
∇

2 +
1
i ~

V
)
ψ

∂tψ
∗ =

(
~

2mi
∇

2 −
1
i ~

V
)
ψ∗

(106.2)

Multiplying by the conjugate wave functions and adding we have

∂ρ

∂t
= ψ∗

(
−
~

2mi
∇

2 +
1
i ~

V
)
ψ + ψ

(
~

2mi
∇

2 −
1
i ~

V
)
ψ∗

=
~

2mi

(
−ψ∗∇2ψ + ψ∇2ψ∗

) (106.3)

So we have the following conservation law

∂ρ

∂t
+
~

2mi

(
ψ∗∇2ψ − ψ∇2ψ∗

)
= 0 (106.4)
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The text indicates that the second order terms here can be written as a divergence. Somewhat
loosely, by treating ψ as a scalar field one can show that this is the case

∇ · (ψ∗∇ψ − ψ∇ψ∗) =
〈
∇ (ψ∗∇ψ − ψ∇ψ∗)

〉
=

〈
(∇ψ∗)(∇ψ) − (∇ψ)(∇ψ∗) + ψ∗∇2ψ − ψ∇2ψ∗

〉
=

〈
2(∇ψ∗)∧ (∇ψ) + ψ∗∇2ψ − ψ∇2ψ∗

〉
= ψ∗∇2ψ − ψ∇2ψ∗

(106.5)

Assuming that this procedure is justified. Equation (106.4) therefore can be written in terms
of a probability current very reminiscent of the current density vector of electrodynamics

J =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

0 =
∂ρ

∂t
+∇ · J

(106.6)

Regarding justification, this should be revisited. It appears to give the right answer, despite
the fact that ψ is a complex (mixed grade) object, which likely has some additional significance.

106.3

Now, having calculated the probability conservation eq. (106.6), it is interesting to note the
similarity to the relativistic spacetime divergence from Maxwell’s equation.

We can write

0 =
∂ρ

∂t
+∇ · J = ∇ · (cργ0 + Jγ0) (106.7)

and form something that has the appearance of a relativistic four vector, re-writing the con-
servation equation as

J = cργ0 + Jγ0

0 = ∇ · J
(106.8)

Expanding this four component vector shows an interesting form:

J = cργ0 +
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) γ0 (106.9)
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Now, if one assumes the wave function can be represented as a even grade object with the
following complex structure

ψ = α + γm ∧ γnβmn (106.10)

then γ0 will commute with ψ. Noting that ∇γ0 =
∑

k γk∂k = −γk∂k, we have

mJ = mcψ∗ψγ0 +
i ~
2

(
ψ∗γk∂kψ − ψγ

k∂kψ
∗
)

(106.11)

Now, this is an interesting form. In particular compare this to the Dirac Lagrangian, as given
in the wikipedia Dirac equation article.

L = mcψψ −
i ~
2

(ψγµ(∂µψ) − (∂µψ)γµψ) (106.12)

Although the Schrödinger equation is a non-relativistic equation, it appears that the probabil-
ity current, when we add the γ0∂0 term required to put this into a covariant form, is in fact the
Lagrangian density for the Dirac equation (when scaled by mass).

I do not know enough yet about QM to see what exactly the implications of this are, but I
suspect that there is something of some interesting significance to this particular observation.

106.4 on the grades of the qm complex numbers

To get to eq. (106.4), no assumptions about the representation of the field variable ψ were
required. However, to make the identification

ψ∗∇2ψ − ψ∇2ψ∗ = ∇ ·
(
ψ∗∇2ψ − ψ∇2ψ∗

)
(106.13)

we need some knowledge or assumptions about the representation. The assumption made
initially was that we could treat ψ as a scalar, but then we later see there is value trying to
switch to the Dirac representation (which appears to be the logical way to relativistically extend
the probability current).

For example, with a geometric algebra multivector representation we have many ways to
construct complex quantities. Assuming a Euclidean basis we can construct a complex number
we can factor out one of the basis vectors

σ1x1 +σ2x2 = σ1(x1 +σ1σ2x2) (106.14)

http://en.wikipedia.org/wiki/Dirac_equation#Adjoint_equation_and_Dirac_current


828 schrödinger equation probability conservation

However, this is not going to commute with vectors (ie: such as the gradient), unless that
vector is perpendicular to the plane spanned by this vector. As an example

i = σ1σ2 (106.15)

iσ1 = −σ1i

iσ2 = −σ2i

iσ3 = σ3i

(106.16)

What would work is a complex representation using the R3 pseudoscalar (aka the Dirac
pseudoscalar).

ψ = α +σ1σ2σ3β = α + γ0γ1γ2γ3β (106.17)
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D I R AC L AG R A N G I A N

107.1 dirac lagrangian with feynman slash notation

Wikipedia’s Dirac Lagrangian entry lists the Lagrangian as

L = ψ(i ~c��D −mc2)ψ (107.1)

"where ψ is a Dirac spinor, ψ = ψ†γ0 is its Dirac adjoint, D is the gauge covariant derivative,
and��D is Feynman slash notation|Feynman notation for γσDσ."

Let us decode this. First, what is Dσ?
From Gauge theory

Dµ := ∂µ − ieAµ (107.2)

where Aµ is the electromagnetic vector potential.
So, in four-vector notation we have

��D = γµ∂µ − ieγµAµ
= ∇− ieA

(107.3)

So our Lagrangian written out in full is left as

L = ψ†γ0(i ~c∇ + ~ceA −mc2)ψ (107.4)

How about this γ0i∇ term? If we assume that i = γ0γ1γ2γ3 is the four space pseudoscalar,
then this is

γ0i∇ = −iγ0(γ0∂0 + γi∂i)

= −i(∂0 +σi∂i)
(107.5)

So, operationally, we have the dual of a quaternion like gradient operator. If ψ is an even
grade object, as I had guess can be implied by the term spinor, then there is some sense to
requiring a gradient operation that has scalar and spacetime bivector components.

829
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Let us write this

γ0∇ = ∂0 +σi∂i = ∇0,2 (107.6)

Now, how about the meaning of ψ = ψ†γ0? I initially assumed that ψ† was the reverse
operation. However, looking in the quantum treatment of [10] and their earlier relativity content,
I see that they explicitly avoid dagger as a reverse in a relativistic context since it is used for
“something-else” in a quantum context. It appears that their mapping from matrix algebra to
Clifford algebra is

ψ† ≡ γ0ψ̃γ0, (107.7)

where tilde is used for the reverse operation.
This then implies that

ψ = ψ†γ0 = γ0ψ̃ (107.8)

We now have an expression of the Lagrangian in full in terms of geometric objects

L = γ0ψ̃(i ~c∇ + ~ceA −mc2)ψ. (107.9)

Assuming that this is now the correct geometric interpretation of the Lagrangian, why bother
having that first γ0 factor. It should not change the field equations (just as a constant factor
should not make a difference). It seems more natural to instead write the Lagrangian as just

L = ψ̃
(
i∇ + eA −

mc
~

)
ψ, (107.10)

where both the constant vector factor γ0, the redundant common factor of c have been re-
moved, and we divide throughout by ~ to tidy up a bit. Perhaps this tidy up should be omitted
since it sacrifices the energy dimensionality of the original.

107.1.1 Dirac adjoint field

The reverse sandwich operation of γ0ψ̃γ0 to produce the Dirac adjoint field from ψ can be recog-
nized as very similar to the mechanism used to split the Faraday bivector for the electromagnetic
field into electric and magnetic terms. There addition and subtraction of the sandwich’ed fields
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with the original acted as a spacetime split operation, producing separate electric field spacetime
(Pauli) bivectors and pure spatial bivectors (magnetic components) from the total field. Here we
have a quaternion like field variable with scalar and bivector terms. Is there a physical (observ-
ables) significance only for a subset of the six possible bivectors that make up the spinor field?
If so, then this adjoint operation can be used as a filter to select only the desired components.

Recall that the Faraday bivector is

F = E + icB
= E jσ j + icB jσ j

= E jγ jγ0 + icB jγ jγ0

(107.11)

So we have

γ0Fγ0 = E jγ0γ j + γ0icB jγ j

= −E jσ j + icB jσ j

= −E + icB
(107.12)

So we have

1
2
(F − γ0Fγ0) = E

1
2i

(F + γ0Fγ0) = cB
(107.13)

How does this sandwich operation act on other grade objects?

• scalar

γ0αγ0 = α (107.14)

• vector

γ0γµγ0 = (2γ0 · γµ − γµγ0) γ0

= 2(γ0 · γµ)γ0 − γµ

=

 γ0 if µ = 0

−γi if µ = i , 0

(107.15)
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• trivector

For the duals of the vectors we have the opposite split, where for the dual of γ0 we have
a sign toggle

γ0γiγ jγkγ0 = −γiγ jγk (107.16)

whereas for the duals of γk we have invariant sign under sandwich

γ0γiγ jγ0γ0 = γiγ jγ0 (107.17)

• pseudoscalar

γ0iγ0 = γ0γ0γ1γ2γ3γ0

= −i
(107.18)

Ah ha! Recalling the conjugation results from 109, one sees that this sandwich operation is
in fact just the equivalent of the conjugate operation on Dirac matrix algebra elements. So we
can write

ψ∗ ≡ γ0ψγ0 (107.19)

and can thus identify γ0ψ̃γ0 = ψ† as the reverse of that conjugate quantity. That is

ψ† = (ψ∗)̃ (107.20)

This does not really help identify the significance of this term but this identification may
prove useful later.

107.1.2 Field equations

Now, how to recover the field equation from eq. (107.10) ? If one assumes that the Euler-
Lagrange field equations

∂L

∂η
− ∂µ

∂L

∂(∂µη)
= 0 (107.21)
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hold for these even grade field variables ψ, then treating ψ and ψ as separate field variables
one has for the reversed field variable

∂L

∂ψ̃
− ∂µ

∂L

∂(∂µψ̃)
= 0(

i∇ + eA −
mc
~

)
ψ − (0) = 0

(107.22)

Or

~(i∇ + eA)ψ = mcψ (107.23)

Except for the additional eA term here, this is the Dirac equation that we get from taking
square roots of the Klein-Gordon equation. Should A be considered a field variable? More likely
is that this is a supplied potential as in the V of the non-relativistic Schrödinger’s equation.

Being so loose with the math here (ie: taking partials with respect to non-scalar variables)
is somewhat disturbing but developing some intuition is worthwhile before getting the details
down.

107.1.3 Conjugate field equation

Our Lagrangian is not at all symmetric looking, having derivatives of ψ, but not ψ. Compare
this to the Lagrangians for the Schrödinger’s equation, and Klein-Gordon equation respectively,
which are

L =
~2

2m
(∇ψ) · (∇ψ∗) + Vψψ∗ + i ~ (ψ∂tψ

∗ − ψ∗∂tψ)

L = −∂νψ∂νψ
∗ +

m2c2

~2 ψψ∗.

(107.24)

With these Lagrangians one gets the field equation for ψ, differentiating with respect to the
conjugate field ψ∗, and the conjugate equation with differentiation with respect to ψ (where ψ
and ψ∗ are treated as independent field variables).

It is not obvious that evaluating the Euler-Lagrange equations will produce a similarly regular
result, so let us compute the derivatives with respect to the ψ field variables to compute the
equations for ψ or ψ̃ to see what results. Written out in coordinates so that we can apply the
Euler-Lagrange equations, our Lagrangian (with A terms omitted) is

L = ψ̃
(
iγµ∂µ + eA −

mc
~

)
ψ (107.25)
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Again abusing the Euler Lagrange equations, ignoring the possible issues with commuting
partials taken with respect to spinors (not scalar variables), blinding plugging into the formulas
we have

∂L

∂ψ
= ∂µ

∂L

∂∂µψ

ψ̃
(
eA −

mc
~

)
= ∂µ (ψ̃iγµ)

(107.26)

reversing this entire equation we have

(
eA −

mc
~

)
ψ = γµi∂µψ = −i∇ψ (107.27)

Or

~ (i∇ + eA)ψ = mcψ (107.28)

So we do in fact get the same field equation regardless of which of the two field variables one
differentiates with. That is not obvious looking at the Lagrangian.

107.2 alternate dirac lagrangian with antisymmetric terms

Now, the wikipedia article Adjoint equation and Dirac current lists the Lagrangian as

L = mcψψ −
1
2

i ~(ψγµ(∂µψ) − (∂µψ)γµψ) (107.29)

Computing the Euler Lagrange equations for this potential free Lagrangian we have

mcψ −
1
2

i ~γµ∂µψ = ∂µ

(
1
2

i ~γµψ
)

(107.30)

Or,

mcψ = i ~∇ψ (107.31)

And the same computation, treating ψ as the independent field variable of interest we have

mcψ +
1
2

i ~∂µψγµ = −
1
2

i ~∂µψγµ (107.32)

http://en.wikipedia.org/wiki/Dirac_equation#Adjoint_equation_and_Dirac_current
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which is

mcψ = −i ~∂µψγµ

mcγ0ψ̃ = −i ~∂µγ0ψ̃γ
µ

mcψ̃ = i ~∂µψ̃γµ

mcψ = ~∇ψi

(107.33)

Or,

i ~∇ψ = −mcψ (107.34)

FIXME: This differs in sign from the same calculation with the Lagrangian of eq. (107.25).
Based on the possibility of both roots in the Klein-Gordon equation, I suspect I have made a
sign error in the first calculation.

107.3 appendix

107.3.1 Pseudoscalar reversal

The pseudoscalar reverses to itself

ĩ = γ3210

= −γ2103

= −γ1023

= γ0123

= i,

(107.35)

107.3.2 Form of the spinor

The specific structure of the spinor has not been defined here. It has been assumed to be quater-
nion like, and contain only even grades, but in the Dirac/Minkowski algebra that gives us two
possibilities

ψ = α + Paγaγ0

= α + Paσa
(107.36)
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Or

ψ = α + Pcγa ∧ γb

= α − Pcσa ∧σb

= α − iεabcPcσc

(107.37)

Spinors in Doran/Lasenby appear to use the latter form of dual Pauli vectors (wedge products
of the Pauli spatial basis elements). This actually makes sense since one wants a spatial bivector
for rotation (ie: “spin”), and not the spacetime bivectors, which provide a Lorentz boost action.
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PAU L I M AT R I C E S

108.1 motivation

Having learned Geometric (Clifford) Algebra from [10], [19], [11], and other sources before
studying any quantum mechanics, trying to work with (and talk to people familiar with) the
Pauli and Dirac matrix notation as used in traditional quantum mechanics becomes difficult.

The aim of these notes is to work through equivalents to many Clifford algebra expressions
entirely in commutator and anticommutator notations. This will show the mapping between
the (generalized) dot product and the wedge product, and also show how the different grade
elements of the Clifford algebra C{3,0} manifest in their matrix forms.

108.2 pauli matrices

The matrices in question are:

σ1 =

0 1

1 0


σ2 =

0 −i

i 0


σ3 =

1 0

0 −1


(108.1)

These all have positive square as do the traditional Euclidean unit vectors ei, and so can be
used algebraically as a vector basis for R3. So any vector that we can write in coordinates

x = xiei, (108.2)

we can equivalently write (an isomorphism) in terms of the Pauli matrix’s

x = xiσi. (108.3)

837
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108.2.1 Pauli Vector

[44] introduces the Pauli vector as a mechanism for mapping between a vector basis and this
matrix basis

σ =
∑

σiei (108.4)

This is a curious looking construct with products of 2x2 matrices and R3 vectors. Obviously
these are not the usual 3x1 column vector representations. This Pauli vector is thus really a
notational construct. If one takes the dot product of a vector expressed using the standard or-
thonormal Euclidean basis {ei} basis, and then takes the dot product with the Pauli matrix in a
mechanical fashion

x ·σ = (xiei) ·
∑

σ je j

=
∑
i, j

xiσ jei · e j

= xiσi

(108.5)

one arrives at the matrix representation of the vector in the Pauli basis {σi}. Does this con-
struct have any value? That I do not know, but for the rest of these notes the coordinate repre-
sentation as in equation eq. (108.3) will be used directly.

108.2.2 Matrix squares

It was stated that the Pauli matrices have unit square. Direct calculation of this is straightforward,
and confirms the assertion

σ1
2 =

0 1

1 0


0 1

1 0

 =

1 0

0 1

 = I

σ2
2 =

0 −i

i 0


0 −i

i 0

 = i2
0 −1

1 0


0 −1

1 0

 =

1 0

0 1

 = I

σ3
2 =

1 0

0 −1


1 0

0 −1

 =

1 0

0 1

 = I

(108.6)

Note that unlike the vector (Clifford) square the identity matrix and not a scalar.
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108.2.3 Length

If we are to operate with Pauli matrices how do we express our most basic vector operation, the
length?

Examining a vector lying along one direction, say, a = αx̂ we expect

a2 = a · a = α2x̂ · x̂ = α2. (108.7)

Lets contrast this to the Pauli square for the same vector y = ασ1

y2 = α2σ1
2 = α2I (108.8)

The wiki article mentions trace, but no application for it. Since Tr (I) = 2, an observable
application is that the trace operator provides a mechanism to convert a diagonal matrix to a
scalar. In particular for this scaled unit vector y we have

α2 =
1
2

Tr
(
y2

)
(108.9)

It is plausible to guess that the squared length will be related to the matrix square in the
general case as well

|x|2 =
1
2

Tr
(
x2

)
(108.10)

Let us see if this works by performing the coordinate expansion

x2 = (xiσi)(x jσ j)

= xix jσiσ j
(108.11)

A split into equal and different indices thus leaves

x2 =
∑
i< j

xix j(σiσ j +σ jσi) +
∑

i

(xi)2σi
2

(108.12)
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As an algebra that is isomorphic to the Clifford Algebra C{3,0} it is expected that the σiσ j

matrices anticommute for i , j. Multiplying these out verifies this

σ1σ2 = i

0 1

1 0


0 −1

1 0

 = i

1 0

0 −1

 = iσ3

σ2σ1 = i

0 −1

1 0


0 1

1 0

 = i

−1 0

0 1

 = −iσ3

σ3σ1 =

1 0

0 −1


0 1

1 0

 =

 0 1

−1 0

 = iσ2

σ1σ3 =

0 1

1 0


1 0

0 −1

 =

0 −1

1 0

 = −iσ2

σ2σ3 = i

0 −1

1 0


1 0

0 −1

 = i

0 1

1 0

 = iσ1

σ3σ2 = i

1 0

0 −1


0 −1

1 0

 = i

 0 −1

−1 0

 = −iσ3

. (108.13)

Thus in eq. (108.12) the sum over the {i < j} = {12, 23, 13} indices is zero.
Having computed this, our vector square leaves us with the vector length multiplied by the

identity matrix

x2 =
∑

i

(xi)2I. (108.14)

Invoking the trace operator will therefore extract just the scalar length desired

|x|2 =
1
2

Tr
(
x2

)
=

∑
i

(xi)2. (108.15)

108.2.3.1 Aside: Summarizing the multiplication table

It is worth pointing out that the multiplication table above used to confirm the antisymmetric
behavior of the Pauli basis can be summarized as

σaσb = 2iεabcσc (108.16)
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108.2.4 Scalar product

Having found the expression for the length of a vector in the Pauli basis, the next logical desir-
able identity is the dot product. One can guess that this will be the trace of a scaled symmetric
product, but can motivate this without guessing in the usual fashion, by calculating the length
of an orthonormal sum.

Consider first the length of a general vector sum. To calculate this we first wish to calculate
the matrix square of this sum.

(x + y)2 = x2 + y2 + xy + yx (108.17)

If these vectors are perpendicular this equals x2 + y2. Thus orthonormality implies that

xy + yx = 0 (108.18)

or,

yx = −xy (108.19)

We have already observed this by direct calculation for the Pauli matrices themselves. Now,
this is not any different than the usual description of perpendicularity in a Clifford Algebra, and
it is notable that there are not any references to matrices in this argument. One only requires
that a well defined vector product exists, where the squared vector has a length interpretation.

One matrix dependent observation that can be made is that since the left hand side and the
x2, and y2 terms are all diagonal, this symmetric sum must also be diagonal. Additionally, for
the length of this vector sum we then have

|x + y|2 = |x|2 + |y|2 +
1
2

Tr (xy + yx) (108.20)

For correspondence with the Euclidean dot product of two vectors we must then have

x • y =
1
4

Tr (xy + yx) . (108.21)

Here x • y has been used to denote this scalar product (ie: a plain old number), since x · y will
be used later for a matrix dot product (this times the identity matrix) which is more natural in
many ways for this Pauli algebra.
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Observe the symmetric product that is found embedded in this scalar selection operation. In
physics this is known as the anticommutator, where the commutator is the antisymmetric sum.
In the physics notation the anticommutator (symmetric sum) is

{x, y} = xy + yx (108.22)

So this scalar selection can be written

x • y =
1
4

Tr {x, y} (108.23)

Similarly, the commutator, an antisymmetric product, is denoted:

[x, y] = xy − yx, (108.24)

A close relationship between this commutator and the wedge product of Clifford Algebra is
expected.

108.2.5 Symmetric and antisymmetric split

As with the Clifford product, the symmetric and antisymmetric split of a vector product is a
useful concept. This can be used to write the product of two Pauli basis vectors in terms of the
anticommutator and commutator products

xy =
1
2
{x, y} +

1
2
[x, y]

yx =
1
2
{x, y} −

1
2
[x, y]

(108.25)

These follows from the definition of the anticommutator eq. (108.22) and commutator eq. (108.24)
products above, and are the equivalents of the Clifford symmetric and antisymmetric split into
dot and wedge products

xy = x · y + x ∧ y

yx = x · y − x ∧ y
(108.26)

Where the dot and wedge products are respectively

x · y =
1
2

(xy + yx)

x ∧ y =
1
2

(xy − yx)
(108.27)
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Note the factor of two differences in the two algebraic notations. In particular very handy
Clifford vector product reversal formula

yx = −xy + 2x · y (108.28)

has no factor of two in its Pauli anticommutator equivalent

yx = −xy + {x, y} (108.29)

108.2.6 Vector inverse

It has been observed that the square of a vector is diagonal in this matrix representation, and
can therefore be inverted for any non-zero vector

x2 = |x|2I

(x2)−1 = |x|−2I

=⇒

x2(x2)−1 = I

(108.30)

So it is therefore quite justifiable to define

x−2 =
1
x2 ≡ |x|

−2I (108.31)

This allows for the construction of a dual sided vector inverse operation.

x−1 ≡
1

|x|2
x

=
1
x2 x

= x
1
x2

(108.32)

This inverse is a scaled version of the vector itself.
The diagonality of the squared matrix or the inverse of that allows for commutation with x.

This diagonality plays the same role as the scalar in a regular Clifford square. In either case the
square can commute with the vector, and that commutation allows the inverse to have both left
and right sided action.

Note that like the Clifford vector inverse when the vector is multiplied with this inverse, the
product resides outside of the proper R3 Pauli basis since the identity matrix is required.
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108.2.7 Coordinate extraction

Given a vector in the Pauli basis, we can extract the coordinates using the scalar product

x =
∑

i

1
4

Tr {x, σi}σi (108.33)

But do not need to convert to strict scalar form if we are multiplying by a Pauli matrix. So in
anticommutator notation this takes the form

x = xiσi =
∑

i

1
2
{x, σi}σi

xi =
1
2
{x, σi}

(108.34)

108.2.8 Projection and rejection

The usual Clifford algebra trick for projective and rejective split maps naturally to matrix form.
Write

x = xaa−1

= (xa)a−1

=

(
1
2
{x, a} +

1
2
[x, a]

)
a−1

=

(
1
2
(xa + ax) +

1
2
(xa − ax)

)
a−1

=
1
2

(
x + axa−1

)
+

1
2

(
x − axa−1

)
(108.35)

Since {x, a} is diagonal, this first term is proportional to a−1, and thus lines in the direction of
a itself. The second term is perpendicular to a.

These are in fact the projection of x in the direction of a and rejection of x from the direction
of a respectively.

x = x‖ + x⊥

x‖ = Proja(x) =
1
2
{x, a}a−1 =

1
2

(
x + axa−1

)
x⊥ = Reja(x) =

1
2
[x, a] a−1 =

1
2

(
x − axa−1

) (108.36)
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To complete the verification of this note that the perpendicularity of the x⊥ term can be
verified by taking dot products

1
2
{a, x⊥} =

1
4

(
a
(
x − axa−1

)
+

(
x − axa−1

)
a
)

=
1
4

(
ax − aaxa−1 + xa − axa−1a

)
=

1
4
(ax − xa + xa − ax)

= 0

(108.37)

108.2.9 Space of the vector product

Expansion of the anticommutator and commutator in coordinate form shows that these entities
lie in a different space than the vectors itself.

For real coordinate vectors in the Pauli basis, all the commutator values are imaginary multi-
ples and thus not representable

[x, y] = xaσaybσb − yaσaxbσb

= (xayb − yaxb)σaσb

= 2i(xayb − yaxb)εabcσc

(108.38)

Similarly, the anticommutator is diagonal, which also falls outside the Pauli vector basis:

{x, y} = xaσaybσb + yaσaxbσb

= (xayb + yaxb)σaσb

= (xayb + yaxb)(Iδab + iεabcσc)

=
∑

a

(xaya + yaxa)I +
∑
a<b

(xayb + yaxb)i( εabc + εbac

= 0

)σc

=
∑

a

(xaya + yaxa)I

= 2
∑

a

xayaI,

(108.39)
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These correspond to the Clifford dot product being scalar (grade zero), and the wedge defin-
ing a grade two space, where grade expresses the minimal degree that a product can be reduced
to. By example a Clifford product of normal unit vectors such as

e1e3e4e1e3e4e3 ∝ e3

e2e3e4e1e3e4e3e5 ∝ e1e2e3e5
(108.40)

are grade one and four respectively. The proportionality constant will be dependent on metric
of the underlying vector space and the number of permutations required to group terms in pairs
of matching indices.

108.2.10 Completely antisymmetrized product of three vectors

In a Clifford algebra no imaginary number is required to express the antisymmetric (commu-
tator) product. However, the bivector space can be enumerated using a dual basis defined by
multiplication of the vector basis elements with the unit volume trivector. That is also the case
here and gives a geometrical meaning to the imaginaries of the Pauli formulation.

How do we even write the unit volume element in Pauli notation? This would be

σ1 ∧σ2 ∧σ3 = (σ1 ∧σ2)∧σ3

=
1
2
[σ1, σ2] ∧σ3

=
1
4
([σ1, σ2]σ3 +σ3 [σ1, σ2])

(108.41)

So we have

σ1 ∧σ2 ∧σ3 =
1
8

{
[σ1, σ2] , σ3

}
(108.42)

Similar expansion of σ1 ∧ σ2 ∧ σ3 = σ1 ∧ (σ2 ∧ σ3), or σ1 ∧ σ2 ∧ σ3 = (σ3 ∧ σ1) ∧ σ2

shows that we must also have

{
[σ1, σ2] , σ3

}
=

{
σ1, [σ2, σ3]

}
=

{
[σ3, σ1] , σ2

}
(108.43)

Until now the differences in notation between the anticommutator/commutator and the dot/wedge
product of the Pauli algebra and Clifford algebra respectively have only differed by factors of
two, which is not much of a big deal. However, having to express the naturally associative
wedge product operation in the non-associative looking notation of equation eq. (108.42) is
rather unpleasant seeming. Looking at an expression of the form gives no mnemonic hint of the
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underlying associativity, and actually seems obfuscating. I suppose that one could get used to it
though.

We expect to get a three by three determinant out of the trivector product. Let us verify this
by expanding this in Pauli notation for three general coordinate vectors

{
[x, y] , z

}
=

{[
xaσa, ybσb

]
, zcσc

}
= 2iεabd xaybzc{σd, σc}

= 4iεabd xaybzcδcdI

= 4iεabcxaybzcI

= 4i

∣∣∣∣∣∣∣∣∣∣∣
xa xb xc

ya yb yc

za zb zc

∣∣∣∣∣∣∣∣∣∣∣ I

(108.44)

In particular, our unit volume element is

σ1 ∧σ2 ∧σ3 =
1
4

{
[σ1, σ2] , σ3

}
= iI (108.45)

So one sees that the complex number i in the Pauli algebra can logically be replaced by
the unit pseudoscalar iI, and relations involving i, like the commutator expansion of a vector
product, is restored to the expected dual form of Clifford algebra

σa ∧σb =
1
2
[σa, σb]

= iεabcσc

= (σa ∧σb ∧σc)σc

(108.46)

Or

σa ∧σb = (σa ∧σb ∧σc) ·σc (108.47)

108.2.11 Duality

We have seen that multiplication by i is a duality operation, which is expected since iI is the
matrix equivalent of the unit pseudoscalar. Logically this means that for a vector x, the product
(iI)x represents a plane quantity (torque, angular velocity/momentum, ...). Similarly if B is a
plane object, then (iI)B will have a vector interpretation.
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In particular, for the antisymmetric (commutator) part of the vector product xy

1
2
[x, y] =

1
2

xayb [σa, σb]

= xaybiεabcσc

(108.48)

a “vector” in the dual space spanned by {iσa} is seen to be more naturally interpreted as a
plane quantity (bivector in Clifford algebra).

As in Clifford algebra, we can write the cross product in terms of the antisymmetric product

a × b =
1
2i

[a, b] . (108.49)

With the factor of 2 in the denominator here (like the exponential form of sine), it is interest-
ing to contrast this to the cross product in its trigonometric form

a × b = |a||b| sin(θ)n̂

= |a||b|
1
2i

(eiθ − e−iθ)n̂
(108.50)

This shows we can make the curious identity

[
â, b̂

]
= (eiθ − e−iθ)n̂ (108.51)

If one did not already know about the dual sides half angle rotation formulation of Clifford
algebra, this is a hint about how one could potentially work towards that. We have the commu-
tator (or wedge product) as a rotation operator that leaves the normal component of a vector
untouched (commutes with the normal vector).

108.2.12 Complete algebraic space

Pauli equivalents for all the elements in the Clifford algebra have now been determined.

• scalar

α→ αI (108.52)

• vector

uiσi →

 0 u1

u1 0

 +

 0 −iu2

iu2 0

 +

u3 0

0 −u3


=

 u3 u1 − iu2

u1 + iu2 −u3


(108.53)
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• bivector

σ1σ2σ3vaσa → ivaσa

=

 iv3 iv1 + v2

iv1 − v2 −iv3

 (108.54)

• pseudoscalar

βσ1σ2σ3 → iβI (108.55)

Summing these we have the mapping from Clifford basis to Pauli matrix as follows

α + βI + uiσi + Ivaσa →

 (α + u3) + i(β + v3) (u1 + v2) + i(−u2 + v1)

(u1 − v2) + i(u2 − v1) (α − u3) + i(β − v3)

 (108.56)

Thus for any given sum of scalar, vector, bivector, and trivector elements we can completely
express this in Pauli form as a general 2x2 complex matrix.

Provided that one can also extract the coordinates for each of the grades involved, this also
provides a complete Clifford algebra characterization of an arbitrary complex 2x2 matrix.

Computationally this has some nice looking advantages. Given any canned complex matrix
software, one should be able to easily cook up with little work a working R3 Clifford calculator.

As for the coordinate extraction, part of the work can be done by taking real and imaginary
components. Let an element of the general algebra be denoted

P =

z11 z12

z21 z22

 (108.57)

We therefore have

<(P) =

α + u3 u1 + v2

u1 − v2 α − u3


=(P) =

 β + v3 −u2 + v1

u2 + v1 β − v3


(108.58)
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By inspection, symmetric and antisymmetric sums of the real and imaginary parts recovers
the coordinates as follows

α =
1
2
<(z11 + z22)

u3 =
1
2
<(z11 − z22)

u1 =
1
2
<(z12 + z21)

v2 =
1
2
<(z12 − z21)

β =
1
2
=(z11 + z22)

v3 =
1
2
=(z11 − z22)

v1 =
1
2
=(z12 + z21)

u2 =
1
2
=(−z12 + z21)

(108.59)

In terms of grade selection operations the decomposition by grade

P = 〈P〉 + 〈P〉1 + 〈P〉2 + 〈P〉3, (108.60)

is

〈P〉 =
1
2
<(z11 + z22) =

1
2
<(Tr P)

〈P〉1 =
1
2
(<(z12 + z21)σ1 +=(−z12 + z21)σ2 +<(z11 − z22)σ3)

〈P〉2 =
1
2
(=(z12 + z21)σ2 ∧σ3 +<(z12 − z21)σ3 ∧σ1 +=(z11 − z22)σ1 ∧σ2)

〈P〉3 =
1
2
=(z11 + z22)I =

1
2
=(Tr P)σ1 ∧σ2 ∧σ3

(108.61)
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Employing =(z) = <(−iz), and <(z) = =(iz) this can be made slightly more symmetrical,
with Real operations selecting the vector coordinates and imaginary operations selecting the
bivector coordinates.

〈P〉 =
1
2
<(z11 + z22) =

1
2
<(Tr P)

〈P〉1 =
1
2
(<(z12 + z21)σ1 +<(iz12 − iz21)σ2 +<(z11 − z22)σ3)

〈P〉2 =
1
2
(=(z12 + z21)σ2 ∧σ3 +=(iz12 − iz21)σ3 ∧σ1 +=(z11 − z22)σ1 ∧σ2)

〈P〉3 =
1
2
=(z11 + z22)I =

1
2
=(Tr P)σ1 ∧σ2 ∧σ3

(108.62)

Finally, returning to the Pauli algebra, this also provides the following split of the Pauli mul-
tivector matrix into its geometrically significant components P = 〈P〉 + 〈P〉1 + 〈P〉2 + 〈P〉3,

〈P〉 =
1
2
<(z11 + z22)I

〈P〉1 =
1
2
(<(z12 + z21)σ1 +<(iz12 − iz21)σ2 +<(z11 − z22)σ3)

〈P〉2 =
1
2
(=(z12 + z21)iσ1 +=(iz12 − iz21)iσ2 +=(z11 − z22)iσk)

〈P〉3 =
1
2
=(z11 + z22)iI

(108.63)

108.2.13 Reverse operation

The reversal operation switches the order of the product of perpendicular vectors. This will
change the sign of grade two and three terms in the Pauli algebra. Since σ2 is imaginary, con-
jugation does not have the desired effect, but Hermitian conjugation (conjugate transpose) does
the trick.

Since the reverse operation can be written as Hermitian conjugation, one can also define the
anticommutator and commutator in terms of reversion in a way that seems particularly natural
for complex matrices. That is

{a, b} = ab + (ab)∗

[a, b] = ab − (ab)∗
(108.64)
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108.2.14 Rotations

Rotations take the normal Clifford, dual sided quaterionic form. A rotation about a unit normal
n will be

R(x) = e−inθ/2xeinθ/2 (108.65)

The Rotor R = e−inθ/2 commutes with any component of the vector x that is parallel to
the normal (perpendicular to the plane), whereas it anticommutes with the components in the
plane. Writing the vector components perpendicular and parallel to the plane respectively as
x = x⊥ + x‖, the essence of the rotation action is this selective commutation or anti-commutation
behavior

Rx‖R∗ = x‖R∗

Rx⊥R∗ = x⊥RR∗ = x⊥
(108.66)

Here the exponential has the obvious meaning in terms of exponential series, so for this
bivector case we have

exp(in̂θ/2) = cos(θ/2)I + in̂ sin(θ/2) (108.67)

The unit bivector B = in̂ can also be defined explicitly in terms of two vectors a, and b in the
plane

B =
1∣∣∣[a, b]∣∣∣ [a, b] (108.68)

Where the bivector length is defined in terms of the conjugate square (bivector times bivector
reverse)

∣∣∣[a, b]∣∣∣2 = [a, b] [a, b]∗ (108.69)

Examples to complete this subsection would make sense. As one of the most powerful and
useful operations in the algebra, it is a shame in terms of completeness to skimp on this. How-
ever, except for some minor differences like substitution of the Hermitian conjugate operation
for reversal, the use of the identity matrix I in place of the scalar in the exponential expansion,
the treatment is exactly the same as in the Clifford algebra.
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108.2.15 Grade selection

Coordinate equations for grade selection were worked out above, but the observation that re-
version and Hermitian conjugation are isomorphic operations can partially clean this up. In
particular a Hermitian conjugate symmetrization and anti-symmetrization of the general matrix
provides a nice split into quaternion and dual quaternion parts (say P = Q + R respectively).
That is

Q = 〈P〉 + 〈P〉1 =
1
2

(P + P∗)

R = 〈P〉2 + 〈P〉3 =
1
2

(P − P∗)
(108.70)

Now, having done that, how to determine 〈Q〉, 〈Q〉1, 〈R〉2, and 〈R〉3 becomes the next question.
Once that is done, the individual coordinates can be picked off easily enough. For the vector
parts, a Fourier decomposition as in equation eq. (108.34) will retrieve the desired coordinates.

The dual vector coordinates can be picked off easily enough taking dot products with the dual
basis vectors

B = Bkiσk =
∑

k

1
2

{
B,

1
iσk

}
iσk

Bk =
1
2

{
B,

1
iσk

} (108.71)

For the quaternion part Q the aim is to figure out how to isolate or subtract out the scalar part.
This is the only tricky bit because the diagonal bits are all mixed up with the σ3 term which is
also real, and diagonal. Consideration of the sum

aI + bσ3 =

a + b 0

0 a − b

 , (108.72)

shows that trace will recover the value 2a, so we have

〈Q〉 =
1
2

Tr (Q) I

〈Q〉1 = Q −
1
2

Tr (Q) I.
(108.73)
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Next is isolation of the pseudoscalar part of the dual quaternion R. As with the scalar part,
consideration of the sum of the iσ3 term and the iI term is required

iaI + ibσ3 =

ia + ib 0

0 ia − ib

 , (108.74)

So the trace of the dual quaternion provides the 2a, leaving the bivector and pseudoscalar
grade split

〈R〉3 =
1
2

Tr (R) I

〈R〉2 = R −
1
2

Tr (R) I.
(108.75)

A final assembly of these results provides the following coordinate free grade selection oper-
ators

〈P〉 =
1
4

Tr (P + P∗) I

〈P〉1 =
1
2

(P + P∗) −
1
4

Tr (P + P∗) I

〈P〉2 =
1
2

(P − P∗) −
1
4

Tr (P − P∗) I

〈P〉3 =
1
4

Tr (P − P∗) I

(108.76)

108.2.16 Generalized dot products

Here the equivalent of the generalized Clifford bivector/vector dot product will be computed, as
well as the associated distribution equation

(a∧ b) · c = a(b · c) − b(a · c) (108.77)

To translate this write

(a∧ b) · c =
1
2
((a∧ b)c − c(a∧ b)) (108.78)
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Then with the identifications

a · b ≡
1
2
{a, b}

a∧ b ≡
1
2
[a, b]

(108.79)

we have

(a∧ b) · c ≡
1
4
[[a, b], c]

=
1
2
(a{b, c} − {b, c}a)

(108.80)

From this we also get the strictly Pauli algebra identity

[[a, b], c] = 2 (a{b, c} − {b, c}a) (108.81)

But the geometric meaning of this is unfortunately somewhat obfuscated by the notation.

108.2.17 Generalized dot and wedge product

The fundamental definitions of dot and wedge products are in terms of grade

〈A〉r · 〈B〉s = 〈AB〉|r−s| (108.82)

〈A〉r ∧ 〈B〉s = 〈AB〉r+s (108.83)

Use of the trace and Hermitian conjugate split grade selection operations above, we can
calculate these for each of the four grades in the Pauli algebra.

108.2.17.1 Grade zero

There are three dot products consider, vector/vector, bivector/bivector, and trivector/trivector. In
each case we want to compute

A · B = 〈A〉B

=
1
4

Tr (AB + (AB)∗) I

=
1
4

Tr (AB + B∗A∗) I

(108.84)
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For vectors we have a∗ = a, since the Pauli basis is Hermitian, whereas for bivectors and
trivectors we have a∗ = −a. Therefore, in all cases where A, and B have equal grades we have

A · B = 〈A〉BI

=
1
4

Tr (AB + BA) I

=
1
4

Tr {A, B}I

(108.85)

108.2.17.2 Grade one

We have two dot products that produce vectors, bivector/vector, and trivector/bivector, and in
each case we need to compute

〈AB〉1 =
1
2

(AB + (AB)∗) −
1
4

Tr (AB + (AB)∗) (108.86)

For the bivector/vector dot product we have

(Ba)∗ = −aB (108.87)

For bivector B = ibkσk, and vector a = akσk our symmetric Hermitian sum in coordinates is

Ba + (Ba)∗ = Ba − aB

= ibkσkamσm − amσmibkσk
(108.88)

Any m = k terms will vanish, leaving only the bivector terms, which are traceless. We there-
fore have

B · a = 〈Ba〉1

=
1
2

(Ba − aB)

=
1
2
[B, a] .

(108.89)

This result was borrowed without motivation from Clifford algebra in equation eq. (108.78),
and thus not satisfactory in terms of a logically derived sequence.

For a trivector T dotted with bivector B we have

(BT )∗ = (−T )(−B) = T B = BT. (108.90)
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This is also traceless, and the trivector/bivector dot product is therefore reduced to just

B · T = 〈BT 〉1

=
1
2
{B,T }

= BT

= T B.

(108.91)

This is the duality relationship for bivectors. Multiplication by the unit pseudoscalar (or any
multiple of it), produces a vector, the dual of the original bivector.

108.2.17.3 Grade two

We have two products that produce a grade two term, the vector wedge product, and the vec-
tor/trivector dot product. For either case we must compute

〈AB〉2 =
1
2

(AB− (AB)∗) −
1
4

Tr (AB− (AB)∗) (108.92)

For a vector a, and trivector T we need the antisymmetric Hermitian sum

aT − (aT )∗ = aT + Ta = 2aT = 2Ta (108.93)

This is a pure bivector, and thus traceless, leaving just

a · T = 〈aT 〉2
= aT

= Ta

(108.94)

Again we have the duality relation, pseudoscalar multiplication with a vector produces a
bivector, and is equivalent to the dot product of the two.

Now for the wedge product case, with vector a = amσm, and b = bkσk we must compute

ab − (ab)∗ = ab − ba

= amσmbkσk − bkσkamσm
(108.95)

All the m = n terms vanish, leaving a pure bivector which is traceless, so only the first term
of eq. (108.92) is relevant, and is in this case a commutator

a∧ b = 〈ab〉2

=
1
2
[a, b]

(108.96)
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108.2.17.4 Grade three

There are two ways we can produce a grade three term in the algebra. One is a wedge of a vector
with a bivector, and the other is the wedge product of three vectors. The triple wedge product is
the grade three term of the product of the three

a∧ b∧ c = 〈abc〉3

=
1
4

Tr (abc − (abc)∗)

=
1
4

Tr (abc − cba)

(108.97)

With a split of the bc and cb terms into symmetric and antisymmetric terms we have

abc − cba =
1
2

(a{b, c} − {c, b}a) +
1
2

(a [b, c] − [c, b] a) (108.98)

The symmetric term is diagonal so it commutes (equivalent to scalar commutation with a
vector in Clifford algebra), and this therefore vanishes. Writing B = b∧ c = 1

2 [b, c], and noting
that [b, c] = − [c, b] we therefore have

a∧ B = 〈aB〉3

=
1
4

Tr (aB + Ba)

=
1
4

Tr {a, B}

(108.99)

In terms of the original three vectors this is

a∧ b∧ c = 〈aB〉3

=
1
8

Tr
{
a, [b, c]

}
.

(108.100)

Since this could have been expanded by grouping ab instead of bc we also have

a∧ b∧ c =
1
8

Tr
{
[a, b] , c

}
. (108.101)
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108.2.18 Plane projection and rejection

Projection of a vector onto a plane follows like the vector projection case. In the Pauli notation
this is

x = xB
1
B

=
1
2
{x, B}

1
B

+
1
2
[x, B]

1
B

(108.102)

Here the plane is a bivector, so if vectors a, and b are in the plane, the orientation and attitude
can be represented by the commutator

So we have

x =
1
2

{
x, [a, b]

} 1
[a, b]

+
1
2
[x, [a, b]]

1
[a, b]

(108.103)

Of these the second term is our projection onto the plane, while the first is the normal com-
ponent of the vector.

108.3 examples

108.3.1 Radial decomposition

108.3.1.1 Velocity and momentum

A decomposition of velocity into radial and perpendicular components should be straightfor-
ward in the Pauli algebra as it is in the Clifford algebra.

With a radially expressed position vector

x = |x|x̂, (108.104)

velocity can be written by taking derivatives

v = x′ = |x|′ x̂ + |x|x̂′ (108.105)

or as above in the projection calculation with

v = v
1
x

x

=
1
2

{
v,

1
x

}
x +

1
2

[
v,

1
x

]
x

=
1
2
{v, x̂}x̂ +

1
2
[v, x̂] x̂

(108.106)
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By comparison we have

|x|′ =
1
2
{v, x̂}

x̂′ =
1

2|x|
[v, x̂] x̂

(108.107)

In assembled form we have

v =
1
2
{v, x̂}x̂ + xω (108.108)

Here the commutator has been identified with the angular velocity bivector ω

ω =
1

2x2 [x, v] . (108.109)

Similarly, the linear and angular momentum split of a momentum vector is

p‖ =
1
2
{p, x̂}x̂

p⊥ =
1
2
[p, x̂] x̂

(108.110)

and in vector form

p =
1
2
{p, x̂}x̂ + mxω (108.111)

Writing J = mx2 for the moment of inertia we have for our commutator

L =
1
2
[x, p] = mx2ω = Jω (108.112)

With the identification of the commutator with the angular momentum bivector L we have
the total momentum as

p =
1
2
{p, x̂}x̂ +

1
x

L (108.113)
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108.3.1.2 Acceleration and force

Having computed velocity, and its radial split, the next logical thing to try is acceleration.
The acceleration will be

a = v′ = |x|′′ x̂ + 2|x|′ x̂′ + |x|x̂′′ (108.114)

We need to compute x̂′′ to continue, which is

x̂′′ =

(
1

2|x|3
[v, x] x

)′
=
−3

2|x|4
|x|′ [v, x] x +

1
2|x|3

[a, x] x +
1

2|x|3
[v, x] v

=
−3

4|x|5
{v, x} [v, x] x +

1
2|x|3

[a, x] x +
1

2|x|3
[v, x] v

(108.115)

Putting things back together is a bit messy, but starting so gives

a = |x|′′ x̂ + 2
1

4|x|4
{v, x} [v, x] x +

−3
4|x|4
{v, x} [v, x] x +

1
2|x|2

[a, x] x +
1

2|x|2
[v, x] v

= |x|′′ x̂ −
1

4|x|4
{v, x} [v, x] x +

1
2|x|2

[a, x] x +
1

2|x|2
[v, x] v

= |x|′′ x̂ +
1

4|x|4
[v, x]

(
−{v, x}x + 2x2v

)
+

1
2|x|2

[a, x] x

(108.116)

The anticommutator can be eliminated above using

vx =
1
2
{v, x} +

1
2
[v, x]

=⇒

−{v, x}x + 2x2v = −(2vx − [v, x])x + 2x2v

= [v, x] x

(108.117)

Finally reassembly of the assembly is thus

a = |x|′′ x̂ +
1

4|x|4
[v, x]2 x +

1
2|x|2

[a, x] x

= |x|′′ x̂ +ω2x +
1
2
[a, x]

1
x

(108.118)
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The second term is the inwards facing radially directed acceleration, while the last is the
rejective component of the acceleration.

It is usual to express this last term as the rate of change of angular momentum (torque).
Because [v, v] = 0, we have

d [x, v]
dt

= [x, a] (108.119)

So, for constant mass, we can write the torque as

τ =
d
dt

(
1
2
[x, p]

)
=

dL
dt

(108.120)

and finally have for the force

F = m|x|′′ x̂ + mω2x +
1
x

dL
dt

= m

|x|′′ −
∣∣∣ω2

∣∣∣
|x|

 x̂ +
1
x

dL
dt

(108.121)

108.4 conclusion

Although many of the GA references that can be found downplay the Pauli algebra as unneces-
sarily employing matrices as a basis, I believe this shows that there are some nice computational
and logical niceties in the complete formulation of the R3 Clifford algebra in this complex ma-
trix formulation. If nothing else it takes some of the abstraction away, which is good for devel-
oping intuition. All of the generalized dot and wedge product relationships are easily derived
showing specific examples of the general pattern for the dot and blade product equations which
are sometimes supplied as definitions instead of consequences.

Also, the matrix concepts (if presented right which I likely have not done) should also be
accessible to most anybody out of high school these days since both matrix algebra and complex
numbers are covered as basics these days (at least that is how I recall it from fifteen years back;)

Hopefully, having gone through the exercise of examining all the equivalent constructions
will be useful in subsequent Quantum physics study to see how the matrix algebra that is used
in that subject is tied to the classical geometrical vector constructions.



108.4 conclusion 863

Expressions that were scary and mysterious looking like

[Lx, Ly] = i ~Lz (108.122)

are no longer so bad since some of the geometric meaning that backs this operator expression
is now clear (this is a quantization of angular momentum in a specific plane, and encodes the
plane orientation as well as the magnitude). Knowing that [a, b] was an antisymmetric sum, but
not realizing the connection between that and the wedge product previously made me wonder
“where the hell did the i come from”?

This commutator equation is logically and geometrically a plane operation. It can therefore be
expressed with a vector duality relationship employing the R3 unit pseudoscalar iI = σ1σ2σ3.
This is a good nice step towards taking some of the mystery out of the math behind the physics
of the subject (which has enough intrinsic mystery without the mathematical language adding
to it).

It is unfortunate that QM uses this matrix operator formulation and none of classical physics
does. By the time one gets to QM learning an entirely new language is required despite the fact
that there are many powerful applications of this algebra in the classical domain, not just for
rotations which is recognized (in [16] for example where he uses the Pauli algebra to express
his rotation quaternions.)





109
G A M M A M AT R I C E S

109.1 dirac matrices

The Dirac matrices γµ can be used as a Minkowski basis. The basic defining relationship is the
Minkowski metric, where the dot products satisfy

γµ • γν = ±δµν

(γ0 • γ0)(γa • γa) = −1 where a ∈ {1, 2, 3}
(109.1)

There is freedom to pick the positive square for either γ0 or γa, and both conventions are
common.

One of the matrix representations for these vectors listed in the Dirac matrix wikipedia article
is

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


γ1 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0



γ2 =


0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


γ3 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



(109.2)

For this particular basis we have a + − −− metric signature. In the matrix form this takes the
specific meaning that (γ0)2 = I, and (γa)2 = −I.

A table of all the possible product variants of eq. (109.2) can be found below in the appendix.

865
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109.1.1 anticommutator product

Noting that the matrices square in the fashion just described and that they reverse sign when
multiplication order is reversed allows for summarizing the dot products relationships as follows

{
γµ, γν

}
= γµγν + γνγµ

= 2ηµνI,
(109.3)

where the metric tensor ηµν = γµ • γν is commonly summarized as coordinates of a matrix as
in

[
ηµν

]
=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(109.4)

The relationship eq. (109.3) is taken as the defining relationship for the Dirac matrices, but
can be seen to be just a matricized statement of the Clifford vector dot product.

109.1.2 Written as Pauli matrices

Using the Pauli matrices

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (109.5)
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one can write the Dirac matrices and all their products (reading from the multiplication table)
more concisely as

γ0 =

I 0

0 −I


γa =

 0 σa

−σa 0


γ0γa =

 0 σa

σa 0


γaγb = −iεabc

σc 0

0 σc


γ1γ2γ3 = i

0 −I

I 0


γ0γ1γ2 = i

−σ1 0

0 σ1


γ3γ0γ1 = i

σ2 0

0 −σ2


γ0γ1γ2 = i

−σ3 0

0 σ3



(109.6)

109.1.3 Deriving properties using the Pauli matrices

From the multiplication table a number of properties can be observed. Using the Pauli matrices
one can arrive at these more directly using the multiplication identity for those matrices

σaσb = 2iεabcσc (109.7)

Actually taking the time to type this out in full does not seem worthwhile and is a fairly
straightforward exercise.
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109.1.4 Conjugation behavior

Unlike the Pauli matrices, the Dirac matrices do not split nicely via conjugation. Instead we
have the time basis vector and its dual are Hermitian

(γ0)∗ = γ0

(γ1γ2γ3)∗ = γ1γ2γ3 (109.8)

whereas the spacelike basis vectors and their duals are all anti-Hermitian

(γa)∗ = −γa

(γaγbγc)∗ = −γaγbγc.
(109.9)

For the scalar and the pseudoscalar parts we have a Hermitian split

I∗ = I

(γ0γ1γ2γ3)∗ = −(γ0γ1γ2γ3)∗
(109.10)

and finally, also have a Hermitian split of the bivector parts into spacetime (relative vectors),
and the purely spatial bivectors

(γ0γa)∗ = γ0γa

(γaγb)∗ = −γaγb (109.11)

Is there a logical and simple set of matrix operations that splits things nicely into scalar,
vector, bivector, trivector, and pseudoscalar parts as there was with the Pauli matrices?

109.2 appendix . table of all generated products

A small C++ program using boost::numeric::ublas and std::complex, plus some perl to generate
part of that, was written to generate the multiplication table for the gamma matrix products for
this particular basis. The metric tensor and the antisymmetry of the wedge products can be seen
from these.

γ0γ0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


γ1γ1 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(109.12)
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γ2γ2 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


γ3γ3 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(109.13)

γ0γ1 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


γ1γ0 =


0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


(109.14)

γ0γ2 =


0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0


γ2γ0 =


0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


(109.15)

γ0γ3 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


γ3γ0 =


0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


(109.16)

γ1γ2 =


−i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 i


γ2γ1 =


i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i


(109.17)

γ1γ3 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


γ3γ1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


(109.18)
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γ2γ3 =


0 −i 0 0

−i 0 0 0

0 0 0 −i

0 0 −i 0


γ3γ2 =


0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0


(109.19)

γ1γ2γ3 =


0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


γ2γ3γ0 =


0 −i 0 0

−i 0 0 0

0 0 0 i

0 0 i 0


(109.20)

γ3γ0γ1 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


γ0γ1γ2 =


−i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 −i


(109.21)

γ0γ1γ2γ3 =


0 0 −i 0

0 0 0 −i

−i 0 0 0

0 −i 0 0


(109.22)
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B I V E C T O R F O R M O F Q UA N T U M A N G U L A R M O M E N T U M
O P E R AT O R

110.1 spatial bivector representation of the angular momentum operator

Reading [2] on the angular momentum operator, the form of the operator is suggested by anal-
ogy where components of x × p with the position representation p ∼ −i ~∇ used to expand the
coordinate representation of the operator.

The result is the following coordinate representation of the operator

L1 = −i ~(x2∂3 − x3∂2)

L2 = −i ~(x3∂1 − x1∂3)

L3 = −i ~(x1∂2 − x2∂1)

(110.1)

It is interesting to put these in vector form, and then employ the freedom to use for i =

σ1σ2σ3 the spatial pseudoscalar.

L = −σ1(σ1σ2σ3) ~(x2∂3 − x3∂2) −σ2(σ2σ3σ1) ~(x3∂1 − x1∂3) −σ3(σ3σ1σ2) ~(x1∂2 − x2∂1)

= −σ2σ3 ~(x2∂3 − x3∂2) −σ3σ1 ~(x3∂1 − x1∂3) −σ1σ2 ~(x1∂2 − x2∂1)

= − ~(σ1x1 +σ2x2 +σ3x3)∧ (σ1∂1 +σ2∂2 +σ3∂3)
(110.2)

The choice to use the pseudoscalar for this imaginary seems a logical one and the end result
is a pure bivector representation of angular momentum operator

L = − ~x∧∇ (110.3)

The choice to represent angular momentum as a bivector x ∧ p is also natural in classical
mechanics (encoding the orientation of the plane and the magnitude of the momentum in the
bivector), although its dual form the axial vector x× p is more common, at least in introductory
mechanics. Observe that there is no longer any explicit imaginary in eq. (110.3), since the
bivector itself has an implicit complex structure.

871
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110.2 factoring the gradient and laplacian

The form of eq. (110.3) suggests a more direct way to extract the angular momentum operator
from the Hamiltonian (i.e. from the Laplacian). Bohm uses the spherical polar representation
of the Laplacian as the starting point. Instead let us project the gradient itself in a specific
constant direction a, much as we can do to find the polar form angular velocity and acceleration
components.

Write

∇ =
1
a

a∇

=
1
a

(a ·∇ + a∧∇)
(110.4)

Or

∇ = ∇a
1
a

= (∇ · a +∇∧ a)
1
a

= (a ·∇ − a∧∇)
1
a

(110.5)

The Laplacian is therefore

∇
2 =

〈
∇

2
〉

=

〈
(a ·∇ − a∧∇)

1
a

1
a

(a ·∇ + a∧∇)
〉

=
1
a2 〈(a ·∇ − a∧∇)(a ·∇ + a∧∇)〉

=
1
a2 ((a ·∇)2 − (a∧∇)2)

(110.6)

So we have for the Laplacian a representation in terms of projection and rejection components

∇
2 = (â ·∇)2 −

1
a2 (a∧∇)2

= (â ·∇)2 − (â∧∇)2
(110.7)

The vector a was arbitrary, and just needed to be constant with respect to the factorization
operations. Setting a = x, the radial position from the origin one may guess that we have

∇
2 =

∂2

∂r2 −
1
x2 (x∧∇)2 (110.8)
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however, with the switch to a non-constant position vector x, this cannot possibly be right.

110.3 the coriolis term

The radial factorization of the gradient relied on the direction vector a being constant. If we
evaluate eq. (110.8), then there should be a non-zero remainder compared to the Laplacian.
Evaluation by coordinate expansion is one way to verify this, and should produce the difference.
Let us do this in two parts, starting with the scalar part of (x ∧∇)2. Summation will be implied
by mixed indices, and for generality a general basis and associated reciprocal frame will be
used.

〈
(x ∧∇)2

〉
f = ((xµγµ)∧ (γν∂ν)) · ((xαγα)∧ (γβ∂β)) f

= (γµ ∧ γν) · (γα ∧ γβ)xµ∂ν(xα∂β) f

= (δµβδνα − δµαδνβ)xµ∂ν(xα∂β) f

= xµ∂ν((xν∂µ) − xµ∂ν) f

= xµ(∂νxν)∂µ f − xµ(∂νxµ)∂ν f

+ xµxν∂ν∂µ f − xµxµ∂ν∂ν f

= (n − 1)x · ∇ f + xµxν∂ν∂µ f − x2∇2 f

(110.9)

For the dot product we have〈
(x · ∇)2

〉
f = xµ∂µ(xν∂ν) f

= xµ(∂µxν)∂ν f + xµxν∂µ∂ν f

= xµ∂µ f + xµxν∂ν∂µ f

= x · ∇ f + xµxν∂ν∂µ f

(110.10)

So, forming the difference we have

(x · ∇)2 f −
〈
(x ∧∇)2

〉
f = −(n − 2)x · ∇ f + x2∇2 f (110.11)

Or

∇2 =
1
x2 (x · ∇)2 −

1
x2

〈
(x ∧∇)2

〉
+ (n − 2)

1
x
· ∇ (110.12)

110.4 on the bivector and quadvector components of the squared angular mo-
mentum operator

The requirement for a scalar selection on all the (x ∧ ∇)2 terms is a bit ugly, but omitting it
would be incorrect for two reasons. One reason is that this is a bivector operator and not a
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bivector (where the squaring operates on itself). The other is that we derived a result for arbitrary
dimension, and the product of two bivectors in a general space has grade 2 and grade 4 terms in
addition to the scalar terms. Without taking only the scalar parts, lets expand this product a bit
more carefully, starting with

(x ∧∇)2 = (γµ ∧ γν)(γα ∧ γβ)xµ∂νxα∂β (110.13)

Just expanding the multivector factor for now, we have

2(γµ ∧ γν)(γα ∧ γβ)

= γµγν(γα ∧ γβ) − γνγµ(γα ∧ γβ)

= γµ
(
δν
αγβ − δν

βγα + γν ∧ γ
α ∧ γβ

)
− γν

(
δµ
αγβ − δµ

βγα + γµ ∧ γ
α ∧ γβ

)
= δν

αδµ
β − δν

βδµ
α − δµ

αδν
β + δµ

βδν
α

+ γµ ∧ γν ∧ γ
α ∧ γβ − γν ∧ γµ ∧ γ

α ∧ γβ

+ γµ · (γν ∧ γα ∧ γβ) − γν · (γµ ∧ γα ∧ γβ)

(110.14)

Our split into grades for this operator is then, the scalar

〈
(x ∧∇)2

〉
= (x ∧∇) · (x ∧∇)

=
(
δν
αδµ

β − δν
βδµ

α
)

xµ∂νxα∂β
(110.15)

the pseudoscalar (or grade 4 term in higher than 4D spaces).

〈
(x ∧∇)2

〉
4

= (x ∧∇)∧ (x ∧∇)

=
(
γµ ∧ γν ∧ γ

α ∧ γβ
)

xµ∂νxα∂β
(110.16)

If we work in dimensions less than or equal to three, we will have no grade four term since
this wedge product is zero (irrespective of the operator action), so in 3D we have only a bivector
term in excess of the scalar part of this operator.

The bivector term deserves some reduction, but is messy to do so. This has been done sepa-
rately in (112)

We can now write for the squared operator

(x ∧∇)2 = (n − 2)(x ∧∇) + (x ∧∇)∧ (x ∧∇) + (x ∧∇) · (x ∧∇) (110.17)
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and then eliminate the scalar selection from the eq. (110.12)

∇2 =
1
x2 (x · ∇)2 + (n − 2)

1
x
· ∇ −

1
x2

(
(x ∧∇)2 − (n − 2)(x ∧∇) − (x ∧∇)∧ (x ∧∇)

)
(110.18)

In 3D this is

∇
2 =

1
x2 (x ·∇)2 +

1
x
·∇ −

1
x2 (x∧∇ − 1) (x∧∇) (110.19)

Wow, that was an ugly mess of algebra. The worst of it for the bivector grades was initially
incorrect and the correct handling omitted. There is likely a more clever coordinate free way
to do the same expansion. We will see later that at least a partial verification of eq. (110.19)
can be obtained by considering of the Quantum eigenvalue problem, examining simultaneous
eigenvalues of x ∧∇, and

〈
x∧∇)2

〉
. However, lets revisit this after examining the radial terms

in more detail, and also after verifying that at least in the scalar selection form, this factorized
Laplacian form has the same structure as the Laplacian in scalar r, θ, and φ operator form.

110.5 correspondence with explicit radial form

We have seen above that we can factor the 3D Laplacian as

∇
2ψ =

1
x2 ((x ·∇)2 + x ·∇ −

〈
(x∧∇)2

〉
)ψ (110.20)

Contrast this to the explicit r, θ, φ form as given in (Bohm’s [2], 14.2)

∇
2ψ =

1
r
∂2

∂r2 (rψ) +
1
r2

(
1

sin θ
∂θ sin θ∂θ +

1
sin2 θ

+ ∂φφ

)
ψ (110.21)

Let us expand out the non-angular momentum operator terms explicitly as a partial verifica-
tion of this factorization. The radial term in Bohm’s Laplacian formula expands out to

1
r
∂2

∂r2 (rψ) =
1
r
∂r(∂rrψ)

=
1
r
∂r(ψ + r∂rψ)

=
1
r
∂rψ +

1
r

(∂rψ + r∂rrψ)

=
2
r
∂rψ + ∂rrψ

(110.22)
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On the other hand, with x = rr̂, what we expect to correspond to the radial term in the vector
factorization is

1
x2 ((x ·∇)2 + x ·∇)ψ =

1
r2 ((rr̂ ·∇)2 + rr̂ ·∇)ψ

=
1
r2 ((r∂r)2 + r∂r)ψ

=
1
r2 (r∂rψ + r2∂rrψ + r∂rψ)

=
2
r
∂rψ + ∂rrψ

(110.23)

Okay, good. It is a brute force way to verify things, but it works. With x ∧ ∇ = I(x × ∇)
we can eliminate the wedge product from the factorization expression eq. (110.20) and express
things completely in quantities that can be understood without any resort to Geometric Algebra.
That is

∇
2ψ =

1
r
∂2

∂r2 (rψ) +
1
r2

〈
(x ×∇)2

〉
ψ (110.24)

Bohm resorts to analogy and an operatorization of Lc = εabc(xa pb − xb pa), then later a spher-
ical polar change of coordinates to match exactly the L2 expression with eq. (110.21). With the
GA formalism we see this a bit more directly, although it is not the least bit obvious that the
operator x × ∇ has no radial dependence. Without resorting to a comparison with the explicit
r, θ, φ form that would not be so easy to see.

110.6 raising and lowering operators in ga form

Having seen in (111) that we have a natural GA form for the l = 1 spherical harmonic eigenfunc-
tions ψm

1 , and that we have the vector angular momentum operator x×∇ showing up directly in
a sort-of-radial factorization of the Laplacian, it is natural to wonder what the GA form of the
raising and lowering operators are. At least for the l = 1 harmonics use of i = Ie3 (unit bivector
for the x − y plane) for the imaginary ended up providing a nice geometric interpretation.

Let us see what that provides for the raising and lowering operators. First we need to express
Lx and Ly in terms of our bivector angular momentum operator. Let us switch notations and
drop the −i ~ factor from eq. (110.3) writing just

L = x∧∇ (110.25)
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We can now write this in terms of components with respect to the basis bivectors Iek. That is

L =
∑

k

(
(x∧∇) ·

1
Iek

)
Iek (110.26)

These scalar product results are expected to match the Lx, Ly, and Lz components at least up
to a sign. Let us check, picking Lz as representative

(x∧∇) ·
1

Ie3
= (σm ∧σ

k) · −σ1σ2σ3σ3xm∂k

= (σm ∧σ
k) · −σ1σ2xm∂k

= −(x2∂1 − x1∂2)

(110.27)

With the −i ~ factors dropped this is Lz = L3 = x1∂2 − x2∂1, the projection of L onto the x− y
plane Iek. So, now how about the raising and lowering operators

Lx ± iLy = Lx ± Ie3Ly

= L ·
1

Ie1
± Ie3L ·

1
Ie2

= −e1I
(
Ie1L ·

1
Ie1
± Ie2L ·

1
Ie2

) (110.28)

Or

(Ie1)Lx ± iLy = Ie1L ·
1

Ie1
± Ie2L ·

1
Ie2

(110.29)

Compare this to the projective split of L eq. (110.26). We have projections of the bivector
angular momentum operator onto the bivector directions Ie1 and Ie2 (really the bivectors for
the planes perpendicular to the x̂ and ŷ directions).

We have the Laplacian in explicit vector form and have a clue how to vectorize (really bivec-
torize) the raising and lowering operators. We have also seen how to geometrize the first spheri-
cal harmonics. The next logical step is to try to apply this vector form of the raising and lowering
operators to the vector form of the spherical harmonics.

110.7 explicit expansion of the angular momentum operator

There is a couple of things to explore before going forward. One is an explicit verification that
x ∧ ∇ has no radial dependence (something not obvious). Another is that we should be able
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to compare the x−2(x ∧ ∇)2 (as done for the x · ∇ terms) the explicit r, θ, φ expression for the
Laplacian to verify consistency and correctness.

For the spherical polar rotation we use the rotor

R = ee31θ/2ee12φ/2 (110.30)

Our position vector and gradient in spherical polar coordinates are

x = rR̃e3R (110.31)

∇ = r̂∂r + θ̂
1
r
∂θ + φ̂

1
r sin θ

∂φ (110.32)

with the unit vectors translate from the standard basis as


r̂
θ̂

φ̂

 = R̃


e3

e1

e2

 R (110.33)

This last mapping can be used to express the gradient unit vectors in terms of the standard
basis, as we did for the position vector x. That is

∇ = R̃
(
e3R∂r + e1R

1
r
∂θ + e2R

1
r sin θ

∂φ

)
(110.34)

Okay, we have now got all the pieces collected, ready to evaluate x∧∇

x∧∇ = r
〈
R̃e3RR̃

(
e3R∂r + e1R

1
r
∂θ + e2R

1
r sin θ

∂φ

)〉
2

= r
〈
R̃

(
R∂r + e3e1R

1
r
∂θ + e3e2R

1
r sin θ

∂φ

)〉
2

(110.35)

Observe that the e3
2 contribution is only a scalar, so bivector selection of that is zero. In the

remainder we have cancellation of r/r factors, leaving just

x∧∇ = R̃
(
e3e1R∂θ + e3e2R

1
sin θ

∂φ

)
(110.36)
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Using eq. (110.33) this is

x∧∇ = r̂
(
θ̂∂θ + φ̂

1
sin θ

∂φ

)
(110.37)

As hoped, there is no explicit radial dependence here, taking care of the first of the desired
verifications.

Next we want to square this operator. It should be noted that in the original derivation where
we “factored” the gradient operator with respect to the reference vector x our Laplacian really
followed by considering (x ∧ ∇)2 ≡

〈
(x∧∇)2

〉
. That is worth noting since a regular bivector

would square to a negative constant, whereas the operator factors of the vectors in this expres-
sion do not intrinsically commute.

An additional complication for evaluating the square of x∧∇ using the result of eq. (110.37)
is that θ̂ and r̂ are functions of θ and φ, so we would have to operate on those too. Without that
operator subtlety we get the wrong answer

−
〈
(x∧∇)2

〉
=

〈
R̃

(
e1R∂θ +

e2R
sin θ

∂φ

)
R̃

(
e1R∂θ +

e2R
sin θ

∂φ

)〉
, ∂θθ +

1
sin2 θ

∂φφ

(110.38)

Equality above would only be if the unit vectors were fixed. By comparison we also see
that this is missing a cot θ∂θ term. That must come from the variation of the unit vectors with
position in the second application of x∧∇.

110.8 derivatives of the unit vectors

To properly evaluate the angular momentum square we will need to examine the ∂θ and ∂φ
variation of the unit vectors r̂, θ̂, and φ̂. Some part of this question can be evaluated without
reference to the specific vector or even which derivative is being evaluated. Writing e for one of
e1, e2, or ek, and σ = R̃eR for the mapping of this vector under rotation, and ∂ for the desired θ
or φ partial derivative, we have

∂(R̃eR) = (∂R̃)eR + R̃e(∂R) (110.39)

Since R̃R = 1, we have

0 = ∂(R̃R)

= (∂R̃)R + R̃(∂R)
(110.40)
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So substitution of (∂R̃) = −R̃(∂R)R̃, back into eq. (110.39) supplies

∂(R̃eR) = −R̃(∂R)R̃eR + R̃e(∂R)

= −R̃(∂R)(R̃eR) + (R̃eR)R̃(∂R)

= −R̃(∂R)σ +σR̃(∂R)

(110.41)

Writing the bivector term as

Ω = R̃(∂R) (110.42)

The change in the rotated vector is seen to be entirely described by the commutator of that
vectors image under rotation with Ω. That is

∂σ = [σ,Ω] (110.43)

Our spherical polar rotor was given by

R = ee31θ/2ee12φ/2 (110.44)

Lets calculate the Ω bivector for each of the θ and φ partials. For θ we have

Ωθ = R̃∂θR

=
1
2

e−e12φ/2e−e31θ/2e31ee31θ/2ee12φ/2

=
1
2

e−e12φ/2e31ee12φ/2

=
1
2

e3e−e12φ/2e1ee12φ/2

=
1
2

e31ee12φ

(110.45)

Explicitly, this is the bivector Ωθ = (e31 cos θ+ e32 sin θ)/2, a wedge product of a vectors in ẑ
direction with one in the perpendicular x− y plane (curiously a vector in the x− y plane rotated
by polar angle θ, not the equatorial angle φ).

FIXME: picture. Draw this plane cutting through the sphere.
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For the φ partial variation of any of our unit vectors our bivector rotation generator is

Ωφ = R̃∂φR

=
1
2

e−e12φ/2e−e31θ/2ee31θ/2e12ee12φ/2

=
1
2

e12

(110.46)

This one has no variation at all with angle whatsoever. If this is all correct so far perhaps that
is not surprising given the fact that we expect an extra cot θ in the angular momentum operator
square, so a lack of φ dependence in the rotation generator likely means that any additional φ
dependence will cancel out. Next step is to take these rotation generator bivectors, apply them
via commutator products to the r̂, θ̂, and φ̂ vectors, and see what we get.

110.9 applying the vector derivative commutator (or not)

Let us express the θ̂ and φ̂ unit vectors explicitly in terms of the standard basis. Starting with θ̂
we have

θ̂ = R̃e1R

= e−e12φ/2e−e31θ/2e1ee31θ/2ee12φ/2

= e−e12φ/2e1ee31θee12φ/2

= e−e12φ/2(e1 cos θ − e3 sin θ)ee12φ/2

= e1 cos θee12φ − e3 sin θ

(110.47)

Explicitly in vector form, eliminating the exponential, this is θ̂ = e1 cos θ cos φ+ e2 cos θ sin φ−
e3 sin θ, but it is more convenient to keep the exponential as is.

For φ̂ we have

φ̂ = R̃e2R

= e−e12φ/2e−e31θ/2e2ee31θ/2ee12φ/2

= e−e12φ/2e2ee12φ/2

= e2ee12φ

(110.48)
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Again, explicitly this is φ̂ = e2 cos φ − e1 sin φ, but we will use the exponential form above.
Last we want r̂

r̂ = R̃e3R

= e−e12φ/2e−e31θ/2e3ee31θ/2ee12φ/2

= e−e12φ/2e3ee31θee12φ/2

= e−e12φ/2(e3 cos θ + e1 sin θ)ee12φ/2

= e3 cos θ + e1 sin θee12φ

(110.49)

Summarizing we have

θ̂ = e1 cos θee12φ − e3 sin θ

φ̂ = e2ee12φ

r̂ = e3 cos θ + e1 sin θee12φ

(110.50)

Or without exponentials

θ̂ = e1 cos θ cos φ + e2 cos θ sin φ − e3 sin θ

φ̂ = e2 cos φ − e1 sin φ

r̂ = e3 cos θ + e1 sin θ cos φ + e2 sin θ sin φ

(110.51)

Now, having worked out the cool commutator result, it appears that it will actually be harder
to use it, then to just calculate the derivatives directly (at least for the φ̂ derivatives). For those
we have

∂θφ̂ = ∂θe2ee12φ

= 0
(110.52)

and

∂φφ̂ = ∂φe2ee12φ

= e2e12ee12φ

= −e12φ̂

(110.53)

This multiplication takes φ̂ a vector in the x, y plane and rotates it 90 degrees, leaving an
inwards facing radial unit vector in the x,y plane.
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Now, having worked out the commutator method, lets at least verify that it works.

∂θφ̂ =
[
φ̂,Ωθ

]
= φ̂Ωθ −Ωθφ̂

=
1
2

(φ̂e31ee12φ − e31ee12φφ̂)

=
1
2

(e2e3e1e−e12φee12φ − e3e1e2e−e12φee12φ)

=
1
2

(−e3e2e1 − e3e1e2)

= 0

(110.54)

Much harder this way compared to taking the derivative directly, but we at least get the right
answer. For the φ derivative using the commutator we have

∂φφ̂ =
[
φ̂,Ωφ

]
= φ̂Ωφ −Ωφφ̂

=
1
2

(φ̂e12 − e12φ̂)

=
1
2

(e2ee12φe12 − e12e2ee12φ)

=
1
2

(−e12e2ee12φ − e12e2ee12φ)

= −e12φ̂

(110.55)

Good, also consistent with direct calculation. How about our θ̂ derivatives? Lets just calculate
these directly without bothering at all with the commutator. This is

∂φθ̂ = e1 cos θe12ee12φ

= e2 cos θee12φ

= cos θφ̂

(110.56)

and

∂θθ̂ = −e1 sin θee12φ − e3 cos θ

= −e12 sin θφ̂ − e3 cos θ
(110.57)

Finally, last we have the derivatives of r̂. Those are

∂φr̂ = e2 sin θee12φ

= sin θφ̂
(110.58)
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and

∂θr̂ = −e3 sin θ + e1 cos θee12φ

= −e3 sin θ + e12 cos θφ̂
(110.59)

Summarizing, all the derivatives we need to evaluate the square of the angular momentum
operator are

∂θφ̂ = 0

∂φφ̂ = −e12φ̂

∂θθ̂ = −e12 sin θφ̂ − e3 cos θ

∂φθ̂ = cos θφ̂

∂θr̂ = −e3 sin θ + e12 cos θφ̂

∂φr̂ = sin θφ̂

(110.60)

Bugger. We actually want the derivatives of the bivectors r̂θ̂ and r̂φ̂ so we are not ready to
evaluate the squared angular momentum. There is three choices, one is to use these results and
apply the chain rule, or start over and directly take the derivatives of these bivectors, or use the
commutator result (which did not actually assume vectors and we can apply it to bivectors too
if we really wanted to).

An attempt to use the chain rule get messy, but it looks like the bivectors reduce nicely,
making it pointless to even think about the commutator method. Introducing some notational
conveniences, first write i = e12. We will have to be a bit careful with this since it commutes
with e3, but anticommutes with e1 or e2 (and therefore φ̂). As usual we also write I = e1e2e3 for
the Euclidean pseudoscalar (which commutes with all vectors and bivectors).

r̂θ̂ = (e3 cos θ + i sin θφ̂)(cos θiφ̂ − e3 sin θ)

= e3 cos2 θiφ̂ − i sin2 θφ̂e3 + (iφ̂iφ̂ − e3e3) cos θ sin θ

= ie3(cos2 θ + sin2 θ)φ̂ + (−φ̂i2φ̂ − 1) cos θ sin θ

(110.61)

This gives us just

r̂θ̂ = Iφ̂ (110.62)

and calculation of the bivector partials will follow exclusively from the φ̂ partials tabulated
above.

Our other bivector does not reduce quite as cleanly. We have

r̂φ̂ = (e3 cos θ + i sin θφ̂)φ̂ (110.63)
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So for this one we have

r̂φ̂ = e3φ̂ cos θ + i sin θ (110.64)

Tabulating all the bivector derivatives (details omitted) we have

∂θ(r̂θ̂) = 0

∂φ(r̂θ̂) = e3φ̂

∂θ(r̂φ̂) = −e3φ̂ sin θ + i cos θ = ieIφ̂θ

∂φ(r̂φ̂) = −Iφ̂ cos θ

(110.65)

Okay, we should now be armed to do the squaring of the angular momentum.

110.10 squaring the angular momentum operator

It is expected that we have the equivalence of the squared bivector form of angular momentum
with the classical scalar form in terms of spherical angles φ, and θ. Specifically, if no math errors
have been made playing around with this GA representation, we should have the following
identity for the scalar part of the squared angular momentum operator

−
〈
(x∧∇)2

〉
=

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
(110.66)

To finally attempt to verify this we write the angular momentum operator in polar form, using
i = e1e2 as

x∧∇ = r̂
(
θ̂∂θ + φ̂

1
sin θ

∂φ

)
(110.67)

Expressing the unit vectors in terms of φ̂ and after some rearranging we have

x∧∇ = Iφ̂
(
∂θ + ieIφ̂θ 1

sin θ
∂φ

)
(110.68)
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Using this lets now compute the partials. First for the θ partials we have

∂θ(x∧∇) = Iφ̂
(
∂θθ + iIφ̂eIφ̂θ 1

sin θ
∂φ + ieIφ̂θ cos θ

sin2 θ
∂φ + ieIφ̂θ 1

sin θ
∂θφ

)
= Iφ̂

(
∂θθ + i(Iφ̂eIφ̂θ sin θ + eIφ̂θ cos θ)

1
sin2 θ

∂φ + ieIφ̂θ 1
sin θ

∂θφ

)
= Iφ̂

(
∂θθ + ie2Iφ̂θ 1

sin2 θ
∂φ + ieIφ̂θ 1

sin θ
∂θφ

) (110.69)

Premultiplying by Iφ̂ and taking scalar parts we have the first part of the application of
eq. (110.68) on itself,

〈
Iφ̂∂θ(x∧∇)

〉
= −∂θθ (110.70)

For the φ partials it looks like the simplest option is using the computed bivector φ partials
∂φ(r̂θ̂) = e3φ̂, ∂φ(r̂φ̂) = −Iφ̂ cos θ. Doing so we have

∂φ(x∧∇) = ∂φ

(
r̂θ̂∂θ + r̂φ̂

1
sin θ

∂φ

)
= e3φ̂∂θ + +r̂θ̂∂φθ − Iφ̂ cot θ∂φ + r̂φ̂

1
sin θ

∂φφ

(110.71)

So the remaining terms of the squared angular momentum operator follow by premultiplying
by r̂φ̂/sin θ, and taking scalar parts. This is

〈
r̂φ̂

1
sin θ

∂φ(x∧∇)
〉

=
1

sin θ

〈
−r̂e3∂θ + −φ̂θ̂∂φθ − r̂I cot θ∂φ

〉
−

1
sin2 θ

∂φφ (110.72)

The second and third terms in the scalar selection have only bivector parts, but since r̂ =

e3 cos θ + e1 sin θee12φ has component in the e3 direction, we have

〈
r̂φ̂

1
sin θ

∂φ(x∧∇)
〉

= − cot θ∂θ −
1

sin2 θ
∂φφ (110.73)

Adding results from eq. (110.70), and eq. (110.73) we have

−
〈
(x∧∇)2

〉
= ∂θθ + cot θ∂θ +

1
sin2 θ

∂φφ (110.74)
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A final verification of eq. (110.66) now only requires a simple calculus expansion

1
sin θ

∂

∂θ
sin θ

∂

∂θ
ψ =

1
sin θ

∂

∂θ
sin θ∂θψ

=
1

sin θ
(cos θ∂θψ + sin θ∂θθψ)

= cot θ∂θψ + ∂θθψ

(110.75)

Voila. This exercise demonstrating that what was known to have to be true, is in fact explicitly
true, is now done. There is no new or interesting results in this in and of itself, but we get some
additional confidence in the new methods being experimented with.

110.11 3d quantum hamiltonian

Going back to the quantum Hamiltonian we do still have the angular momentum operator as one
of the distinct factors of the Laplacian. As operators we have something akin to the projection
of the gradient onto the radial direction, as well as terms that project the gradient onto the
tangential plane to the sphere at the radial point

−
~2

2m
∇

2 + V = −
~2

2m

(
1
x2 (x ·∇)2 −

1
x2

〈
(x∧∇)2

〉
+

1
x
·∇

)
+ V (110.76)

Using the result of eq. (110.19) and the radial formulation for the rest, we can write this

0 =

(
∇

2 −
2m
~2 (V − E)

)
ψ

=
1
r
∂

∂r
r
∂ψ

∂r
−

1
r2 (x∧∇ − 1) (x∧∇)ψ −

2m
~2 (V − E)ψ

(110.77)

If V = V(r), then a radial split by separation of variables is possible. Writing ψ = R(r)Y , we
get

r
R
∂

∂r
r
∂R
∂r
−

2mr2

~2 (V(r) − E) =
1
Y
(x∧∇ − 1) (x∧∇)Y = constant (110.78)

For the constant, lets use c, and split this into a pair of equations

r
∂

∂r
r
∂R
∂r
−

2mr2R
~2 (V(r) − E) = cR (110.79)
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(x∧∇ − 1) (x∧∇)Y = cY (110.80)

In this last we can examine simultaneous eigenvalues of x∧∇, and
〈
(x∧∇)2

〉
. Suppose that

Yλ is an eigenfunction of x∧∇ with eigenvalue λ. We then have

〈
(x∧∇)2

〉
Yλ = (x∧∇ − 1) (x∧∇)Yλ

= (x∧∇ − 1) λYλ
= λ (λ − 1) Yλ

(110.81)

We see immediately that Yλ is then also an eigenfunction of
〈
(x∧∇)2

〉
, with eigenvalue

λ (λ − 1) (110.82)

Bohm gives results for simultaneous eigenfunctions of Lx, Ly, or Lz with L2, in which case
the eigenvalues match. He also shows that eigenfunctions of raising and lowering operators,
Lx ± iLy are also simultaneous eigenfunctions of L2, but having m(m ± 1) eigenvalues. This
is something slightly different since we are not considering any specific components, but we
still see that eigenfunctions of the bivector angular momentum operator x∧∇ are simultaneous
eigenfunctions of the scalar squared angular momentum operator 〈x∧∇〉 (Q: is that identical
to the scalar operator L2).

Moving on, the next order of business is figuring out how to solve the multivector eigenvalue
problem

(x∧∇)Yλ = λYλ (110.83)

110.12 angular momentum polar form , factoring out the raising and lowering
operators , and simultaneous eigenvalues

After a bit more manipulation we find that the angular momentum operator polar form represen-
tation, again using i = e1e2, is

x∧∇ = Iφ̂(∂θ + i cot θ∂φ + e23eiφ∂φ) (110.84)
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Observe how similar the exponential free terms within the braces are to the raising operator
as given in Bohm’s equation (14.40)

Lx + iLy = eiφ(∂θ + i cot θ∂φ)

Lz =
1
i
∂φ

(110.85)

In fact since e23eiφ = e−iφe23, the match can be made even closer

x∧∇ = Iφ̂e−iφ( eiφ(∂θ + i cot θ∂φ)

= Lx + iLy

+ e13
1
i
∂φ

= Lz

)
(110.86)

This is a surprising factorization, but noting that φ̂ = e2eiφ we have

x∧∇ = e31

(
eiφ(∂θ + i cot θ∂φ) + e13

1
i
∂φ

)
(110.87)

It appears that the factoring out from the left of a unit bivector (in this case e31) from the
bivector angular momentum operator, leaves as one of the remainders the raising operator.

Similarly, noting that e13 anticommutes with i = e12, we have the right factorization

x∧∇ =

(
e−iφ(∂θ − i cot θ∂φ) − e13

1
i
∂φ

)
e31 (110.88)

Now in the remainder, we see the polar form representation of the lowering operator Lx −

iLy = e−iφ(∂θ − i cot θ∂φ).
I was not expecting the raising and lowering operators “to fall out” as they did by simply

expressing the complete bivector operator in polar form. This is actually fortuitous since it
shows why this peculiar combination is of interest.

If we find a zero solution to the raising or lowering operator, that is also a solution of the
eigenproblem (∂φ −λ)ψ = 0, then this is necessarily also an eigensolution of x∧∇. A secondary
implication is that this is then also an eigensolution of

〈
(x∧∇)2

〉
ψ = λ′ψ. This was the starting

point in Bohm’s quest for the spherical harmonics, but why he started there was not clear to me.
Saying this without the words, let us look for eigenfunctions for the non-raising portion of

eq. (110.87). That is

e31e13
1
i
∂φ f = λ f (110.89)
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Since e31e13 = 1 we want solutions of

∂φ f = iλ f (110.90)

Solutions are

f = κ(θ)eiλφ (110.91)

A demand that this is a zero eigenfunction for the raising operator, means we are looking for
solutions of

e31eiφ(∂θ + i cot θ∂φ)κ(θ)eiλφ = 0 (110.92)

It is sufficient to find zero eigenfunctions of

(∂θ + i cot θ∂φ)κ(θ)eiλφ = 0 (110.93)

Evaluation of the φ partials and rearrangement leaves us with an equation in θ only

∂κ

∂θ
= λ cot θκ (110.94)

This has solutions κ = A(φ)(sin θ)λ, where because of the partial derivatives in eq. (110.94) we
are free to make the integration constant a function of φ. Since this is the functional dependence
that is a zero of the raising operator, including this at the θ dependence of eq. (110.91) means
that we have a simultaneous zero of the raising operator, and an eigenfunction of eigenvalue λ
for the remainder of the angular momentum operator.

f (θ, φ) = (sin θ)λeiλφ (110.95)

This is very similar seeming to the process of adding homogeneous solutions to specific ones,
since we augment the specific eigenvalued solutions for one part of the operator by ones that
produce zeros for the rest.

As a check lets apply the angular momentum operator to this as a test and see if the results
match our expectations.

(x∧∇)(sin θ)λeiλφ = r̂
(
θ̂∂θ + φ̂

1
sin θ

∂φ

)
(sin θ)λeiλφ

= r̂
(
θ̂λ(sin θ)λ−1 cos θ + φ̂

1
sin θ

(sin θ)λ(iλ)
)

eiλφ

= λr̂
(
θ̂ cos θ + φ̂i

)
eiλφ(sin θ)λ−1

(110.96)
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From eq. (110.64) we have

r̂φ̂i = e3φ̂i cos θ − sin θ

= e32ieiφ cos θ − sin θ

= e13eiφ cos θ − sin θ

(110.97)

and from eq. (110.62) we have

r̂θ̂ = Iφ̂

= e31eiφ (110.98)

Putting these together shows that (sin θ)λeiλφ is an eigenfunction of x∧∇,

(x∧∇)(sin θ)λeiλφ = −λ(sin θ)λeiλφ (110.99)

This negation surprised me at first, but I do not see any errors here in the arithmetic. Observe
that this provides a verification of messy algebra that led to eq. (110.19). That was

〈
(x∧∇)2

〉 ?
= (x∧∇ − 1) (x∧∇) (110.100)

Using this and eq. (110.99) the operator effect of
〈
(x∧∇)2

〉
for the eigenvalue we have is

〈
(x∧∇)2

〉
(sin θ)λeiλφ = (x∧∇ − 1) (x∧∇)(sin θ)λeiλφ

= ((−λ)2 − (−λ))(sin θ)λeiλφ
(110.101)

So the eigenvalue is λ(λ+ 1), consistent with results obtained with coordinate and scalar polar
form tools.

110.13 summary

Having covered a fairly wide range in the preceding Geometric Algebra exploration of the
angular momentum operator, it seems worthwhile to attempt to summarize what was learned.

The exploration started with a simple observation that the use of the spatial pseudoscalar for
the imaginary of the angular momentum operator in its coordinate form

L1 = −i ~(x2∂3 − x3∂2)

L2 = −i ~(x3∂1 − x1∂3)

L3 = −i ~(x1∂2 − x2∂1)

(110.102)
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allowed for expressing the angular momentum operator in its entirety as a bivector valued
operator

L = − ~x∧∇ (110.103)

The bivector representation has an intrinsic complex behavior, eliminating the requirement
for an explicitly imaginary i as is the case in the coordinate representation.

It was then assumed that the Laplacian can be expressed directly in terms of x ∧∇. This is
not an unreasonable thought since we can factor the gradient with components projected onto
and perpendicular to a constant reference vector â as

∇ = â(â ·∇) + â(â∧∇) (110.104)

and this squares to a Laplacian expressed in terms of these constant reference directions

∇
2 = (â ·∇)2 − (â ·∇)2 (110.105)

a quantity that has an angular momentum like operator with respect to a constant direction. It
was then assumed that we could find an operator representation of the form

∇
2 =

1
x2

(
(x ·∇)2 −

〈
(x ·∇)2

〉
+ f (x,∇)

)
(110.106)

Where f (x,∇) was to be determined, and was found by subtraction. Thinking ahead to rela-
tivistic applications this result was obtained for the n-dimensional Laplacian and was found to
be

∇2 =
1
x2

(
(n − 2 + x · ∇)(x · ∇) −

〈
(x ∧∇)2

〉)
(110.107)

For the 3D case specifically this is

∇
2 =

1
x2

(
(1 + x ·∇)(x ·∇) −

〈
(x∧∇)2

〉)
(110.108)

While the scalar selection above is good for some purposes, it interferes with observations
about simultaneous eigenfunctions for the angular momentum operator and the scalar part of
its square as seen in the Laplacian. With some difficulty and tedium, by subtracting the bivector
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and quadvector grades from the squared angular momentum operator (x∧∇)2 it was eventually
found that eq. (110.107) can be written as

∇2 =
1
x2 ((n − 2 + x · ∇)(x · ∇) + (n − 2 − x ∧∇)(x ∧∇) + (x ∧∇)∧ (x ∧∇)) (110.109)

In the 3D case the quadvector vanishes and eq. (110.108) with the scalar selection removed
is reduced to

∇
2 =

1
x2 ((1 + x ·∇)(x ·∇) + (1 − x∧∇)(x∧∇)) (110.110)

In 3D we also have the option of using the duality relation between the cross and the wedge
a∧ b = i(a × b) to express the Laplacian

∇
2 =

1
x2 ((1 + x ·∇)(x ·∇) + (1 − i(x ×∇))i(x ×∇)) (110.111)

Since it is customary to express angular momentum as L = −i ~(x ×∇), we see here that the
imaginary in this context should perhaps necessarily be viewed as the spatial pseudoscalar. It
was that guess that led down this path, and we come full circle back to this considering how
to factor the Laplacian in vector quantities. Curiously this factorization is in no way specific to
Quantum Theory.

A few verifications of the Laplacian in eq. (110.111) were made. First it was shown that the
directional derivative terms containing x ·∇, are equivalent to the radial terms of the Laplacian
in spherical polar coordinates. That is

1
x2 (1 + x ·∇)(x ·∇)ψ =

1
r
∂2

∂r2 (rψ) (110.112)

Employing the quaternion operator for the spherical polar rotation

R = ee31θ/2ee12φ/2

x = rR̃e3R
(110.113)

it was also shown that there was explicitly no radial dependence in the angular momentum
operator which takes the form

x∧∇ = R̃
(
e3e1R∂θ + e3e2R

1
sin θ

∂φ

)
= r̂

(
θ̂∂θ + φ̂

1
sin θ

∂φ

) (110.114)
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Because there is a θ, and φ dependence in the unit vectors r̂, θ̂, and φ̂, squaring the angular
momentum operator in this form means that the unit vectors are also operated on. Those vectors
were given by the triplet


r̂
θ̂

φ̂

 = R̃


e3

e1

e2

 R (110.115)

Using I = e1e2e3 for the spatial pseudoscalar, and i = e1e2 (a possibly confusing switch
of notation) for the bivector of the x-y plane we can write the spherical polar unit vectors in
exponential form as


φ̂

r̂
θ̂

 =


e2eiφ

e3eIφ̂θ

iφ̂eIφ̂θ

 (110.116)

These or related expansions were used to verify (with some difficulty) that the scalar squared
bivector operator is identical to the expected scalar spherical polar coordinates parts of the
Laplacian

−
〈
(x∧∇)2

〉
=

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
(110.117)

Additionally, by left or right dividing a unit bivector from the angular momentum operator,
we are able to find that the raising and lowering operators are left as one of the factors

x∧∇ = e31

(
eiφ(∂θ + i cot θ∂φ) + e13

1
i
∂φ

)
x∧∇ =

(
e−iφ(∂θ − i cot θ∂φ) − e13

1
i
∂φ

)
e31

(110.118)

Both of these use i = e1e2, the bivector for the plane, and not the spatial pseudoscalar. We are
then able to see that in the context of the raising and lowering operator for the radial equation
the interpretation of the imaginary should be one of a plane.

Using the raising operator factorization, it was calculated that (sin θ)λeiλφ was an eigenfunc-
tion of the bivector operator x ∧∇ with eigenvalue −λ. This results in the simultaneous eigen-
value of λ(λ + 1) for this eigenfunction with the scalar squared angular momentum operator.
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There are a few things here that have not been explored to their logical conclusion.
The bivector Fourier projections Iek(x ∧ ∇) · (−Iek) do not obey the commutation relations

of the scalar angular momentum components, so an attempt to directly use these to construct
raising and lowering operators does not produce anything useful. The raising and lowering
operators in a form that could be used to find eigensolutions were found by factoring out e13

from the bivector operator. Making this particular factorization was a fluke and only because it
was desirable to express the bivector operator entirely in spherical polar form. It is curious that
this results in raising and lowering operators for the x,y plane, and understanding this further
would be nice.

In the eigen solutions for the bivector operator, no quantization condition was imposed. I do
not understand the argument that Bohm used to do so in the traditional treatment, and revisiting
this once that is done is in order.

I am also unsure exactly how Bohm knows that the inner product for the eigenfunctions
should be a surface integral. This choice works, but what drives it. Can that be related to any-
thing here?





111
G R A P H I C A L R E P R E S E N TAT I O N O F S P H E R I C A L H A R M O N I C S F O R
l = 1

111.1 first observations

In Bohm’s QT [2], 14.17), the properties of l = 1 associated Legendre polynomials are exam-
ined under rotation. Wikipedia ([46] calls these eigen functions the spherical harmonics.

The unnormalized eigenfunctions are given (eqn (14.47) in Bohm) for s ∈ [ 0 , l ], with
c o s θ = ζ by

ψ l− s
l =

e i ( l− s )φ

( 1 − ζ 2 ) ( l− s ) / 2

∂ s

∂ ζ s ( 1 − ζ 2 ) l (111.1)

The normalization is provided by a surface area inner product

( u , v ) =

∫ π

θ= 0

∫ 2 π

φ= 0
u v ∗ s i n θ d θ d φ (111.2)

Computing these for l = 1, and disregarding any normalization these eigenfunctions can be
found to be

ψ 1
1 = s i n θ e iφ

ψ 0
1 = c o s θ

ψ− 1
1 = s i n θ e− iφ

(111.3)

There is a direct relationship between these eigenfunctions with a triple of vectors associated
with a point on the unit sphere. Referring to fig. 111.1, observe the three doubled arrow vectors,
all associated with a point on the unit sphere x = ( x , y , z ) = ( s i n θ c o s φ , s i n θ c o s φ , c o s θ ).

The normal to the x, y plane from x, designated n has the vectorial value

n = cos θe3 (111.4)

From the origin to the point of of the x, y plane intersection to the normal we have

ρ = sin θ(cos φe1 + sin φe2) = e1 sin θee1e2φ (111.5)

897



898 graphical representation of spherical harmonics for l = 1

Figure 111.1: Vectoring the l = 1 associated Legendre polynomials

and finally in the opposite direction also in the plane and mirroring ρ we have the last of this
triplet of vectors

ρ− = sin θ(cos φe1 − sin φe2) = e1 sin θe−e1e2φ (111.6)

So, if we choose to use i = e1e2 (the bivector for the plane normal to the z-axis), then we
can in fact vectorize these eigenfunctions. The vectors ρ (i.e. ψ1

1), and ρ− (i.e. ψ−1
1 ) are both

normal to n (i.e. ψ0
1), but while the vectors ρ and ρ− are both in the plane one is produced with

a counterclockwise rotation of e1 by φ in the plane and the other with an opposing rotation.
Summarizing, we can write the unnormalized vectors the relations

ψ1
1 = e1ρ = sin θee1e2φ

ψ0
1 = e3n = cos θ

ψ−1
1 = e1ρ− = sin θe−e1e2φ

I have no familiarity yet with the l = 2 or higher Legendre eigenfunctions. Do they also admit
a geometric representation?
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111.2 expressing legendre eigenfunctions using rotations

We can express a point on a sphere with a pair of rotation operators. First rotating e3 towards e1

in the z, x plane by θ, then in the x, y plane by φ we have the point x in fig. 111.1
Writing the result of the first rotation as e′3 we have

e′3 = e3ee31θ = e−e31θ/2e3ee31θ/2 (111.7)

One more rotation takes e′3 to x. That is

x = e−e12φ/2e′3ee12φ/2 (111.8)

All together, writing Rθ = ee31θ/2, and Rφ = ee12φ/2, we have

x = R̃φR̃θe3RθRφ (111.9)

It is worth a quick verification that this produces the desired result.

R̃φR̃θe3RθRφ = R̃φe3ee31θRφ
= e−e12φ/2(e3 cos θ + e1 sin θ)ee12φ/2

= e3 cos θ + e1 sin θee12φ

(111.10)

This is the expected result

x = e3 cos θ + sin θ(e1 sin θ + e2 cos θ) (111.11)

The projections onto the e3 and the x, y plane are then, respectively,

xz = e3(e3 · x) = e3 cos θ

xx,y = e3(e3 ∧ x) = sin θ(e1 sin θ + e2 cos θ)
(111.12)

So if x± is the point on the unit sphere associated with the rotation angles θ,±φ, then we have
for the l = 1 associated Legendre polynomials

ψ0
1 = e3 · x

ψ±1
1 = e1e3(e3 ∧ x±)

(111.13)

Note that the ± was omitted from x for ψ0
1 since either produces the same e3 component. This

gives us a nice geometric interpretation of these eigenfunctions. We see that ψ0
1 is the biggest

when x is close to straight up, and when this occurs ψ±1
1 are correspondingly reduced, but when

x is close to the x, y plane where ψ±1
1 will be greatest the z-axis component is reduced.





112
B I V E C T O R G R A D E S O F T H E S Q UA R E D A N G U L A R M O M E N T U M
O P E R AT O R

112.1 motivation

The aim here is to extract the bivector grades of the squared angular momentum operator

〈
(x ∧∇)2

〉
2

?
= · · · (112.1)

I had tried this before and believe gotten it wrong. Take it super slow and dumb and careful.

112.2 non-operator expansion

Suppose P is a bivector, P = (γk ∧ γm)Pkm, the grade two product with a different unit bivector
is

〈
(γa ∧ γb)(γk ∧ γm)

〉
2
Pkm

=
〈
(γaγb − γa · γb)(γk ∧ γm)

〉
2
Pkm

=
〈
γa(γb · (γk ∧ γm))

〉
2
Pkm +

〈
γa(γb ∧ (γk ∧ γm))

〉
2
Pkm − (γa · γb)(γk ∧ γm)Pkm

= (γa ∧ γ
m)Pbm − (γa ∧ γ

k)Pkb − (γa · γb)(γk ∧ γm)Pkm

+ (γa · γb)(γk ∧ γm)Pkm − (γb ∧ γ
m)Pam + (γb ∧ γ

k)Pka

= (γa ∧ γ
c)(Pbc − Pcb) + (γb ∧ γ

c)(Pca − Pac)

(112.2)

This same procedure will be used for the operator square, but we have the complexity of
having the second angular momentum operator change the first bivector result.
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112.3 operator expansion

In the first few lines of the bivector product expansion above, a blind replacement γa → x, and
γb → ∇ gives us

〈
(x ∧∇)(γk ∧ γm)

〉
2
Pkm

=
〈
(x∇− x · ∇)(γk ∧ γm)

〉
2
Pkm

=
〈
x(∇ · (γk ∧ γm))

〉
2
Pkm +

〈
x(∇∧ (γk ∧ γm))

〉
2
Pkm − (x · ∇)(γk ∧ γm)Pkm

(112.3)

Using Pkm = xk∂m, eliminating the coordinate expansion we have an intermediate result that
gets us partway to the desired result

〈
(x ∧∇)2

〉
2

= 〈x(∇ · (x ∧∇))〉2 + 〈x(∇∧ (x ∧∇))〉2 − (x · ∇)(x ∧∇) (112.4)

An expansion of the first term should be easier than the second. Dropping back to coordinates
we have

〈x(∇ · (x ∧∇))〉2 =
〈
x(∇ · (γk ∧ γm))

〉
2
xk∂m

=
〈
x(γa∂

a · (γk ∧ γm))
〉

2
xk∂m

=
〈
xγm∂k

〉
2
xk∂m −

〈
xγk∂m

〉
2
xk∂m

= x ∧ (∂kxkγ
m∂m) − x ∧ (∂mγkxk∂m)

(112.5)

Okay, a bit closer. Backpedaling with the reinsertion of the complete vector quantities we
have

〈x(∇ · (x ∧∇))〉2 = x ∧ (∂kxk∇) − x ∧ (∂mx∂m) (112.6)

Expanding out these two will be conceptually easier if the functional operation is made ex-
plicit. For the first

x ∧ (∂kxk∇)φ = x ∧ xk∂
k(∇φ) + x ∧ ((∂kxk)∇)φ

= x ∧ ((x · ∇)(∇φ)) + n(x ∧∇)φ
(112.7)

In operator form this is

x ∧ (∂kxk∇) = n(x ∧∇) + x ∧ ((x · ∇)∇) (112.8)
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Now consider the second half of eq. (112.6). For that we expand

x ∧ (∂mx∂m)φ = x ∧ (x∂m∂
mφ) + x ∧ ((∂mx)∂mφ) (112.9)

Since x ∧ x = 0, and ∂mx = ∂mxkγ
k = γm, we have

x ∧ (∂mx∂m)φ = x ∧ (γm∂m)φ

= (x ∧∇)φ
(112.10)

Putting things back together we have for eq. (112.6)

〈x(∇ · (x ∧∇))〉2 = (n − 1)(x ∧∇) + x ∧ ((x · ∇)∇) (112.11)

This now completes a fair amount of the bivector selection, and a substitution back into
eq. (112.4) yields

〈
(x ∧∇)2

〉
2

= (n − 1 − x · ∇)(x ∧∇) + x ∧ ((x · ∇)∇) + x · (∇∧ (x ∧∇)) (112.12)

The remaining task is to explicitly expand the last vector-trivector dot product. To do that we
use the basic alternation expansion identity

a · (b∧ c∧ d) = (a · b)(c∧ d) − (a · c)(b∧ d) + (a · d)(b∧ c) (112.13)

To see how to apply this to the operator case lets write that explicitly but temporarily in
coordinates

x · ((∇∧ (x ∧∇))φ = (xµγµ) · ((γν∂ν)∧ (xαγα ∧ (γβ∂β)))φ

= x · ∇(x ∧∇)φ − x · γα∇∧ xα∇φ + xµ∇∧ xγµ · γβ∂βφ

= x · ∇(x ∧∇)φ − xα∇∧ xα∇φ + xµ∇∧ x∂µφ

(112.14)

Considering this term by term starting with the second one we have

xα∇∧ xα∇φ = xα(γµ∂µ)∧ xα∇φ

= xαγµ ∧ (∂µxα)∇φ + xαγµ ∧ xα∂µ∇φ

= xµγµ ∧∇φ + xαxαγµ ∧ ∂µ∇φ

= x ∧∇φ + x2∇∧∇φ

(112.15)
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The curl of a gradient is zero, since summing over an product of antisymmetric and symmetric
indices γµ ∧ γν∂µν is zero. Only one term remains to evaluate in the vector-trivector dot product
now

x · (∇∧ x ∧∇) = (−1 + x · ∇)(x ∧∇) + xµ∇∧ x∂µ (112.16)

Again, a completely dumb and brute force expansion of this is

xµ∇∧ x∂µφ = xµ(γν∂ν)∧ (xαγα)∂µφ

= xµγν ∧ (∂ν(xαγα))∂µφ + xµγν ∧ (xαγα)∂ν∂µφ

= xµ(γα ∧ γα)∂µφ + xµγν ∧ x∂ν∂µφ

(112.17)

With γµ = ±γµ, the wedge in the first term is zero, leaving

xµ∇∧ x∂µφ = −xµx ∧ γν∂ν∂µφ

= −xµx ∧ γν∂µ∂νφ

= −x ∧ xµ∂µγν∂νφ

(112.18)

In vector form we have finally

xµ∇∧ x∂µφ = −x ∧ (x · ∇)∇φ (112.19)

The final expansion of the vector-trivector dot product is now

x · (∇∧ x ∧∇) = (−1 + x · ∇)(x ∧∇) − x ∧ (x · ∇)∇φ (112.20)

This was the last piece we needed for the bivector grade selection. Incorporating this into
eq. (112.12), both the x · ∇x∧∇, and the x∧ (x · ∇)∇ terms cancel leaving the surprising simple
result

〈
(x ∧∇)2

〉
2

= (n − 2)(x ∧∇) (112.21)

The power of this result is that it allows us to write the scalar angular momentum operator
from the Laplacian as

〈
(x ∧∇)2

〉
= (x ∧∇)2 −

〈
(x ∧∇)2

〉
2
− (x ∧∇)∧ (x ∧∇)

= (x ∧∇)2 − (n − 2)(x ∧∇) − (x ∧∇)∧ (x ∧∇)

= (−(n − 2) + (x ∧∇) − (x ∧∇)∧)(x ∧∇)

(112.22)
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The complete Laplacian is

∇2 =
1
x2 (x · ∇)2 + (n − 2)

1
x
· ∇ −

1
x2

(
(x ∧∇)2 − (n − 2)(x ∧∇) − (x ∧∇)∧ (x ∧∇)

)
(112.23)

In particular in less than four dimensions the quad-vector term is necessarily zero. The 3D
Laplacian becomes

∇
2 =

1
x2 (1 + x ·∇)(x ·∇) +

1
x2 (1 − x∧∇)(x∧∇) (112.24)

So any eigenfunction of the bivector angular momentum operator x ∧ ∇ is necessarily a si-
multaneous eigenfunction of the scalar operator.





Part XI

F O U R I E R T R E AT M E N T S
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F O U R I E R S O L U T I O N S T O H E AT A N D WAV E E Q UAT I O N S

113.1 motivation

Stanford iTunesU has some Fourier transform lectures by Prof. Brad Osgood. He starts with
Fourier series and by Lecture 5 has covered this and the solution of the Heat equation on a ring
as an example.

Now, for these lectures I get only sound on my ipod. I can listen along and pick up most of
the lectures since this is review material, but here is some notes to firm things up.

Since this heat equation

∇2u = κ∂tu (113.1)

is also the Schrödinger equation for a free particle in one dimension (once the constant is fixed
appropriately), we can also apply the Fourier technique to a particle constrained to a circle. It
would be interesting afterwards to contrast this with Susskind’s solution of the same problem
(where he used the Fourier transform and algebraic techniques instead).

113.2 preliminaries

113.2.1 Laplacian

Osgood wrote the heat equation for the ring as

1
2

uxx = ut (113.2)

where x represented an angular position on the ring, and where he set the heat diffusion con-
stant to 1/2 for convenience. To apply this to the Schrödinger equation retaining all the desired
units we want to be a bit more careful, so let us start with the Laplacian in polar coordinates.

In polar coordinates our gradient is

∇ = θ̂
1
r
∂

∂θ
+ r̂

∂

∂r
(113.3)
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squaring this we have

∇2 = ∇ · ∇ = θ̂
1
r
∂

∂θ
·

(
θ̂

1
r
∂

∂θ

)
+ r̂

∂

∂r
·

(
r̂
∂

∂r

)
=
−1
r3

∂r
∂θ

∂

∂θ
+

1
r2

∂2

∂θ2 +
∂2

∂r2

=
1
r2

∂2

∂θ2 +
∂2

∂r2

(113.4)

So for the circularly constrained where r is constant case we have simply

∇2 =
1
r2

∂2

∂θ2
(113.5)

and our heat equation to solve becomes

∂2u(θ, t)
∂θ2 = (r2κ)

∂u(θ, t)
∂t

(113.6)

113.2.2 Fourier series

Now we also want Fourier series for a given period. Assuming the absence of the "Rigor Police"
as Osgood puts it we write for a periodic function f (x) known on the interval I = [a, a + T ]

f (x) =
∑

cke2πikx/T (113.7)

∫
∂I

f (x)e−2πinx/T =
∑

ck

∫
∂I

e2πi(k−n)x/T

= cnT
(113.8)

So our Fourier coefficient is

f̂ (n) = cn =
1
T

∫
∂I

f (x)e−2πinx/T (113.9)
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113.3 solution of heat equation

113.3.1 Basic solution

Now we are ready to solve the radial heat equation

uθθ = r2κut, (113.10)

by assuming a Fourier series solution.
Suppose

u(θ, t) =
∑

cn(t)e2πinθ/T

=
∑

cn(t)einθ
(113.11)

Taking derivatives of this assumed solution we have

uθθ =
∑

(in)2cneinθ

ut =
∑

c′neinθ
(113.12)

Substituting this back into eq. (113.10) we have

∑
−n2cneinθ =

∑
c′nr2κeinθ (113.13)

equating components we have

c′n = −
n2

r2κ
cn (113.14)

which is also just an exponential.

cn = An exp
(
−

n2

r2κ
t
)

(113.15)

Reassembling we have the time variation of the solution now fixed and can write

u(θ, t) =
∑

An exp
(
−

n2

r2κ
t + inθ

)
(113.16)
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113.3.2 As initial value problem

For the heat equation case, we can assume a known initial heat distribution f (θ). For an initial
time t = 0 we can then write

u(θ, 0) =
∑

Aneinθ = f (θ) (113.17)

This is just another Fourier series, with Fourier coefficients

An =
1

2π

∫
∂I

f (v)e−invdv (113.18)

Final reassembly of the results gives us

u(θ, t) =
∑

exp
(
−

n2

r2κ
t + inθ

)
1

2π

∫
∂I

f (v)e−invdv (113.19)

113.3.3 Convolution

Osgood’s next step, also with the rigor police in hiding, was to exchange orders of integration
and summation, to write

u(θ, t) =

∫
∂I

f (v)dv
1

2π

∞∑
n=−∞

exp
(
−

n2

r2κ
t − in(v − θ)

)
(113.20)

Introducing a Green’s function g(v, t), we then have the complete solution in terms of convo-
lution

g(v, t) =
1

2π

∞∑
n=−∞

exp
(
−

n2

r2κ
t − inv

)
u(θ, t) =

∫
∂I

f (v)g(v − θ, t)dv

(113.21)

Now, this Green’s function is fairly interesting. By summing over paired negative and positive
indices, we have a set of weighted Gaussians.

g(v, t) =
1

2π
+

∞∑
n=1

exp
(
−

n2

r2κ
t
)

cos(nv)
π

(113.22)

Recalling that the delta function can be expressed as a limit of a sinc function, seeing some-
thing similar in this Green’s function is not entirely unsurprising seeming.
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113.4 wave equation

The QM equation for a free particle is

−
~2

2m
∇2ψ = i ~∂tψ (113.23)

This has the same form of the heat equation, so for the free particle on a circle our wave
equation is

ψθθ = −
2mir2

~
∂tψ ie: κ = −2mi/ ~ (113.24)

So, if the wave equation was known at an initial time ψ(θ, 0) = φ(θ), we therefore have by
comparison the time evolution of the particle’s wave function is

g(w, t) =
1

2π
+

∞∑
n=1

exp
(
−

i ~n2t
2mr2

)
cos(nw)

π

ψ(θ, t) =

∫
∂I
φ(v)g(v − θ, t)dv

(113.25)

113.5 fourier transform solution

Now, lets try this one dimensional heat problem with a Fourier transform instead to compare.
Here we do not try to start with an assumed solution, but instead take the Fourier transform of
both sides of the equation directly.

F (uxx) = κF (ut) (113.26)

Let us start with the left hand side, where we can evaluate by integrating by parts

F (uxx) =

∫ ∞

−∞

uxx(x, t)e−2πisxdx

=

∫ ∞

−∞

∂ux(x, t)
∂x

e−2πisxdx

=

(
ux(x, t)e−2πisx

∣∣∣∞
x=−∞

− (−2πis)
∫ ∞

−∞

ux(x, t)e−2πisxdx
) (113.27)
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So if we assume (or require) that the derivative of our unknown function u is zero at infinity,
and then similarly require the function itself to be zero there, we have

F (uxx) = (2πis)
∫ ∞

−∞

∂ux(x, t)
∂x

e−2πisxdx

= (2πis)2
∫ ∞

−∞

u(x, t)e−2πisxdx

= (2πis)2F (u)

(113.28)

Now, for the time derivative. We want

F (ut) =

∫ ∞

−∞

ut(x, t)e−2πisxdx (113.29)

But can pull the derivative out of the integral for

F (ut) =
∂

∂t

(∫ ∞

−∞

u(x, t)e−2πisxdx
)

=
∂F (u)
∂t

(113.30)

So, now we have an equation relating time derivatives only of the Fourier transformed solu-
tion.

Writing F (u) = û this is

(2πis)2û = κ
∂û
∂t

(113.31)

With a solution of

û = A(s)e−4π2 s2t/κ (113.32)

Here A(s) is an arbitrary constant in time integration constant, which may depend on s since
it is a solution of our simpler frequency domain partial differential equation eq. (113.31).

Performing an inverse transform to recover u(x, t) we thus have

u(x, t) =

∫ ∞

−∞

ûe2πixsds

=

∫ ∞

−∞

A(s)e−4π2 s2t/κe2πixsds
(113.33)
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Now, how about initial conditions. Suppose we have u(x, 0) = f (x), then

f (x) =

∫ ∞

−∞

A(s)e2πixsds (113.34)

Which is just an inverse Fourier transform in terms of the integration “constant” A(s). We can
therefore write the A(s) in terms of the initial time domain conditions.

A(s) =

∫ ∞

−∞

f (x)e−2πisxdx

= f̂ (s)
(113.35)

and finally have a complete solution of the one dimensional Heat equation. That is

u(x, t) =

∫ ∞

−∞

f̂ (s)e−4π2 s2t/κe2πixsds (113.36)

113.5.1 With Green’s function?

If we put in the integral for f̂ (s) explicitly and switch the order as was done with the Fourier
series will we get a similar result? Let us try

u(x, t) =

∫ ∞

−∞

(∫ ∞

−∞

f (u)e−2πisudu
)

e−4π2 s2t/κe2πixsds

=

∫ ∞

−∞

du f (u)
∫ ∞

−∞

e−4π2 s2t/κe2πi(x−u)sds
(113.37)

Cool. So, with the introduction of a Green’s function g(w, t) for the fundamental solution
of the heat equation, we therefore have our solution in terms of convolution with the initial
conditions. It does not get any more general than this!

g(w, t) =

∫ ∞

−∞

exp
(
−

4π2s2t
κ

+ 2πiws
)

ds

u(x, t) =

∫ ∞

−∞

f (u)g(x − u, t)du
(113.38)

Compare this to eq. (113.21), the solution in terms of Fourier series. The form is almost
identical, but the requirement for periodicity has been removed by switch to the continuous
frequency domain!
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113.5.2 Wave equation

With only a change of variables, setting κ = −2mi/ ~ we have the general solution to the one
dimensional zero potential wave equation eq. (113.23) in terms of an initial wave function.
However, we have a form of the Fourier transform that obscures the physics has been picked
here unfortunately. Let us start over in super speed mode directly from the wave equation, using
the form of the Fourier transform that substitutes 2πs→ k for wave number.

We want to solve

−
~2

2m
ψxx = i ~ψt (113.39)

Now calculate

F (ψxx) =
1

2π

∫ ∞

−∞

ψxx(x, t)e−ikxdx

=
1

2π
ψx(x, t)e−ikx

∣∣∣∞
−∞
− (−ik)

1
2π

∫ ∞

−∞

ψx(x, t)e−ikxdx

= · · ·

=
1

2π
(ik)2ψ̂(k)

(113.40)

So we have

−
~2

2m
(ik)2ψ̂(k, t) = i ~

∂ψ̂(k, t)
∂t

(113.41)

This provides us the fundamental solutions to the wave function in the wave number domain

ψ̂(k, t) = A(k) exp
(
−

i ~k2

2m
t
)

ψ(x, t) =
1
√

2π

∫ ∞

−∞

A(k) exp
(
−

i ~k2

2m
t
)

exp(ikx)dk
(113.42)

In particular, as before, with an initial time wave function ψ(x, 0) = φ(x) we have

φ(x) = ψ(x, 0) =
1
√

2π

∫ ∞

−∞

A(k) exp(ikx)dk

= F −1(A(k))
(113.43)
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So, A(k) = φ̂, and we have

ψ(x, t) =
1
√

2π

∫ ∞

−∞

φ̂(k) exp
(
−

i ~k2

2m
t
)

exp(ikx)dk (113.44)

So, ending the story we have finally, the general solution for the time evolution of our one
dimensional wave function given initial conditions

ψ(x, t) = F −1
(
φ̂(k) exp

(
−

i ~k2

2m
t
))

(113.45)

or, alternatively, in terms of momentum via k = p/ ~ we have

ψ(x, t) = F −1
(
φ̂(p) exp

(
−

ip2

2m ~
t
))

(113.46)

Pretty cool! Observe that in the wave number or momentum domain the time evolution of the
wave function is just a continual phase shift relative to the initial conditions.

113.5.3 Wave function solutions by Fourier transform for a particle on a circle

Now, thinking about how to translate this Fourier transform method to the wave equation for a
particle on a circle (as done by Susskind in his online lectures) makes me realize that one is free
to use any sort of integral transform method appropriate for the problem (Fourier, Laplace, ...).
It does not have to be the Fourier transform. Now, if we happen to pick an integral transform
with θ ∈ [0, π] bounds, what do we have? This is nothing more than the inner product for the
Fourier series, and we come full circle!

Now, the next thing to work out in detail is how to translate from the transform methods to
the algebraic bra ket notation. This looks like it will follow immediately if one calls out the
inner product in use explicitly, but that is an exploration for a different day.





114
P O I S S O N A N D R E TA R D E D P OT E N T I A L G R E E N ’ S F U N C T I O N S
F RO M F O U R I E R K E R N E L S

114.1 motivation

Having recently attempted a number of Fourier solutions to the Heat, Schrödinger, Maxwell vac-
uum, and inhomogeneous Maxwell equation, a reading of [36] inspired me to have another go.
In particular, he writes the Poisson equation solution explicitly in terms of a Green’s function.

The Green’s function for the Poisson equation

G(x − x′) =
1

4π|x − x′|
(114.1)

is not really derived, rather is just pointed out. However, it is a nice closed form that does
not have any integrals. Contrast this to the Fourier transform method, where one ends up with a
messy threefold integral that is not particularly obvious how to integrate.

In the PF thread Fourier transform solution to electrostatics Poisson equation? I asked if
anybody knew how to reduce this integral to the potential kernel of electrostatics. Before getting
any answer from PF I found it in [5], a book recently purchased, but not yet read.

Go through this calculation here myself in full detail to get more comfort with the ideas. Some
of these ideas can probably also be applied to previous incomplete Fourier solution attempts. In
particular, the retarded time potential solutions likely follow. Can these same ideas be applied
to the STA form of the Maxwell equation, explicitly inverting it, as [10] indicate is possible (but
do not spell out).

114.2 poisson equation

114.2.1 Setup

As often illustrated with the Heat equation, we seek a Fourier transform solution of the electro-
statics Poisson equation

∇2φ = −ρ/ε0 (114.2)

919
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Our 3D Fourier transform pairs are defined as

f̂ (k) =
1

(
√

2π)3

$
f (x)e−ik·xd3x

f (x) =
1

(
√

2π)3

$
f̂ (k)eik·xd3k

(114.3)

Applying the transform we get

φ(x) =
1
ε0

$
ρ(x′)G(x − x′)d3x′

G(x) =
1

(2π)3

$
1
k2 eik·xd3k

(114.4)

Green’s functions are usually defined by their delta function operational properties. Doing so,
as defined above we have

∇2G(x) = −4πδ3(x) (114.5)

(note that there are different sign conventions for this delta function identification.)
Application to the Poisson equation eq. (114.2) gives

∫
∇2G(x − x′)φ(x′) =

∫
(−4πδ3(x − x′))φ(x′) = −4πφ(x) (114.6)

and with expansion in the alternate sequence∫
∇2G(x − x′)φ(x′) =

∫
G(x − x′)(∇′2φ(x′)) = −

1
ε0

∫
G(x − x′)ρ(x′) (114.7)

With prior knowledge of electrostatics we should therefore find

G(x) =
1

4π|x|
. (114.8)

Our task is to actually compute this from the Fourier integral.
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114.2.2 Evaluating the convolution kernel integral

114.2.2.1 Some initial thoughts

Now it seems to me that this integral G only has to be evaluated around a small neighborhood
of the origin. For example if one evaluates one of the integrals

∫ ∞

−∞

1
k1

2 + k2
2 + k3

3 eik1 x1dk1 (114.9)

using a an upper half plane contour the result is zero unless k2 = k3 = 0. So one is left with
something loosely like

G(x) = lim
ε→0

1
(2π)3

∫ ε

k1=−ε
dk1

∫ ε

k2=−ε
dk2

∫ ε

k3=−ε
dk3

1
k2 eik·x (114.10)

How to reduce this? Somehow it must be possible to take this Fourier convolution kernel and
somehow evaluate the integral to produce the electrostatics potential.

114.2.2.2 An attempt

The answer of how to do so, as pointed out above, was found in [5]. Instead of trying to evaluate
this integral which has a pole at the origin, they cleverly evaluate a variant of it

I =

$
1

k2 + a2 eik·xd3k (114.11)

which splits and shifts the repeated pole into two first order poles away from the origin. After
a change to spherical polar coordinates, the new integral can be evaluated, and the Poisson
Green’s function in potential form follows by letting a tend to zero.

Very cool. It seems worthwhile to go through the motions of this myself, omitting no details
I would find valuable.

First we want the volume element in spherical polar form, and our vector. That is

ρ = k cos φ

dA = (ρdθ)(kdφ)

d3k = dkdA = k2 cos φdθdφdk

k = (ρ cos θ, ρ sin θ, k sin θ)

= k(cos φ cos θ, cos φ sin θ, sin φ)

(114.12)



922 poisson and retarded potential green’s functions from fourier kernels

FIXME: scan picture to show angle conventions picked.
This produces

I =

∫ 2π

θ=0

∫ π/2

φ=−π/2
k2

∫ ∞

k=0
cos φdθdφdk

1
k2 + a2 exp (ik(cos φ cos θx1 + cos φ sin θ + x2 + sin φx3))

(114.13)

Now, this is a lot less tractable than the Byron/Fuller treatment. In particular they were able
to make a t = cos φ substitution, and if I try this I get

I = −

∫ 2π

θ=0

∫ 1

t=−1

∫ ∞

k=0

1
k2 + a2 exp

(
ik(t cos θx1 + t sin θx2 +

√
1 − t2x3)

)
k2dtdθdk (114.14)

Now, this is still a whole lot different, and in particular it has ik(t sin θx2 +
√

1 − t2x3) in the
exponential. I puzzled over this for a while, but it becomes clear on writing. Freedom to orient
the axis along a preferable direction has been used, and some basis for which x = x je j+ = xe1

has been used! We are now left with

I = −

∫ 2π

θ=0

∫ 1

t=−1

∫ ∞

k=0

1
k2 + a2 exp (ikt cos θx) k2dtdθdk

= −

∫ 2π

θ=0

∫ ∞

k=0

2
(k2 + a2) cos θ

sin (kt cos θx) kdθdk

= −

∫ 2π

θ=0

∫ ∞

k=−∞

1
(k2 + a2) cos θ

sin (kt cos θx) kdθdk

(114.15)

Here the fact that our integral kernel is even in k has been used to double the range and half
the kernel.

However, looking at this, one can see that there is trouble. In particular, we have cos θ in the
denominator, with a range that allows zeros. How did the text avoid this trouble?

114.2.3 Take II

After mulling it over for a bit, it appears that aligning x with the x-axis is causing the trouble.
Aligning with the z-axis will work out much better, and leave only one trig term in the expo-
nential. Essentially we need to use a volume of rotation about the z-axis, integrating along all
sets of constant k · x. This is a set of integrals over concentric ring volume elements (FIXME:
picture).
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Our volume element, measuring θ ∈ [0, π] from the z-axis, and φ as our position on the ring

k · x = kx cos θ

ρ = k sin θ

dA = (ρdφ)(kdθ)

d3k = dkdA = k2 sin θdθdφdk

(114.16)

This gives us

I =

∫ π

θ=0

∫ 2π

φ=0

∫ ∞

k=0

1
k2 + a2 exp (ikx cos θ) k2 sin θdθdφdk (114.17)

Now we can integrate immediately over φ, and make a t = cos θ substitution (dt = − sin θdθ)

I = −2π
∫ −1

t=1

∫ ∞

k=0

1
k2 + a2 exp (ikxt) k2dtdk

= −
2π
ix

∫ ∞

k=0

1
k2 + a2

(
e−ikx − eikx

)
kdk

=
2π
ix

∫ ∞

k=0

1
k2 + a2 eikxkdk −

2π
ix

∫ −∞

k=−0

1
k2 + a2 eikx(−k)(−dk)

=
2π
ix

∫ ∞

k=−∞

1
k2 + a2 eikxkdk

=
2π
ix

∫ ∞

k=−∞

1
k − ia

keikx

(k + ia)
dk

(114.18)

Now we have something that is in form for contour integration. In the upper half plane we
have a pole at k = ia. Assuming that the integral over the big semicircular arc vanishes, we can
just pick up the residue at that pole contributing. The assumption that this vanishes is actually
non-trivial looking since the k/(k + ia) term at a big radius R tends to 1. This is probably where
Jordan’s lemma comes in, so some study to understand that looks well justified.

0 = I − 2πi
2π
ix

keikx

(k + ia)

∣∣∣∣∣∣
k=ia

= I − 2πi
2π
ix

e−ax

2

(114.19)

So we have

I =
2π2

x
e−ax (114.20)
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Now that we have this, the Green’s function of eq. (114.4) is

G(x) = lim
a→0

1
(2π)3

2π2

x
e−ax

=
1

4π|x|

(114.21)

Which gives

φ(x) =
1

4πε0

∫
ρ(x′)
|x − x′|

dV ′ (114.22)

Awesome! All following from the choice to set E = −∇φ, we have a solution for φ following
directly from the divergence equation ∇ ·E = ρ/ε0 via Fourier transformation of this equation.

114.3 retarded time potentials for the 3d wave equation

114.3.1 Setup

If we look at the general inhomogeneous Maxwell equation

∇F = J/ε0c (114.23)

In terms of potential F = ∇∧ A and employing in the Lorentz gauge ∇ · A = 0, we have

∇2A =

(
1
c2 ∂tt −

∑
∂ j j

)
A = J/ε0c (114.24)

As scalar equations with A = Aµγµ, J = Jνγν we have four equations all of the same form.
A Green’s function form for such wave equations was previously calculated in 116. That was

 1
c2

∂2

∂t2 −
∑

j

∂2

∂x j2

ψ = g (114.25)

ψ(x, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x′, t′)G(x − x′, t − t′)d3x′dt′

G(x, t) = θ(t)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

c
(2π)3|k|

sin(|k|ct) exp (ik · x) d3k
(114.26)

Here θ(t) is the unit step function, which meant we only sum the time contributions of the
charge density for t − t′ > 0, or t′ < t. That is the causal variant of the solution, which was
arbitrary mathematically (t > t′ would have also worked).
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114.3.2 Reducing the Green’s function integral

Let us see if the spherical polar method works to reduce this equation too. In particular we want
to evaluate

I =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
|k|

sin(|k|ct) exp (ik · x) d3k (114.27)

Will we have a requirement to introduce a pole off the origin as above? Perhaps like∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
|k| + α

sin(|k|ct) exp (ik · x) d3k (114.28)

Let us omit it for now, but make the same spherical polar substitution used successfully above,
writing

I =

∫ π

θ=0

∫ 2π

φ=0

∫ ∞

k=0

1
k

sin (kct) exp (ikx cos θ) k2 sin θdθdφdk

= 2π
∫ π

θ=0

∫ ∞

k=0
sin (kct) exp (ikx cos θ) k sin θdθdk

(114.29)

Let τ = cos θ, −dτ = sin θdθ, for

I = 2π
∫ −1

τ=1

∫ ∞

k=0
sin (kct) exp (ikxτ) k(−dτ)dk

= −2π
∫ ∞

k=0
sin (kct)

2
2ikx

(exp (−ikx) − exp (ikx)) kdk

=
4π
x

∫ ∞

k=0
sin (kct) sin (kx) dk

=
2π
x

∫ ∞

k=0
(cos (k(x − ct)) − cos (k(x + ct))) dk

(114.30)

Okay, this is much simpler, but still not in a form that is immediately obvious how to apply
contour integration to, since it has no poles. The integral kernel here is however an even function,
so we can use the trick of doubling the integral range.

I =
π

x

∫ ∞

k=−∞

(cos (k(x − ct)) − cos (k(x + ct))) dk (114.31)
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Having done this, this integral is not really any more well defined. With the Rigor police on
holiday, let us assume we want the principle value of this integral

I = lim
R→∞

π

x

∫ R

k=−R
(cos (k(x − ct)) − cos (k(x + ct))) dk

= lim
R→∞

π

x

∫ R

k=−R
d
(
sin (k(x − ct))

x − ct
−

sin (k(x + ct))
x + ct

)
= lim

R→∞

2π2

x

(
sin (R(x − ct))
π(x − ct)

−
sin (R(x + ct))
π(x + ct)

) (114.32)

This sinc limit has been seen before being functionally identified with the delta function (the
wikipedia article calls these “nascent delta function”), so we can write

I =
2π2

x
(δ(x − ct) − δ(x + ct)) (114.33)

For our Green’s function we now have

G(x, t) = θ(t)
c

(2π)3

2π2

|x|
(δ(x − ct) − δ(x + ct))

= θ(t)
c

4π|x|
(δ(x − ct) − δ(x + ct))

(114.34)

And finally, our wave function (switching variables to convolve with the charge density)
instead of the Green’s function

ψ(x, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t − t′)θ(t′)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ − ct′)d3x′dt′

−

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t − t′)θ(t′)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + ct′)d3x′dt′
(114.35)

Let us break these into two parts

ψ(x, t) = ψ−(x, t) + ψ+(x, t) (114.36)

Where the first part, ψ− is for the −ct′ delta function and one ψ− for the +ct′. Making a
τ = t − t′ change of variables, this first portion is

ψ−(x, t) = −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, τ)θ(t − τ)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ − ct + cτ)d3x′dτ

= −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′′, t −
∣∣∣x′′∣∣∣/c)

c
4π|x′′|

d3x′′
(114.37)
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One more change of variables, x′ = x − x′′, d3x′′ = −d3x, gives the final desired retarded
potential result. The ψ+ result is similar (see below), and assembling all we have

ψ−(x, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x′, t −
∣∣∣x − x′

∣∣∣/c)
c

4π|x − x′|
d3x′

ψ+(x, t) = −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x, t +
∣∣∣x − x′

∣∣∣/c)
c

4π|x − x′|
d3x′

(114.38)

It looks like my initial interpretation of the causal nature of the unit step in the original
functional form was not really right. It is not until the Green’s function is “integrated” do we
get this causal and non-causal split into two specific solutions. In the first of these solutions is
only charge contributions at the position in space offset by the wave propagation speed effects
the potential (this is the causal case). On the other hand we have a second specific solution to
the wave equation summing the charge contributions at all the future positions, this time offset
by the time it takes a wave to propagate backwards from that future spacetime

The final mathematical result is consistent with statements seen elsewhere, such as in [12],
although it is likely that the path taken by others to get this result was less ad-hoc than mine. It is
been a couple years since seeing this for the first time in Feynman’s text. It was not clear to me
how somebody could possibly come up with those starting with Maxwell’s equations. Here by
essentially applying undergrad Engineering Fourier methods, we get the result in an admittedly
ad-hoc fashion, but at least the result is not pulled out of a magic hat.

114.3.3 Omitted Details. Advanced time solution

Similar to the above for ψ+ we have

ψ+(x, t) = −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t − t′)θ(t′)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + ct′)d3x′dt′

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, τ)θ(t − τ)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + c(t − τ))d3x′dτ

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, τ)θ(t − τ)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + ct − cτ)d3x′dτ

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t +
∣∣∣x′∣∣∣/c)

c
4π|x′|

d3x′

= −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x, t +
∣∣∣x − x′

∣∣∣/c)
c

4π|x − x′|
d3x′

(114.39)

Is there an extra factor of −1 here?
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114.4 1d wave equation

It is somewhat irregular seeming to treat the 3D case before what should be the simpler 1D case,
so let us try evaluating the Green’s function for the 1D wave equation too.

We have found that Fourier transforms applied to the forced wave equation(
1
v2 ∂tt − ∂xx

)
ψ = g(x, t) (114.40)

result in the following integral solution.

ψ(x, t) =

∫ ∞

x′=−∞

∫ ∞

t′=0
g(x − x′, t − t′)G(x′, t′)dx′dt′

G(x, t) =

∫ ∞

k=−∞

v
2πk

sin(kvt) exp(ikx)dk
(114.41)

As in the 3D case above can this reduced to something that does not involve such an un-
palatable integral. Given the 3D result, it would be reasonable to get a result involving g(x± vt)
terms.

First let us get rid of the sine term, and express G entirely in exponential form. That is

G(x, t) =

∫ ∞

k=−∞

v
4πki

(exp(kvt) − exp(−kvt)) exp(ikx)dk

=

∫ ∞

k=−∞

v
4πki

(
ek(x+vt) − ek(x−vt)

)
dk

(114.42)

Using the unit step function identification from eq. (114.53), we have

G(x, t) =
v
2
(θ(x + vt) − θ(x − vt)) (114.43)

If this identification works our solution then becomes

ψ(x, t) =

∫ ∞

x′=−∞

∫ ∞

t′=0
g(x − x′, t − t′)

v
2
(θ(x′ + vt′) − θ(x′ − vt′)) dx′dt′

=

∫ ∞

x′=−∞

∫ ∞

s=0
g(x − x′, t − s/v)

1
2
(θ(x′ + s) − θ(x′ − s)) dx′ds

(114.44)

This is already much simpler than the original, but additional reduction should be possible by
breaking this down into specific intervals. An alternative, perhaps is to use integration by parts
and the delta function as the derivative of the unit step identification.
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Let us try a pair of variable changes

ψ(x, t) =

∫ ∞

u=−∞

∫ ∞

s=0
g(x − u + s, t − s/v)

1
2
θ(u)duds

−

∫ ∞

u=−∞

∫ ∞

s=0
g(x − u − s, t − s/v)

1
2
θ(u)duds

(114.45)

Like the retarded time potential solution to the 3D wave equation, we now have the wave
function solution entirely specified by a weighted sum of the driving function

ψ(x, t) =
1
2

∫ ∞

u=0

∫ ∞

s=0
(g(x − u + s, t − s/v) − g(x − u − s, t − s/v)) duds (114.46)

Can this be tidied at all? Let us do a change of variables here, writing −τ = t − s/v.

ψ(x, t) =
1
2

∫ ∞

u=0

∫ ∞

τ=−t
(g(x + vt − (u − vτ), τ) − g(x − vt − (u + vτ), τ)) dudτ

=
1
2

∫ ∞

u=0

∫ t

τ=−∞
(g(x + vt − (u + vτ),−τ) − g(x − vt − (u − vτ),−τ)) dudτ

(114.47)

Is that any better? I am not so sure, and intuition says there is a way to reduce this to a single
integral summing only over spatial variation.

114.4.1 Followup to verify

There has been a lot of guessing and loose mathematics here. However, if this is a valid so-
lution despite all that, we should be able to apply the wave function operator 1

v2 ∂tt + ∂xx as a
consistency check and get back g(x, t) by differentiating under the integral sign.

FIXME: First have to think about how exactly to do this differentiation.

114.5 appendix

114.5.1 Integral form of unit step function

The wiki article on the Heaviside unit step function lists an integral form

Iε =
1

2πi
PV

∫ ∞

−∞

eixτ

τ − iε
dτ

θ(x) = lim
ε→0

Iε
(114.48)
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How does this make sense? For x > 0 we can evaluate this with an upper half plane semi-
circular contour (FIXME: picture). Along the arc z = Reiφ we have

|Iε | =

∣∣∣∣∣∣ 1
2πi

∫ π

φ=0

eiR(cos φ+i sin φ)

Reiφ − iε
Rieiφdφ

∣∣∣∣∣∣
≈

∣∣∣∣∣∣ 1
2π

∫ π

φ=0
eiR cos φe−R sin φdφ

∣∣∣∣∣∣
≤

1
2π

∫ π

φ=0
e−R sin φdφ

≤
1

2π

∫ π

φ=0
e−Rdφ

=
1
2

e−R

(114.49)

This tends to zero as R→ ∞, so evaluating the residue, we have for x > 0

Iε = −(−2πi)
1

2πi
eixτ

∣∣∣
τ=iε

= e−xε
(114.50)

Now for x < 0 an upper half plane contour will diverge, but the lower half plane can be used.
This gives us Iε = 0 in that region. All that remains is the x = 0 case. There we have

Iε(0) =
1

2πi
PV

∫ ∞

−∞

1
τ − iε

dτ

=
1

2πi
lim

R→∞
ln

( R − iε
−R − iε

)
→

1
2πi

ln (−1)

=
1

2πi
iπ

(114.51)

Summarizing we have

Iε(x) =


e−xε if x > 0
1
2 if x = 0

0 if x < 0

(114.52)
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So in the limit this does work as an integral formulation of the unit step. This will be used to
(very loosely) identify

θ(x) ∼
1

2πi
PV

∫ ∞

−∞

eixτ

τ
dτ (114.53)





115
F O U R I E R T R A N S F O R M S O L U T I O N S T O T H E WAV E E Q UAT I O N

115.1 mechanical wave equation solution

We want to solve

(
1
v2 ∂tt − ∂xx

)
ψ = 0 (115.1)

A separation of variables treatment of this has been done in 67, and some logical followup
for that done in 69 in the context of Maxwell’s equation for the vacuum field.

Here the Fourier transform will be used as a tool.

115.2 one dimensional case

Following the heat equation treatment in 113, we take Fourier transforms of both parts of
eq. (115.1).

F

(
1
v2 ∂ttψ

)
= F (∂xxψ) (115.2)

For the x derivatives we can integrate by parts twice

F (∂xxψ) =
1
√

2π

∫ ∞

−∞

(∂xxψ) exp (−ikx) dx

= −
1
√

2π

∫ ∞

−∞

(∂xψ) ∂x (exp (−ikx)) dx

= −
−ik
√

2π

∫ ∞

−∞

(∂xψ) exp (−ikx) dx

=
(−ik)2
√

2π

∫ ∞

−∞

ψ exp (−ikx) dx

(115.3)

Note that this integration by parts requires that ∂xψ = ψ = 0 at ±∞. We are left with

F (∂xxψ) = −k2ψ̂(k, t) (115.4)

933



934 fourier transform solutions to the wave equation

Now, for the left hand side, for the Fourier transform of the time partials we can pull the
derivative operation out of the integral

F

(
1
v2 ∂ttψ

)
=

1
√

2π

∫ ∞

−∞

(
1
v2 ∂ttψ

)
exp (−ikx) dx

=
1
v2 ∂ttψ̂(k, t)

(115.5)

We are left with our harmonic oscillator differential equation for the transformed wave func-
tion

1
v2 ∂ttψ̂(k, t) = −k2ψ̂(k, t). (115.6)

Since we have a partial differential equation, for the integration constant we are free to pick
any function of k. The solutions of this are therefore of the form

ψ̂(k, t) = A(k) exp (±ivkt) (115.7)

Performing an inverse Fourier transform we now have the wave equation expressed in terms
of this unknown (so far) frequency domain function A(k). That is

ψ(x, t) =
1
√

2π

∫ ∞

−∞

A(k) exp (±ivkt + ikx) dk (115.8)

Now, suppose we fix the boundary value conditions by employing a known value of the wave
function at t = 0, say ψ(x, 0) = φ(x). We then have

φ(x) =
1
√

2π

∫ ∞

−∞

A(k) exp (ikx) dk (115.9)

From which we have A(k) in terms of φ by inverse transform

A(k) =
1
√

2π

∫ ∞

−∞

φ(x) exp (−ikx) dx (115.10)

One could consider the problem fully solved at this point, but it can be carried further. Let us
substitute eq. (115.10) back into eq. (115.8). This is

ψ(x, t) =
1
√

2π

∫ ∞

−∞

(
1
√

2π

∫ ∞

−∞

φ(u) exp (−iku) du
)

exp (±ivkt + ikx) dk (115.11)
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With the Rigor police on holiday, exchange the order of integration

ψ(x, t) =

∫ ∞

−∞

φ(u)du
1

2π

∫ ∞

−∞

exp (−iku ± ivkt + ikx) dk

=

∫ ∞

−∞

φ(u)du
1

2π

∫ ∞

−∞

exp (ik(x − u ± vt)) dk
(115.12)

The principle value of this inner integral is

PV
1

2π

∫ ∞

−∞

exp (ik(x − u ± vt)) dk = lim
R→∞

1
2π

∫ R

−R
exp (ik(x − u ± vt)) dk

= lim
R→∞

sin (R(x − u ± vt))
π(x − u ± vt)

(115.13)

And here we make the usual identification with the delta function δ(x − u ± vt). We are left
with

ψ(x, t) =

∫ ∞

−∞

φ(u)δ(x − u ± vt)du

= φ(x ± vt)
(115.14)

We find, amazingly enough, just by application of the Fourier transform, that the time evolu-
tion of the wave function follows propagation of the initial wave packet down the x-axis in one
of the two directions with velocity v.

This is a statement well known to any first year student taking a vibrations and waves course,
but it is nice to see it follow from the straightforward application of transform techniques
straight out of the Engineer’s toolbox.

115.3 two dimensional case

Next, using a two dimensional Fourier transform

f̂ (k,m) =
1

(
√

2π)2

∫ ∞

−∞

f (x, y) exp (−ikx − imy) dxdy

f (x, y) =
1

(
√

2π)2

∫ ∞

−∞

f̂ (k,m) exp (ikx + imy) dkdm,
(115.15)

let us examine the two dimensional wave equation

F

((
1
v2 ∂tt − ∂xx − ∂yy

)
ψ = 0

)
(115.16)
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Applying the same technique as above we have

1
v2 ∂ttψ̂(k,m, t) =

(
(−ik)2 + (−im)2

)
ψ̂(k,m, t) (115.17)

With a solution

ψ̂(k,m, t) = A(k,m) exp
(
±i

√
k2 + m2vt

)
. (115.18)

Inverse transforming we have our spatial domain function

ψ(x, y, t) =
1

(
√

2π)2

∫ ∞

−∞

A(k,m) exp
(
ikx + imy ± i

√
k2 + m2vt

)
dkdm (115.19)

Again introducing an initial value function ψ(x, y, 0) = φ(x, y) we have

A(k,m) = φ̂(k,m)

=
1

(
√

2π)2

∫ ∞

−∞

φ(u,w) exp (−iku − imw) dudw
(115.20)

From which we can produce a final solution for the time evolution of an initial wave function,
in terms of a Green’s function for the wave equation.

ψ(x, y, t) =

∫ ∞

−∞

φ(u,w)G(x − u, y −w, t)dudw

G(x, y, t) =
1

(2π)2

∫ ∞

−∞

exp
(
ikx + imy ± i

√
k2 + m2vt

)
dkdm

(115.21)

Pretty cool even if it is incomplete.

115.3.1 A (busted) attempt to reduce this Green’s function to deltas

Now, for this inner integral kernel in eq. (115.21), our Green’s function, or fundamental solution
for the wave equation, we expect to have the action of a delta function. If it weare not for that
root term we could make that identification easily since it could be factored into independent
bits:

1
(2π)2

∫ ∞

−∞

exp (ik(x − u) + im(y −w)) dkdm

=

(
1

2π

∫ ∞

−∞

exp (ik(x − u)) dk
) (

1
2π

∫ ∞

−∞

exp (im(y −w)) dm
)

∼ δ(x − u)δ(y −w)

(115.22)
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Having seen previously that functions of the form f (k̂ · x − vt) are general solutions to the
wave equation in higher dimensions suggests rewriting the integral kernel of the wave function
in the following form

1
(2π)2

∫ ∞

−∞

exp
(
ik(x − u) + im(y −w) ± i

√
k2 + m2vt

)
dkdm

=
1

2π

∫ ∞

−∞

dk exp (ik(x − u ± vt))

×
1

2π

∫ ∞

−∞

dm exp (im(y −w ± vt))

× exp
(
±ivt(

√
k2 + m2 − k −m)

)
(115.23)

Now, the first two integrals have the form that we associate with one dimensional delta func-
tions, and one can see that when either k or m separately large (and positive) relative to the
other than the third factor is approximately zero. In a loose fashion one can guesstimate that
this combined integral has the following delta action

1
(2π)2

∫ ∞

−∞

exp
(
ik(x − u) + im(y −w) ± i

√
k2 + m2vt

)
dkdm

∼ δ(x − u ± vt)δ(y −w ± vt)
(115.24)

If that is the case then our final solution becomes

ψ(x, y, t) =

∫ ∞

−∞

φ(u,w)δ(x − u ± vt)δ(y −w ± vt)dudw

= φ(x ± vt, y ± vt)
(115.25)

This is a bit different seeming than the unit wave number dot product form, but lets see if it
works. We want to expand

(
1
v2 ∂tt − ∂xx − ∂yy

)
ψ (115.26)

Let us start with the time partials

∂ttφ(x ± vt, y ± vt) = ∂t∂tφ(x ± vt, y ± vt)

= ∂t(∂xφ(±v) + ∂yφ(±v))

= (±v)(∂x∂tφ + ∂y∂tφ)

= (±v)2(∂x(∂xφ + ∂yφ) + ∂y(∂xφ + ∂yφ))

= (±v)2(∂xxφ + ∂yyφ + ∂yxφ + ∂xyφ)

(115.27)
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So application of this test solution to the original wave equation is not zero, since these cross
partials are not necessarily zero

(
1
v2 ∂tt − ∂xx − ∂yy

)
ψ = ∂yxφ + ∂xyφ (115.28)

This indicates that an incorrect guess was made about the delta function action of the integral
kernel found via this Fourier transform technique. The remainder of that root term does not in
fact cancel out, which appeared may occur, but was just too convenient. Oh well.

115.4 three dimensional wave function

It is pretty clear that a three dimensional Fourier transform

f̂ (k,m, n) =
1

(
√

2π)3

∫ ∞

−∞

f (x, y, z) exp (−ikx − imy − inz) dxdydz

f (x, y, z) =
1

(
√

2π)3

∫ ∞

−∞

f̂ (k,m, n) exp (ikx + imy + inz) dkdmdn,
(115.29)

applied to a three dimensional wave equation

F

((
1
v2 ∂tt − ∂xx − ∂yy − ∂zz

)
ψ = 0

)
(115.30)

will lead to the similar results, but since this result did not work, it is not worth perusing this
more general case just yet.

Despite the failure in the hopeful attempt to reduce the Green’s function to a product of delta
functions, one still gets a general solution from this approach for the three dimensional case.

ψ(x, y, z, t) =

∫ ∞

−∞

φ(u,w, r)G(x − u, y −w, z − r, t)dudwdr

G(x, y, z, t) =
1

(2π)3

∫ ∞

−∞

exp
(
ikx + imy + inz ± i

√
k2 + m2 + n2vt

)
dkdmdn

(115.31)

So, utilizing this or reducing it to the familiar f (k̂ · x ± vt) solutions becomes the next step.
Intuition says that we need to pick a different inner product to get that solution. For the two
dimensional case that likely has to be an inner product with a circular contour, and for the three
dimensional case a spherical surface inner product of some sort.

Now, also interestingly, one can see hints here of the non-vacuum Maxwell retarded time
potential wave solutions. This inspires an attempt to try to tackle that too.
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F O U R I E R T R A N S F O R M S O L U T I O N S T O M A X W E L L’ S E Q UAT I O N

116.1 motivation

In 115 a Green’s function solution to the homogeneous wave equation

(
1
v2 ∂tt − ∂xx − ∂yy − ∂zz

)
ψ = 0 (116.1)

was found to be

ψ(x, y, z, t) =

∫ ∞

−∞

φ(u,w, r)G(x − u, y −w, z − r, t)dudτdr

G(x, y, z, t) =
1

(2π)3

∫ ∞

−∞

exp
(
ikx + imy + inz ± i

√
k2 + m2 + n2vt

)
dkdmdn

(116.2)

The aim of this set of notes is to explore the same ideas to the forced wave equations for the
four vector potentials of the Lorentz gauge Maxwell equation.

Such solutions can be used to find the Faraday bivector or its associated tensor components.
Note that the specific form of the Fourier transform used in these notes continues to be

f̂ (k) =
1

(
√

2π)n

∫ ∞

−∞

f (x) exp (−ik · x) dnx

f (x) =
1

(
√

2π)n

∫ ∞

−∞

f̂ (k) exp (ik · x) dnk
(116.3)

116.2 forced wave equation

116.2.1 One dimensional case

A good starting point is the reduced complexity one dimensional forced wave equation

(
1
v2 ∂tt − ∂xx

)
ψ = g (116.4)
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Fourier transforming to to the wave number domain, with application of integration by parts
twice (each toggling the sign of the spatial derivative term) we have

1
v2 ψ̂tt − (−ik)2ψ̂ = ĝ (116.5)

This leaves us with a linear differential equation of the following form to solve

f ′′ + α2 f = h (116.6)

Out of line solution of this can be found below in eq. (116.48), where we have f = ψ̂, α = kv,
and h = ĝv2. Our solution for the wave function in the wave number domain is now completely
specified

ψ̂(k, t) =

∣∣∣∣∣vk
∣∣∣∣∣ ∫ t

u=t0(k)
ĝ(u) sin(|kv|(t − u))du (116.7)

Here because of the partial differentiation we have the flexibility to make the initial time a
function of the wave number k, but it is probably more natural to just set t0 = −∞. Also let us
explicitly pick v > 0 so that absolutes are only required on the factors of k

ψ̂(k, t) =
v
|k|

∫ t

u=−∞

ĝ(k, u) sin(|k|v(t − u))du (116.8)

But seeing the integral in this form suggests a change of variables τ = t − u, which gives us
our final wave function in the wave number domain with all the time dependency removed from
the integration limits

ψ̂(k, t) =
v
|k|

∫ ∞

τ=0
ĝ(k, t − τ) sin(|k|vτ)dτ (116.9)

With this our wave function is

ψ(x, t) =
1
√

2π

∫ ∞

−∞

(
v
k

∫ ∞

τ=0
ĝ(k, t − τ) sin(|k|vτ)dτ

)
exp(ikx)dk (116.10)

But we also have

ĝ(k, t) =
1
√

2π

∫ ∞

−∞

g(x, t) exp(−ikx)dx (116.11)
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Reassembling we have

ψ(x, t) =

∫ ∞

k=−∞

∫ ∞

τ=0

∫ ∞

y=−∞

v
2π|k|

g(y, t − τ) sin(|k|vτ) exp(ik(x − y))dydτdk (116.12)

Rearranging a bit, and noting that sinc(|k|x) = sinc(kx) we have

ψ(x, t) =

∫ ∞

x′=−∞

∫ ∞

t′=0
g(x − x′, t − t′)G(x′, t′)dx′dt′

G(x, t) =

∫ ∞

k=−∞

v
2πk

sin(kvt) exp(ikx)dk
(116.13)

We see that our charge density summed over all space contributes to the wave function, but
it is the charge density at that spatial location as it existed at a specific previous time.

The Green’s function that we convolve with in eq. (116.13) is a rather complex looking func-
tion. As seen later in 114 it was possible to evaluate a 3D variant of such an integral in ad-hoc
methods to produce a form in terms of retarded time and advanced time delta functions. A simi-
lar reduction, also in 114, of the Green’s function above yields a unit step function identification

G(x, t) =
v
2
(θ(x + vt) − θ(x − vt)) (116.14)

(This has to be verified more closely to see if it works).

116.2.2 Three dimensional case

Now, lets move on to the 3D case that is of particular interest for electrodynamics. Our wave
equation is now of the form

 1
v2

∂2

∂t2 −
∑

j

∂2

∂x j2

ψ = g (116.15)

and our Fourier transformation produces almost the same result, but we have a wave number
contribution from each of the three dimensions

1
v2 ψ̂tt + k2ψ̂ = ĝ (116.16)

Our wave number domain solution is therefore

ψ̂(k, t) =
v
|k|

∫ ∞

τ=0
ĝ(k, t − τ) sin(|k|vτ)dτ (116.17)
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But our wave number domain charge density is

ĝ(k, t) =
1

(
√

2π)3

∫ ∞

−∞

g(x, t) exp (−ik · x) d3x (116.18)

Our wave number domain result in terms of the charge density is therefore

ψ̂(k, t) =
v
|k|

∫ ∞

τ=0

(
1

(
√

2π)3

∫ ∞

−∞

g(r, t − τ) exp (−ik · r) d3r
)

sin(|k|vτ)dτ (116.19)

And finally inverse transforming back to the spatial domain we have a complete solution for
the inhomogeneous wave equation in terms of the spatial and temporal charge density distribu-
tion

ψ(x, t) =

∫ ∞

−∞

∫ ∞

t′=0
g(x − x′, t − t′)G(x′, t′)d3x′dt′

G(x, t) =

∫ ∞

−∞

v
(2π)3|k|

sin(|k|vt) exp (ik · x) d3k
(116.20)

For computational purposes we are probably much better off using eq. (116.17), however,
from an abstract point of form this expression is much prettier.

One can also see the elements of the traditional retarded time expressions for the potential
hiding in there. See 114 for an evaluation of this integral (in an ad-hoc non-rigorous fashion)
eventually producing the retarded time solution.

116.2.2.1 Tweak this a bit to put into proper Green’s function form

Now, it makes sense to redefine G(x, t) above so that we can integrate uniformly over all space
and time. To do so we can add a unit step function into the definition, so that G(x, t < 0) = 0.
Additionally, if we express this convolution it is slightly tidier (and consistent with the normal
Green’s function notation) to put the parameter differences in the kernel term. Such a change of
variables will alter the sign of the integral limits by a factor of (−1)4, but we also have a (−1)4

term from the differentials. After making these final adjustments we have a final variation of
our integral solution

ψ(x, t) =

∫ ∞

−∞

g(x′, t′)G(x − x′, t − t′)d3x′dt′

G(x, t) = θ(t)
∫ ∞

−∞

v
(2π)3|k|

sin(|k|vt) exp (ik · x) d3k
(116.21)
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Now our inhomogeneous solution is expressed nicely as the convolution of our current den-
sity over all space and time with an integral kernel. That integral kernel is precisely the Green’s
function for this forced wave equation.

This solution comes with a large number of assumptions. Along the way we have the assump-
tion that both our wave function and the charge density was Fourier transformable, and that the
wave number domain products were inverse transformable. We also had an assumption that the
wave function is sufficiently small at the limits of integration that the intermediate contributions
from the integration by parts vanished, and finally the big assumption that we were perfectly
free to interchange integration order in an extremely ad-hoc and non-rigorous fashion!

116.3 maxwell equation solution

Having now found Green’s function form for the forced wave equation, we can now move to
Maxwell’s equation

∇F = J/ε0c (116.22)

In terms of potentials we have F = ∇∧ A, and may also impose the Lorentz gauge ∇ · A = 0,
to give us our four charge/current forced wave equations

∇2A = J/ε0c (116.23)

As scalar equations these are

 1
c2

∂2

∂t2 −
∑

j

∂2

∂x j2

 Aµ =
Jµ

ε0c
(116.24)

So, from above, also writing x0 = ct, we have

Aµ(x) =
1
ε0c

∫
Jµ(x′)G(x − x′)d4x′

G(x) = θ(x0)
∫

1
(2π)3|k|

sin(|k|x0) exp (ik · x) d3k
(116.25)
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116.3.1 Four vector form for the Green’s function

Can we put the sine and exponential product in a more pleasing form? It would be nice to merge
the x and ct terms into a single four vector form. One possibility is merging the two

sin(|k|x0) exp (ik · x)

=
1
2i

(
exp

(
i
(
k · x + |k|x0

))
− exp

(
i
(
k · x − |k|x0

)))
=

1
2i

(
exp

(
i|k|

(
k̂ · x + x0

))
− exp

(
i|k|

(
k̂ · x − x0

))) (116.26)

Here we have a sort of sine like conjugation in the two exponentials. Can we tidy this up? Let
us write the unit wave number vector in terms of direction cosines

k̂ =
∑

m

σmαm

=
∑

m

γmγ0αm

(116.27)

Allowing us to write

∑
m

γmαm = −k̂γ0 (116.28)

This gives us

k̂ · x + x0 = αmxm + x0

= (αmγ
m) · (γ jx j) + γ0 · γ0x0

= (−k̂γ0 + γ0) · γµxµ

= (−k̂γ0 + γ0) · x

(116.29)

Similarly we have

k̂ · x − x0 = (−k̂γ0 − γ0) · x (116.30)

and can now put G in explicit four vector form

G(x) =
θ(x · γ0)
(2π)32i

∫
(exp (i((|k| − k)γ0) · x) − exp (−i((|k| + k)γ0) · x))

d3k
|k|

(116.31)
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Hmm, is that really any better? Intuition says that this whole thing can be written as sine with
some sort of geometric product conjugate terms.

I get as far as writing

i(k · x ± |k|x0) = (iγ0)∧ (k ± |k|) · x (116.32)

But that does not quite have the conjugate form I was looking for (or does it)? Have to go
back and look at Hestenes’s multivector conjugation operation. Think it had something to do
with reversion, but do not recall.

Failing that tidy up the following

G(x) =
θ(x · γ0)

(2π)3

∫
sin(|k|x · γ0) exp (−i(kγ0) · x)

d3k
|k|

(116.33)

is probably about as good as it gets for now. Note the interesting feature that we end up
essentially integrating over a unit ball in our wave number space. This suggests the possibility
of simplification using the divergence theorem.

116.3.2 Faraday tensor

Attempting to find a tidy four vector form for the four vector potentials was in preparation for
taking derivatives. Specifically, applied to eq. (116.25) we have

Fµν = ∂µAν − ∂νAµ (116.34)

subject to the Lorentz gauge constraint

0 = ∂µAµ (116.35)

If we switch the convolution indices for our potentials

Aµ(x, t) =
1
ε0c

∫
Jµ(x − x′)G(x′)d4x′ (116.36)

Then the Lorentz gauge condition, after differentiation under the integral sign, is

0 = ∂µAµ =
1
ε0c

∫
(∂µJµ(x − x′))G(x′)d4x′ (116.37)
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So we see that the Lorentz gauge seems to actually imply the continuity equation

∂µJµ(x) = 0 (116.38)

Similarly, it appears that we can write our tensor components in terms of current density
derivatives

Fµν =
1
ε0c

∫
(∂µJν(x − x′) − ∂νJµ(x − x′))G(x′)d4x′ (116.39)

Logically, I suppose that one can consider the entire problem solved here, pending the com-
pletion of this calculus exercise.

In terms of tidiness, it would be nicer seeming use the original convolution, and take deriva-
tive differences of the Green’s function. However, how to do this is not clear to me since this
function has no defined derivative at the t = 0 points due to the unit step.

116.4 appendix . mechanical details

116.4.1 Solving the wave number domain differential equation

We wish to solve equation the inhomogeneous eq. (116.6). Writing this in terms of a linear
operator equation this is

L(y) = y′′ + α2y

L(y) = h
(116.40)

The solutions of this equation will be formed from linear combinations of the homogeneous
problem plus a specific solution of the inhomogeneous problem

By inspection the homogeneous problem has solutions in span{eiαx, e−iαx}. We can find a
solution to the inhomogeneous problem using the variation of parameters method, assuming a
solution of the form

y = ueiαx + ve−iαx (116.41)

Taking derivatives we have

y′ = u′eiαx + v′e−iαx + iα(ueiαx − ve−iαx) (116.42)
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The trick to solving this is to employ the freedom to set the u′, and v′ terms above to zero

u′eiαx + v′e−iαx = 0 (116.43)

Given this choice we then have

y′ = iα(ueiαx − ve−iαx)

y′′ = (iα)2(ueiαx + ve−iαx)iα(u′eiαx − v′e−iαx)
(116.44)

So we have

L(y) = (iα)2(ueiαx + ve−iαx)

+ iα(u′eiαx − v′e−iαx) + (α)2(ueiαx + ve−iαx)

= iα(u′eiαx − v′e−iαx)

(116.45)

With this and eq. (116.43) we have a set of simultaneous first order linear differential equa-
tions to solve

u′v′
 =

eiαx −e−iαx

eiαx e−iαx


−1 h/iα0


=

1
2

e−iαx e−iαx

−eiαx eiαx


h/iα0


=

h
2iα

e−iαx

−eiαx


(116.46)

Substituting back into the assumed solution we have

y =
1

2iα

(
eiαx

∫
he−iαx − e−iαx

∫
heiαx

)
=

1
2iα

∫ x

u=x0

h(u)
(
e−iα(u−x) − eiα(u−x)

)
du

(116.47)

So our solution appears to be

y =
1
α

∫ x

u=x0

h(u) sin(α(x − u))du (116.48)
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A check to see if this is correct is in order to verify this. Differentiating using eq. (116.57) we
have

y′ =
1
α

h(u) sin(α(x − u))
∣∣∣∣∣
u=x

+
1
α

∫ x

u=x0

∂

∂x
h(u) sin(α(x − u))du

=

∫ x

u=x0

h(u) cos(α(x − u))du
(116.49)

and for the second derivative we have

y′′ = h(u) cos(α(x − u))|u=x − α

∫ x

u=x0

h(u) sin(α(x − u))du

= h(x) − α2y(x)
(116.50)

Excellent, we have y′′ + α2y = h as desired.

116.4.2 Differentiation under the integral sign

Given an function that is both a function of the integral limits and the integrals kernel

f (x) =

∫ b(x)

u=a(x)
G(x, u)du, (116.51)

lets recall how to differentiate the beastie. First let G(x, u) = ∂F(x, u)/∂u so we have

f (x) = F(x, b(x)) − F(x, a(x)) (116.52)

and our derivative is

f ′(x) =
∂F
∂x

(x, b(x))
∂F
∂u

(x, b(x))b′ −
∂F
∂x

(x, a(x)) −
∂F
∂u

(x, a(x))a′

= G(x, b(x))b′ −G(x, a(x))a′ +
∂F
∂x

(x, b(x)) −
∂F
∂x

(x, a(x))
(116.53)

Now, we want ∂F/∂x in terms of G, and to get there, assuming sufficient continuity, we have
from the definition

∂

∂x
G(x, u) =

∂

∂x
∂F(x, u)
∂u

=
∂

∂u
∂F(x, u)
∂x

(116.54)
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Integrating both sides with respect to u we have

∫
∂G
∂x

du =

∫
∂

∂u
∂F(x, u)
∂x

du

=
∂F(x, u)
∂x

(116.55)

This allows us to write

∂F
∂x

(x, b(x)) −
∂F
∂x

(x, a(x)) =

∫ b

a

∂G
∂x

(x, u)du (116.56)

and finally

d
dx

∫ b(x)

u=a(x)
G(x, u)du = G(x, b(x))b′ −G(x, a(x))a′ +

∫ b(x)

a(x)

∂G
∂x

(x, u)du (116.57)

116.4.2.1 Argument logic error above to understand

Is the following not also true

∫
∂G
∂x

du =

∫
∂

∂u
∂F(x, u)
∂x

du

=

∫
∂

∂u

(
∂F(x, u)
∂x

+ A(x)
)

du

=
∂F(x, u)
∂x

+ A(x)u + B

(116.58)

In this case we have

∂F
∂x

(x, b(x)) −
∂F
∂x

(x, a(x)) =

∫ b

a

∂G
∂x

(x, u)du − A(x)(b(x) − a(x)) (116.59)

How to reconcile this with the answer I expect (and having gotten it, I believe matches my
recollection)?





117
F I R S T O R D E R F O U R I E R T R A N S F O R M S O L U T I O N O F M A X W E L L’ S
E Q UAT I O N

117.1 motivation

In 116 solutions of Maxwell’s equation via Fourier transformation of the four potential forced
wave equations were explored.

Here a first order solution is attempted, by directly Fourier transforming the Maxwell’s equa-
tion in bivector form.

117.2 setup

Again using a 3D spatial Fourier transform, we want to put Maxwell’s equation into an explicit
time dependent form, and can do so by premultiplying by our observer’s time basis vector γ0

γ0∇F = γ0
J
ε0c

(117.1)

On the left hand side we have

γ0∇ = γ0
(
γ0∂0 + γk∂k

)
= ∂0 − γ

kγ0∂k

= ∂0 +σk∂k

= ∂0 +∇

(117.2)

and on the right hand side we have

γ0
J
ε0c

= γ0
cργ0 + Jkγk

ε0c

=
cρ − Jkσk

ε0c

=
ρ

ε0
−

j
ε0c

(117.3)

951
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Both the spacetime gradient and the current density four vector have been put in a quaternion-
ic form with scalar and bivector grades in the STA basis. This leaves us with the time centric
formulation of Maxwell’s equation

(∂0 +∇) F =
ρ

ε0
−

j
ε0c

(117.4)

Except for the fact that we have objects of various grades here, and that this is a first instead of
second order equation, these equations have the same form as in the previous Fourier transform
attacks. Those were Fourier transform application for the homogeneous and inhomogeneous
wave equations, and the heat and Schrödinger equation.

117.3 fourier transforming a mixed grade object

Now, here we make the assumption that we can apply 3D Fourier transform pairs to mixed
grade objects, as in

ψ̂(k, t) =
1

(
√

2π)3

∫ ∞

−∞

ψ(x, t) exp (−ik · x) d3x

ψ(x, t) = PV
1

(
√

2π)3

∫ ∞

−∞

ψ̂(k, t) exp (ik · x) d3k
(117.5)

Now, because of linearity, is it clear enough that this will work, provided this is a valid
transform pair for any specific grade. We do however want to be careful of the order of the
factors since we want the flexibility to use any particular convenient representation of i, in
particular i = γ0γ1γ2γ3 = σ1σ2σ3.
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Let us repeat our an ad-hoc verification that this transform pair works as desired, being careful
with the order of products and specifically allowing for ψ to be a non-scalar function. Writing
k = kmσ

m, r = σmrm, x = σmxm, that is an expansion of

PV
1

(
√

2π)3

∫ (
1

(
√

2π)3

∫
ψ(r, t) exp (−ik · r) d3r

)
exp (ik · x) d3k

=

∫
ψ(r, t)d3r PV

1
(2π)3

∫
exp (ik · (x − r)) d3k

=

∫
ψ(r, t)d3r

3∏
m=1

PV
1

2π

∫
exp (ikm(xm − rm)) dkm

=

∫
ψ(r, t)d3r

3∏
m=1

lim
R→∞

sin (R(xm − rm))
π(xm − rm)

∼

∫
ψ(r, t)δ(x1 − r1)δ(x2 − r2)δ(x3 − r3)d3r

= ψ(x, t)

(117.6)

In the second last step above we make the ad-hoc identification of that sinc limit with the
Dirac delta function, and recover our original function as desired (the Rigor police are on holi-
day again).

117.3.1 Rotor form of the Fourier transform?

Although the formulation picked above appears to work, it is not the only choice to potentially
make for the Fourier transform of multivector. Would it be more natural to pick an explicit Rotor
formulation? This perhaps makes more sense since it is then automatically grade preserving.

ψ̂(k, t) =
1

(
√

2π)n

∫ ∞

−∞

exp
(
1
2

ik · x
)
ψ(x, t) exp

(
−

1
2

ik · x
)

dnx

ψ(x, t) = PV
1

(
√

2π)n

∫ ∞

−∞

exp
(
−

1
2

ik · x
)
ψ̂(k, t) exp

(
1
2

ik · x
)

dnk
(117.7)

This is not a moot question since I later tried to make an assumption that the grade of a
transformed object equals the original grade. That does not work with the Fourier transform
definition that has been picked in eq. (117.5). It may be necessary to revamp the complete treat-
ment, but for now at least an observation that the grades of transform pairs do not necessarily
match is required.
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Does the transform pair work? For the n = 1 case this is

F ( f ) = f̂ (k) =
1
√

2π

∫ ∞

−∞

exp
(
1
2

ikx
)

f (x) exp
(
−

1
2

ikx
)

dx

F −1( f̂ ) = f (x) = PV
1
√

2π

∫ ∞

−∞

exp
(
−

1
2

ikx
)

f̂ (k) exp
(
1
2

ikx
)

dk
(117.8)

Will the computation of F −1(F ( f (x))) produce f (x)? Let us try

F −1(F ( f (x)))

= PV
1

2π

∫ ∞

−∞

exp
(
−

1
2

ikx
) (∫ ∞

−∞

exp
(
1
2

iku
)

f (u) exp
(
−

1
2

iku
)

du
)

exp
(
1
2

ikx
)

dk

= PV
1

2π

∫ ∞

−∞

exp
(
−

1
2

ik(x − u)
)

f (u) exp
(
1
2

ik(x − u)
)

dudk

(117.9)

Now, this expression can not obviously be identified with the delta function as in the single
sided transformation. Suppose we decompose f into grades that commute and anticommute
with i. That is

f = f‖ + f⊥
f‖i = i f‖
f⊥i = −i f⊥

(117.10)

This is also sufficient to determine how these components of f behave with respect to the
exponentials. We have

eiθ =
∑

m

(iθ)m

m!

= cos(θ) + i sin(θ)
(117.11)

So we also have

f‖eiθ = eiθ f‖
f⊥eiθ = e−iθ f⊥

(117.12)

This gives us

F −1(F ( f (x))) = PV
1

2π

∫ ∞

−∞

f‖(u)dudk + PV
1

2π

∫ ∞

−∞

f⊥(u) exp (ik(x − u)) dudk

=
1

2π

∫ ∞

−∞

dk
∫ ∞

−∞

f‖(u)du +

∫ ∞

−∞

f⊥(u)δ(x − u)du
(117.13)
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So, we see two things. First is that any f‖ , 0 produces an unpleasant infinite result. One
could, in a vague sense, allow for odd valued f‖, however, if we were to apply this inversion
transformation pair to a function time varying multivector function f (x, t), this would then re-
quire that the function is odd for all times. Such a function must be zero valued.

The second thing that we see is that if f entirely anticommutes with i, we do recover it with
this transform pair, obtaining f⊥(x).

With respect to Maxwell’s equation this immediately means that this double sided transform
pair is of no use, since our pseudoscalar i = γ0γ1γ2γ3 commutes with our grade two field
bivector F.

117.4 fourier transforming the spacetime split gradient equation

Now, suppose we have a Maxwell like equation of the form

(∂0 +∇)ψ = g (117.14)

Let us take the Fourier transform of this equation. This gives us

∂0ψ̂ +σmF (∂mψ) = ĝ (117.15)

Now, we need to look at the middle term in a bit more detail. For the wave, and heat equations
this was evaluated with just an integration by parts. Was there any commutation assumption in
that previous treatment? Let us write this out in full to make sure we are cool.

F (∂mψ) =
1

(
√

2π)3

∫
(∂mψ(x, t)) exp (−ik · x) d3x (117.16)

Let us also expand the integral completely, employing a permutation of indices π(1, 2, 3) =

(m, n, p).

F (∂mψ) =
1

(
√

2π)3

∫
∂xp

dxp
∫
∂xn

dxn
∫
∂xm

dxm (∂mψ(x, t)) exp (−ik · x) (117.17)

Okay, now we are ready for the integration by parts. We want a derivative substitution, based
on

∂m (ψ(x, t) exp (−ik · x))
= (∂mψ(x, t)) exp (−ik · x) + ψ(x, t)∂m exp (−ik · x)
= (∂mψ(x, t)) exp (−ik · x) + ψ(x, t)(−ikm) exp (−ik · x)

(117.18)
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Observe that we do not wish to assume that the pseudoscalar i commutes with anything except
the exponential term, so we have to leave it sandwiched or on the far right. We also must take
care to not necessarily commute the exponential itself with ψ or its derivative. Having noted
this we can rearrange as desired for the integration by parts

(∂mψ(x, t)) exp (−ik · x) = ∂m (ψ(x, t) exp (−ik · x)) − ψ(x, t)(−ikm) exp (−ik · x) (117.19)

and substitute back into the integral

σmF (∂mψ) =
1

(
√

2π)3

∫
∂xp

dxp
∫
∂xn

dxn (σmψ(x, t) exp (−ik · x))
∣∣∣
∂xm

−
1

(
√

2π)3

∫
∂xp

dxp
∫
∂xn

dxn
∫
∂xm

dxmσmψ(x, t)(−ikm) exp (−ik · x)
(117.20)

So, we find that the Fourier transform of our spatial gradient is

F (∇ψ) = kψ̂i (117.21)

This has the specific ordering of the vector products for our possibility of non-commutative
factors.

From this, without making any assumptions about grade, we have the wave number domain
equivalent for the spacetime split of the gradient eq. (117.14)

∂0ψ̂ + kψ̂i = ĝ (117.22)

117.5 back to specifics . maxwell’s equation in wave number domain

For Maxwell’s equation our field variable F is grade two in the STA basis, and our specific
transform pair is:

(∂0 +∇) F = γ0J/ε0c

∂0F̂ + kF̂i = γ0 Ĵ/ε0c
(117.23)

Now, exp(iθ) and i commute, and i also commutes with both F and k. This is true since our
field F as well as the spatial vector k are grade two in the STA basis. Two sign interchanges
occur as we commute with each vector factor of these bivectors.
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This allows us to write our transformed equation in the slightly tidier form

∂0F̂ + (ik)F̂ = γ0 Ĵ/ε0c (117.24)

We want to find a solution to this equation. If the objects in question were all scalars this
would be simple enough, and is a problem of the form

B′ + AB = Q (117.25)

For our electromagnetic field our transform is a summation of the following form

(E + icB)(cos θ + i sin θ) = (E cos θ − cB sin θ) + i(E sin θ + cB cos θ) (117.26)

The summation of the integral itself will not change the grades, so F̂ is also a grade two
multivector. The dual of our spatial wave number vector ik is also grade two with basis bivectors
γmγn very much like the magnetic field portions of our field vector icB.

Having figured out the grades of all the terms in eq. (117.24), what does a grade split of this
equation yield? For the equation to be true do we not need it to be true for all grades? Our grade
zero, four, and two terms respectively are

(ik) · F̂ = ρ̂/ε0

(ik)∧ F̂ = 0

∂0F̂ + (ik) × F̂ = −ĵ/ε0c

(117.27)

Here the (antisymmetric) commutator product 〈ab〉2 = a × b = (ab − ba)/2 has been used in
the last equation for this bivector product.

It is kind of interesting that an unmoving charge density contributes nothing to the time
variation of the field in the wave number domain, instead only the current density (spatial)
vectors contribute to our differential equation.

117.5.1 Solving this first order inhomogeneous problem

We want to solve the inhomogeneous scalar equation eq. (117.25) but do so in a fashion that is
also valid for the grades for the Maxwell equation problem.

Application of variation of parameters produces the desired result. Let us write this equation
in operator form

L(B) = B′ + AB (117.28)
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and start with the solution of the homogeneous problem

L(B) = 0 (117.29)

This is

B′ = −AB (117.30)

so we expect exponential solutions will do the trick, but have to get the ordering right due to
the possibility of non-commutative factors. How about one of

B = Ce−At

B = e−AtC
(117.31)

Where C is constant, but not necessarily a scalar, and does not have to commute with A.
Taking derivatives of the first we have

B′ = C(−A)e−At (117.32)

This does not have the desired form unless C and A commute. How about the second possi-
bility? That one has the derivative

B′ = (−A)e−AtC

= −AB
(117.33)

which is what we want. Now, for the inhomogeneous problem we want to use a test solution
replacing C with an function to be determined. That is

B = e−AtU (117.34)

For this we have

L(B) = (−A)e−AtU + e−AtU′ + AB

= e−AtU′
(117.35)

Our inhomogeneous problem L(B) = Q is therefore reduced to

e−AtU′ = Q (117.36)
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Or

U =

∫
eAtQ(t)dt (117.37)

As an indefinite integral this gives us

B(t) = e−At
∫

eAtQ(t)dt (117.38)

And finally in definite integral form, if all has gone well, we have a specific solution to the
forced problem

B(t) =

∫ t

t0
e−A(t−τ)Q(τ)dτ (117.39)

117.5.1.1 Verify

With differentiation under the integral sign we have

dB
dt

= e−A(t−τ)Q(τ)
∣∣∣
τ=t +

∫ t

t0
−Ae−A(t−τ)Q(τ)dτ

= Q(t) − AB
(117.40)

Great!

117.5.2 Back to Maxwell’s

Switching to explicit time derivatives we have

∂tF̂ + (ick)F̂ = γ0 Ĵ/ε0 (117.41)

By eq. (117.39), this has, respectively, homogeneous and inhomogeneous solutions

F̂(k, t) = e−icktC(k)

F̂(k, t) =
1
ε0

∫ t

t0(k)
e−(ick)(t−τ)γ0 Ĵ(k, τ)dτ

(117.42)
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For the homogeneous term at t = 0 we have

F̂(k, 0) = C(k) (117.43)

So, C(k) is just the Fourier transform of an initial wave packet. Reassembling all the bits in
terms of fully specified Fourier and inverse Fourier transforms we have

F(x, t) =
1

(
√

2π)3

∫ (
1

(
√

2π)3

∫
e−icktF(u, 0)e−ik·ud3u

)
eik·xd3k

=
1

(2π)3

∫
e−icktF(u, 0)eik·(x−u)d3ud3k

(117.44)

We have something like a double sided Green’s function, with which we do a spatial con-
volution over all space with to produce a function of wave number. One more integration over
all wave numbers gives us our inverse Fourier transform. The final result is a beautiful closed
form solution for the time evolution of an arbitrary wave packet for the field specified at some
specific initial time.

Now, how about that forced term? We want to inverse Fourier transform our Ĵ based equation
in eq. (117.42). Picking our t0 = −∞ this is

F(x, t) =
1

(
√

2π)3

∫ (
1
ε0

∫ t

τ=−∞
e−(ick)(t−τ)γ0 Ĵ(k, τ)dτ

)
eik·xd3k

=
1

ε0(2π)3

∫ ∫ t

τ=−∞
e−(ick)(t−τ)γ0J(u, τ)eik·(x−u)dτd3ud3k

(117.45)

Again we have a double sided Green’s function. We require a convolution summing the four
vector current density contributions over all space and for all times less than t.

Now we can combine the vacuum and charge present solutions for a complete solution to
Maxwell’s equation. This is

F(x, t) =
1

(2π)3

∫
e−ickt

(
F(u, 0) +

1
ε0

∫ t

τ=−∞
eickτγ0J(u, τ)dτ

)
eik·(x−u)d3ud3k (117.46)

Now, this may not be any good for actually computing with, but it sure is pretty!
There is a lot of verification required to see if all this math actually works out, and also a fair

amount of followup required to play with this and see what other goodies fall out if this is used.
I had expect that this result ought to be usable to show familiar results like the Biot-Savart law.

How do our energy density and Poynting energy momentum density conservation relations,
and the stress energy tensor terms, look given a closed form expression for F?
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It is also kind of interesting to see the time phase term coupled to the current density here
in the forcing term. That looks awfully similar to some QM expressions, although it could be
coincidental.





118
4 D F O U R I E R T R A N S F O R M S A P P L I E D T O M A X W E L L’ S E Q UAT I O N

118.1 notation

Please see A for a summary of much of the notation used here.

118.2 motivation

In 117, a solution of the first order Maxwell equation

∇F =
J
ε0c

(118.1)

was found to be

F(x, t) =
1

(2π)3

∫
e−ickt

(
F(u, 0) +

1
ε0

∫ t

τ=−∞
eickτγ0J(u, τ)dτ

)
eik·(x−u)d3ud3k (118.2)

This does not have the spacetime uniformity that is expected for a solution of a Lorentz
invariant equation.

Similarly, in 116 solutions of the second order Maxwell equation in the Lorentz gauge ∇ ·A =

0

F = ∇∧ A

∇2A = J/ε0c
(118.3)

were found to be

Aµ(x) =
1
ε0c

∫
Jµ(x′)G(x − x′)d4x′

G(x) =
u(x · γ0)

(2π)3

∫
sin(|k|x · γ0) exp (−i(kγ0) · x)

d3k
|k|

(118.4)

Here our convolution kernel G also does not exhibit a uniform four vector form that one could
logically expect.

In these notes an attempt to rework these problems using a 4D spacetime Fourier transform
will be made.

963
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118.3 4d fourier transform

As before we want a multivector friendly Fourier transform pair, and choose the following

ψ̂(k) =
1

(
√

2π)4

∫ ∞

−∞

ψ(x) exp (−ik · x) d4x

ψ(x) = PV
1

(
√

2π)4

∫ ∞

−∞

ψ̂(k) exp (ik · x) d4k
(118.5)

Here we use i = γ0γ1γ2γ3 as our pseudoscalar, and have to therefore be careful of order of
operations since this does not necessarily commute with multivector ψ or ψ̂ functions.

For our dot product and vectors, with summation over matched upstairs downstairs indices
implied, we write

x = xµγµ = xµγµ

k = kµγµ = kµγµ

x · k = xµkµ = xµkµ
(118.6)

Finally our differential volume elements are defined to be

d4x = dx0dx1dx2dx3

d4k = dk0dk1dk2dk3
(118.7)

Note the opposite pairing of upstairs and downstairs indices in the coordinates.

118.4 potential equations

118.4.1 Inhomogeneous case

First for the attack is the Maxwell potential equations. As well as using a 4D transform, having
learned how to do Fourier transformations of multivectors, we will attack this one in vector
form as well. Our equation to invert is

∇2A = J/ε0c (118.8)
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There is nothing special to do for the transformation of the current term, but the left hand side
will require two integration parts

F (∇2A) =
1

(2π)2

∫ ∞

−∞

∂00 −
∑

m

∂mm

 A

 e−ikµxµd4x

=
1

(2π)2

∫ ∞

−∞

A

(−ik0)2 −
∑

m

(−ikm)2

 e−ikµxµd4x

(118.9)

As usual it is required that A and ∂µA vanish at infinity. Now for the scalar in the interior we
have

(−ik0)2 −
∑

m

(−ikm)2 = −(k0)2 +
∑

m

(km)2
(118.10)

But this is just the (negation) of the square of our wave number vector

k2 = kµγµ · kνγν

= kµkνγµ · γν

= k0k0γ0 · γ
0 −

∑
a,b

kakbγa · γ
b

= (k0)2 −
∑

a

(ka)2

(118.11)

Putting things back together we have for our potential vector in the wave number domain

Â =
Ĵ

−k2ε0c
(118.12)

Inverting, and substitution for Ĵ gives us our spacetime domain potential vector in one fell
swoop

A(x) =
1

(
√

2π)4

∫ ∞

−∞

(
1

−k2ε0c
1

(
√

2π)4

∫ ∞

−∞

J(x′)e−ik·x′d4x′
)

eik·xd4k

=
1

(2π)4

∫ ∞

−∞

J(x′)
1

−k2ε0c
eik·(x−x′)d4kd4x′

(118.13)
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This allows us to write this entire specific solution to the forced wave equation problem as a
convolution integral

A(x) =
1
ε0c

∫ ∞

−∞

J(x′)G(x − x′)d4x′

G(x) =
−1

(2π)4

∫ ∞

−∞

eik·x

k2 d4k
(118.14)

Pretty slick looking, but actually also problematic if one thinks about it. Since k2 is null
in some cases G(x) may blow up in some conditions. My assumption however, is that a well
defined meaning can be associated with this integral, I just do not know what it is yet. A way to
define this more exactly may require picking a more specific orthonormal basis once the exact
character of J is known.

FIXME: In 114 I worked through how to evaluate such an integral (expanding on a too
brief treatment found in [5]). To apply such a technique here, where our Green’s function has
precisely the same form as the Green’s function for the Poisson’s equation, a way to do the
equivalent of a spherical polar parametrization will be required. How would that be done in
4D? Have seen such treatments in [13] for hypervolume and surface integration, but they did
not make much sense then. Perhaps they would now?

118.4.2 The homogeneous case

The missing element here is the addition of any allowed homogeneous solutions to the wave
equation. The form of such solutions cannot be obtained with the 4D transform since that pro-
duces

−k2Â = 0 (118.15)

and no meaningful inversion of that is possible.
For the homogeneous problem we are forced to re-express the spacetime Laplacian with

an explicit bias towards either time or a specific direction in space, and attack with a Fourier
transform on the remaining coordinates. This has been done previously, but we can revisit this
using our new vector transform.

Now we switch to a spatial Fourier transform

ψ̂(k, t) =
1

(
√

2π)3

∫ ∞

−∞

ψ(x, t) exp (−ik · x) d3x

ψ(x, t) = PV
1

(
√

2π)3

∫ ∞

−∞

ψ̂(k, t) exp (ik · x) d3k
(118.16)
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Using a spatial transform we have

F ((∂00 −
∑

m

∂mm)A) = ∂00Â −
∑

m

Â(−ikm)2
(118.17)

Carefully keeping the pseudoscalar factors all on the right of our vector as the integration by
parts was performed does not make a difference since we just end up with a scalar in the end.
Our equation in the wave number domain is then just

∂ttÂ(k, t) + (c2k2)Â(k, t) = 0 (118.18)

with exponential solutions

Â(k, t) = C(k) exp(±ic|k|t) (118.19)

In particular, for t = 0 we have

Â(k, 0) = C(k) (118.20)

Reassembling then gives us our homogeneous solution

A(x, t) =
1

(
√

2π)3

∫ ∞

−∞

(
1

(
√

2π)3

∫ ∞

−∞

A(x′, 0)e−ik·x′d3x′
)

e±ic|k|teik·xd3k (118.21)

This is

A(x, t) =

∫ ∞

−∞

A(x′, 0)G(x − x′)d3x′

G(x) =
1

(2π)3

∫ ∞

−∞

exp (ik · x ± ic|k|t) d3k
(118.22)

Here also we have to be careful to keep the Green’s function on the right hand side of A since
they will not generally commute.
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118.4.3 Summarizing

Assembling both the homogeneous and inhomogeneous parts for a complete solution we have
for the Maxwell four vector potential

A(x) =

∫ ∞

−∞

(
A(x′, 0)H(x − x′) +

1
ε0c

∫ ∞

−∞

J(x′)G(x − x′)dx0
)

dx1dx2dx3

H(x) =
1

(2π)3

∫ ∞

−∞

exp (ik · x ± ic|k|t) d3k

G(x) =
−1

(2π)4

∫ ∞

−∞

eik·x

k2 d4k

(118.23)

Here for convenience both four vectors and spatial vectors were used with

x = xµγµ
x = xmσm = x ∧ γ0

(118.24)

As expected, operating where possible in a Four vector context does produce a simpler con-
volution kernel for the vector potential.

118.5 first order maxwell equation treatment

Now we want to Fourier transform Maxwell’s equation directly. That is

F (∇F = J/ε0c) (118.25)

For the LHS we have

F (∇F) = F (γµ∂µF)

= γµ
1

(2π)2

∫ ∞

−∞

(∂µF)e−ik·xd4x

= −γµ
1

(2π)2

∫ ∞

−∞

F∂µ(e−ikσxσ)d4x

= −γµ
1

(2π)2

∫ ∞

−∞

F(−ikµ)e−ik·xd4x

= −iγµkµ
1

(2π)2

∫ ∞

−∞

Fe−ik·xd4x

= −ikF̂

(118.26)
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This gives us

−ikF̂ = Ĵ/ε0c (118.27)

So to solve the forced Maxwell equation we have only to inverse transform the following

F̂ =
1

−ikε0c
Ĵ (118.28)

This is

F =
1

(
√

2π)4

∫ ∞

−∞

1
−ikε0c

(
1

(
√

2π)4

∫ ∞

−∞

J(x′)e−ik·x′d4x′
)

eik·xd4k (118.29)

Adding to this a solution to the homogeneous equation we now have a complete solution in
terms of the given four current density and an initial field wave packet

F =
1

(2π)3

∫
e−icktF(x′, 0)eik·(x−x′)d3x′d3k +

1
(2π)4ε0c

∫
i
k

J(x′)eik·(x−x′)d4kd4x′ (118.30)

Observe that we can not make a single sided Green’s function to convolve J with since the
vectors k and J may not commute.

As expected working in a relativistic context for our inherently relativistic equation turns out
to be much simpler and produce a simpler result. As before trying to actually evaluate these
integrals is a different story.
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F O U R I E R S E R I E S VAC U U M M A X W E L L’ S E Q UAT I O N S

119.1 motivation

In [2], after finding a formulation of Maxwell’s equations that he likes, his next step is to assume
the electric and magnetic fields can be expressed in a 3D Fourier series form, with periodicity
in some repeated volume of space, and then proceeds to evaluate the energy of the field.

119.1.1 Notation

See the notational table A for much of the notation assumed here.

119.2 setup

Let us try this. Instead of using the sine and cosine Fourier series which looks more complex
than it ought to be, use of a complex exponential ought to be cleaner.

119.2.1 3D Fourier series in complex exponential form

For a multivector function f (x, t), periodic in some rectangular spatial volume, let us assume
that we have a 3D Fourier series representation.

Define the element of volume for our fundamental wavelengths to be the region bounded by
three intervals in the x1, x2, x3 directions respectively

I1 = [a1, a1 + λ1]

I2 = [a2, a2 + λ2]

I3 = [a3, a3 + λ3]

(119.1)

Our assumed Fourier representation is then

f (x, t) =
∑

k
f̂k(t) exp

−∑
j

2πik jx j

λ j

 (119.2)

971
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Here f̂k = f̂{k1,k2,k3} is indexed over a triplet of integer values, and the k1, k2, k3 indices take
on all integer values in the [−∞,∞] range.

Note that we also wish to allow i to not just be a generic complex number, but allow for the
use of either the Euclidean or Minkowski pseudoscalar

i = γ0γ1γ2γ3 = σ1σ2σ3 (119.3)

Because of this we should not assume that we can commute i, or our exponentials with the
functions f (x, t), or f̂k(t).

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

f (x, t)e2πim j x j/λ jdx1dx2dx3

=
∑

k
f̂k(t)

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

dx1dx2dx3e2πi(m j−k j)x j/λ jdx1dx2dx3
(119.4)

But each of these integrals is just δk,mλ1λ2λ3, giving us

f̂k(t) =
1

λ1λ2λ3

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

f (x, t) exp

∑
j

2πik jx j

λ j

 dx1dx2dx3 (119.5)

To tidy things up lets invent (or perhaps abuse) some notation to tidy things up. As a subscript
on our Fourier coefficients we have used k as an index. Let us also use it as a vector, and define

k ≡ 2π
∑

m

σmkm

λm
(119.6)

With our spatial vector x written

x =
∑

m

σmxm
(119.7)

We now have a k · x term in the exponential, and can remove when desirable the coordinate
summation. If we write V = λ1λ2λ3 it leaves a nice tidy notation for the 3D Fourier series over
the volume

f (x, t) =
∑

k
f̂k(t)e−ik·x

f̂k(t) =
1
V

∫
f (x, t)eik·xd3x

(119.8)

This allows us to proceed without caring about the specifics of the lengths of the sides of the
rectangular prism that defines the periodicity of the signal in question.
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119.2.2 Vacuum equation

Now that we have a desirable seeming Fourier series representation, we want to apply this to
Maxwell’s equation for the vacuum. We will use the STA formulation of Maxwell’s equation,
but use the unit convention of Bohm’s book.

In 101 the STA equivalent to Bohm’s notation for Maxwell’s equations was found to be

F = E + iH

J = (ρ + j)γ0

∇F = 4πJ

(119.9)

This is the CGS form of Maxwell’s equation, but with the old style H for cB, and E for E.
In more recent texts E (as a non-vector) is reserved for electromotive flux. In this set of notes I
use Bohm’s notation, since the aim is to clarify for myself aspects of his treatment.

For the vacuum equation, we make an explicit spacetime split by premultiplying with γ0

γ0∇ = γ0
(
γ0∂0 + γk∂k

)
= ∂0 − γ

kγ0∂k

= ∂0 + γkγ0∂k

= ∂0 +σk∂k

= ∂0 +∇

(119.10)

So our vacuum equation is just

(∂0 +∇)F = 0 (119.11)

119.3 first order vacuum solution with fourier series

119.3.1 Basic solution in terms of undetermined coefficients

Now that a notation for the 3D Fourier series has been established, we can assume a series
solution for our field of the form

F(x, t) =
∑

k
F̂k(t)e−2πik j x j/λ j

(119.12)
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can now apply this to the vacuum Maxwell equation eq. (119.11). This gives us

∑
k

(
∂tF̂k(t)

)
e−2πik j x j/λ j = −c

∑
k,m

σmF̂k(t)
∂

∂xm e−2πik j x j/λ j

= −c
∑
k,m

σmF̂k(t)
(
−2π

km

λm

)
e−2πik j x j/λ j

= 2πc
∑

k

∑
m

σmkm

λm
F̂k(t)ie−2πik j x j/λ j

(119.13)

Note that i commutes with k and since F is also an STA bivector i commutes with F. Putting
all this together we have

∑
k

(
∂tF̂k(t)

)
e−ik·x = ic

∑
k

kF̂k(t)e−ik·x
(119.14)

Term by term we now have a (big ass, triple infinite) set of very simple first order differential
equations, one for each k triplet of indices. Specifically this is

F̂′k = ickF̂k (119.15)

With solutions

F̂0 = C0

F̂k = exp (ickt)Ck
(119.16)

Here Ck is an undetermined STA bivector. For now we keep this undetermined coefficient
on the right hand side of the exponential since no demonstration that it commutes with a factor
of the form exp(ikφ). Substitution back into our assumed solution sum we have a solution to
Maxwell’s equation, in terms of a set of as yet undetermined (bivector) coefficients

F(x, t) = C0 +
∑
k,0

exp (ickt)Ck exp(−ik · x) (119.17)

The special case of k = 0 is now seen to be not so special and can be brought into the sum.

F(x, t) =
∑

k
exp (ickt)Ck exp(−ik · x) (119.18)
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We can also take advantage of the bivector nature of Ck, which implies the complex exponen-
tial can commute to the left, since the two fold commutation with the pseudoscalar with change
sign twice.

F(x, t) =
∑

k
exp (ikct) exp (−ik · x)Ck (119.19)

119.3.2 Solution as time evolution of initial field

Now, observe the form of this sum for t = 0. This is

F(x, 0) =
∑

k
Ck exp(−ik · x) (119.20)

So, the Ck coefficients are precisely the Fourier coefficients of F(x, 0). This is to be expected
having repeatedly seen similar results in the Fourier transform treatments of 116, 117, and 118.
We then have an equation for the complete time evolution of any spatially periodic electrody-
namic field in terms of the field value at all points in the region at some initial time. Summarizing
so far this is

F(x, t) =
∑

k
exp (ickt)Ck exp(−ik · x)

Ck =
1
V

∫
F(x′, 0) exp (ik · x′) d3x′

(119.21)

Regrouping slightly we can write this as a convolution with a Fourier kernel (a Green’s func-
tion). That is

F(x, t) =
1
V

∫ ∑
k

exp (ikct) exp (ik · (x′ − x)) F(x′, 0)d3x′ (119.22)

Or

F(x, t) =

∫
G(x − x′, t)F(x′, 0)d3x′

G(x, t) =
1
V

∑
k

exp (ikct) exp (−ik · x)
(119.23)

Okay, that is cool. We have now got the basic periodicity result directly from Maxwell’s equa-
tion in one shot. No need to drop down to potentials, or even the separate electric or magnetic
components of our field F = E + iH .
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119.3.3 Prettying it up? Questions of commutation

Now, it is tempting here to write eq. (119.19) as a single exponential

F(x, t) =
∑

k
exp (ikct − ik · x)Ck VALID? (119.24)

This would probably allow for a prettier four vector form in terms of x = xµγµ replacing
the separate x and x0 = ct terms. However, such a grouping is not allowable unless one first
demonstrates that eiu, and eiα, for spatial vector u and scalar α commute!

To demonstrate that this is in fact the case note that exponential of this dual spatial vector can
be written

exp(iu) = cos(u) + i sin(u) (119.25)

This spatial vector cosine, cos(u), is a scalar (even powers only), and our sine, sin(u) ∝ u,
is a spatial vector in the direction of u (odd powers leaves a vector times a scalar). Spatial
vectors commute with i (toggles sign twice percolating its way through), therefore pseudoscalar
exponentials also commute with i.

This will simplify a lot, and it shows that eq. (119.24) is in fact a valid representation.
Now, there is one more question of commutation here. Namely, does a dual spatial vector

exponential commute with the field itself (or equivalently, one of the Fourier coefficients).
Expanding such a product and attempting term by term commutation should show

eiuF = (cos u + i sin u)(E + iH)

= i sin u(E + iH) + (E + iH) cos u
= i(sin u)E − (sin u)H + F cos u
= i(−E sin u + 2E · sin u) + (H sin u − 2H · sin u) + F cos u
= 2 sin u · (E −H) + F(cos u − i sin u)

(119.26)

That is

eiuF = 2 sin u · (E −H) + Fe−iu (119.27)

This exponential has one anticommuting term, but also has a scalar component introduced by
the portions of the electric and magnetic fields that are colinear with the spatial vector u.
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119.4 field energy and momentum

Given that we have the same structure for our four vector potential solutions as the complete
bivector field, it does not appear that there is much reason to work in the second order quantities.
Following Bohm we should now be prepared to express the field energy density and momentum
density in terms of the Fourier coefficients, however unlike Bohm, let us try this using the first
order solutions found above.

In CGS units (see 101 for verification) these field energy and momentum densities (Poynting
vector P) are, respectively

E =
1

8π

(
E

2 +H2
)

P =
1

4π
(E ×H)

(119.28)

Given that we have a complete field equation without an explicit separation of electric and
magnetic components, perhaps this is easier to calculate from the stress energy four vector for
energy/momentum. In CGS units this must be

T (γ0) =
1

8π
Fγ0F̃ (119.29)

An expansion of this to verify the CGS conversion seems worthwhile.

T (γ0) =
1

8π
Fγ0F̃

=
−1
8π

(E + iH)γ0(E + iH)

=
1

8π
(E + iH)(E − iH)γ0

=
1

8π

(
E

2 − (iH)2 + i(HE − EH)
)
γ0

=
1

8π

(
E

2 +H2 + 2i2H × E
)
γ0

=
1

8π

(
E

2 +H2
)
γ0 +

1
4π

(E ×H) γ0

(119.30)

Good, as expected we have

E = T (γ0) · γ0

P = T (γ0)∧ γ0
(119.31)
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FIXME: units here for P are off by a factor of c. This does not matter so much in four vector
form T (γ0) where the units naturally take care of themselves.

Okay, let us apply this to our field eq. (119.22), and try to percolate the γ0 through all the
terms of F̃(x, t)

γ0F̃(x, t) = −γ0F(x, t)

= −γ0
1
V

∫ ∑
k

exp (ikct) exp (ik · (x′ − x)) F(x′, 0)d3x′
(119.32)

Taking one factor at a time

γ0 exp (ikct) = γ0(cos (kct) + i sin (kct))

= cos (kct) γ0 − iγ0 sin (kct))

= cos (kct) γ0 − i sin (kct))γ0

= exp (−ikct) γ0

(119.33)

Next, percolate γ0 through the pseudoscalar exponential.

γ0eiφ = γ0(cos φ + i sin φ)

= cos φγ0 − iγ0 sin φ

= e−iφγ0

(119.34)

Again, the percolation produces a conjugate effect. Lastly, as noted previously F commutes
with i. We have therefore

F̃(x, t)γ0F(x, t)γ0 =
1

V2

∫ ∑
k,m

F(a, 0)eik·(a−x)eikcte−imcte−im·(b−x)F(b, 0)d3ad3b

=
1

V2

∫ ∑
k,m

F(a, 0)eik·a−im·b+i(k−m)ct−i(k−m)·xF(b, 0)d3ad3b

=
1

V2

∫ ∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

+
1

V2

∫ ∑
k,m

F(a, 0)eik·a−im·b+i(k−m)ct−i(k−m)·xF(b, 0)d3ad3b

=
1

V2

∫ ∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

+
1

V2

∫ ∑
m,k,0

F(a, 0)eim·(a−b)+ik·(a−x)+ikctF(b, 0)d3ad3b

(119.35)
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Hmm. Messy. The scalar bits of the above are our energy. We have a F2 like term in the
first integral (like the Lagrangian density), but it is at different points, and we have to integrate
those with a sort of vector convolution. Given the reciprocal relationships between convolution
and multiplication moving between the frequency and time domains in Fourier transforms I
had expect that this first integral can somehow be turned into the sum of the squares of all the
Fourier coefficients

∑
k

C2
k (119.36)

which is very much like a discrete version of the Rayleigh energy theorem as derived in C,
and is in this case a constant (not a function of time or space) and is dependent on only the
initial field. That would mean that the remainder is the Poynting vector, which looks reasonable
since it has the appearance of being somewhat antisymmetric.

Hmm, having mostly figured it out without doing the math in this case, the answer pops out.
This first integral can be separated cleanly since the pseudoscalar exponentials commute with
the bivector field. We then have

1
V2

∫ ∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

=
1
V

∫ ∑
k

F(a, 0)eik·ad3a
∫

F(b, 0)e−ik·bd3b

=
∑

k
F̂−kF̂k

(119.37)

A side note on subtle notational sneakiness here. In the assumed series solution of eq. (119.12)
F̂k(t) was the k Fourier coefficient of F(x, t), whereas here the use of F̂k has been used to de-
note the k Fourier coefficient of F(x, 0). An alternative considered and rejected was something
messier like ̂F(t = 0)k, or the use of the original, less physically significant, Ck coefficients.

The second term could also use a simplification, and it looks like we can separate these a and
b integrals too

1
V2

∫ ∑
m,k,0

F(a, 0)eim·(a−b)+ik·(a−x)+ikctF(b, 0)d3ad3b

=
1
V

∫ ∑
m,k,0

F(a, 0)ei(m+k)·ad3aeikct−ik·x 1
V

∫
F(b, 0)e−im·bd3b

=
∑
m

∑
k,0

F̂−m−keikct−ik·xF̂m

(119.38)
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Making an informed guess that the first integral is a scalar, and the second is a spatial vector,
our energy and momentum densities (Poynting vector) respectively are

U ?
=

1
8π

∑
k

F̂−kF̂k

P ?
=

1
8π

∑
m

∑
k,0

F̂−m−keikct−ik·xF̂m

(119.39)

Now that much of the math is taken care of, more consideration about the physics impli-
cations is required. In particular, relating these abstract quantities to the frequencies and the
harmonic oscillator model as Bohm did is desirable (that was the whole point of the exercise).

On the validity of eq. (119.39), it is not unreasonable to expect that ∂U/∂t = 0, and ∇ ·P = 0
separately in these current free conditions from the energy momentum conservation relation

∂

∂t
1

8π

(
E

2 +H2
)
+

1
4π
∇ · (E ×H) = −E · j (119.40)

Note that an SI derivation of this relation can be found in 94. So it therefore makes some
sense that all the time dependence ends up in what has been labeled as the Poynting vector. A
proof that the spatial divergence of this quantity is zero would help validate the guess made (or
perhaps invalidate it).

Hmm. Again on the validity of identifying the first sum with the energy. It does not appear to
work for the k = 0 case, since that gives you

1
8πV2

∫
F(a, 0)F(b, 0)d3ad3b (119.41)

That is only a scalar if the somehow all the non-scalar parts of that product somehow magi-
cally cancel out. Perhaps it is true that the second sum has no scalar part, and if that is the case
one would have

U ?
=

1
8π

∑
k

〈
F̂−kF̂k

〉
(119.42)

An explicit calculation of T (γ0) · γ0 is probably justified to discarding all other grades, and
get just the energy.
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So, instead of optimistically hoping that the scalar and spatial vector terms will automatically
fall out, it appears that we have to explicitly calculate the dot and wedge products, as in

U = −
1

16π
(Fγ0Fγ0 + γ0Fγ0F)

P = −
1

16π
(Fγ0Fγ0 − γ0Fγ0F)

(119.43)

and then substitute our Fourier series solution for F to get the desired result. This appears
to be getting more complex instead of less so unfortunately, but hopefully following this to a
logical conclusion will show in retrospect a faster way to the desired result. A first attempt to
do so shows that we have to return to our assumed Fourier solution and revisit some of the
assumptions made.

119.5 return to the assumed solutions to maxwell’s equation

An initial attempt to expand eq. (119.39) properly given the Fourier specification of the Maxwell
solution gets into trouble. Consideration of some special cases for specific values of k shows
that there is a problem with the grades of the solution.

Let us reexamine the assumed solution of eq. (119.22) with respect to grade

F(x, t) =
1
V

∫ ∑
k

exp (ikct) exp (ik · (x′ − x)) F(x′, 0)d3x′ (119.44)

For scalar Fourier approximations we are used to the ability to select a subset of the Fourier
terms to approximate the field, but except for the k = 0 term it appears that a term by term
approximation actually introduces noise in the form of non-bivector grades.

Consider first the k = 0 term. This gives us a first order approximation of the field which is

F(x, t) ≈
1
V

∫
F(x′, 0)d3x′ (119.45)

As summation is grade preserving this spatial average of the initial field conditions does have
the required grade as desired. Next consider a non-zero Fourier term such as k = {1, 0, 0}. For
this single term approximation of the field let us write out the field term as

Fk(x, t) =
1
V

∫
eik̂|k|ct+ik·(x′−x)(E(x′, 0) + iH(x′, 0))d3x′ (119.46)
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Now, let us expand the exponential. This was shorthand for the product of the exponentials,
which seemed to be a reasonable shorthand since we showed they commute. Expanded out this
is

exp(ik̂|k|ct + ik · (x′ − x))

= (cos(kct) + ik̂ sin(|k|ct))(cos(k · (x′ − x)) + i sin(k · (x′ − x)))
(119.47)

For ease of manipulation write k · (x′ − x) = k∆x, and kct = ωt, we have

exp(iωt + ik∆x) = cos(ωt) cos(k∆x) + i cos(ωt) sin(k∆x)

+ i sin(ωt) cos(k∆x) − sin(ωt) sin(k∆x)
(119.48)

Note that cos(ωt) is a scalar, whereas sin(ωt) is a (spatial) vector in the direction of k. Mul-
tiplying this out with the initial time field F(x′, 0) = E(x′, 0) + iH(x′, 0) = E′ + iH ′ we can
separate into grades.

exp(iωt + ik∆x)(E′ + iH ′)

= cos(ωt)(E′ cos(k∆x) −H ′ sin(k∆x)) + sin(ωt) × (H ′ sin(k∆x) − E′ cos(k∆x))

+ i cos(ωt)(E′ sin(k∆x) +H ′ cos(k∆x)) − i sin(ωt) × (E′ sin(k∆x) +H ′ cos(k∆x))

− sin(ωt) · (E′ sin(k∆x) +H ′ cos(k∆x))

+ i(sin(ωt) · (E′ cos(k∆x) −H ′ sin(k∆x))
(119.49)

The first two lines, once integrated, produce the electric and magnetic fields, but the last two
are rogue scalar and pseudoscalar terms. These are allowed in so far as they are still solutions
to the differential equation, but do not have the desired physical meaning.

If one explicitly sums over pairs of {k,−k} of index triplets then some cancellation occurs.
The cosine cosine products and sine sine products double and the sine cosine terms cancel. We
therefore have

1
2

exp(iωt + ik∆x)(E′ + iH ′)

= cos(ωt)E′ cos(k∆x) + sin(ωt) ×H ′ sin(k∆x)

+ i cos(ωt)H ′ cos(k∆x) − i sin(ωt) × E′ sin(k∆x)

− sin(ωt) · E′ sin(k∆x)

− i sin(ωt) ·H ′ sin(k∆x)

= (E′ + iH ′) cos(ωt) cos(k∆x) − i sin(ωt) × (E′ + iH ′) sin(k∆x)

− sin(ωt) · (E′ + iH) sin(k∆x)

(119.50)
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Here for grouping purposes i is treated as a scalar, which should be justifiable in this specific
case. A final grouping produces

1
2

exp(iωt + ik∆x)(E′ + iH ′) = (E′ + iH ′) cos(ωt) cos(k∆x)

− ik̂ × (E′ + iH ′) sin(|ω|t) sin(k∆x)

− sin(ωt) · (E′ + iH ′) sin(k∆x)

(119.51)

Observe that despite the grouping of the summation over the pairs of complementary sign
index triplets we still have a pure scalar and pure pseudoscalar term above. Allowable by the
math since the differential equation had no way of encoding the grade of the desired solution.
That only came from the initial time specification of F(x′, 0), but that is not enough.

Now, from above, we can see that one way to reconcile this grade requirement is to require
both k̂ ·E′ = 0, and k̂ ·H ′ = 0. How can such a requirement make sense given that k ranges over
all directions in space, and that both E′ and H ′ could conceivably range over many different
directions in the volume of periodicity.

With no other way out, it seems that we have to impose two requirements, one on the allow-
able wavenumber vector directions (which in turn means we can only pick specific orientations
of the Fourier volume), and another on the field directions themselves. The electric and mag-
netic fields must therefore be directed only perpendicular to the wave number vector direction.
Wow, that is a pretty severe implication following strictly from a grade requirement!

Thinking back to eq. (119.27), it appears that an implication of this is that we have

eiωtF(x′, 0) = F(x′, 0)e−iωt (119.52)

Knowing this is a required condition should considerably simplify the energy and momentum
questions.





120
P L A N E WAV E F O U R I E R S E R I E S S O L U T I O N S T O T H E M A X W E L L
VAC U U M E Q UAT I O N

120.1 motivation

In 119 an exploration of spatially periodic solutions to the electrodynamic vacuum equation
was performed using a multivector formulation of a 3D Fourier series. Here a summary of the
results obtained will be presented in a more coherent fashion, followed by an attempt to build
on them. In particular a complete description of the field energy and momentum is desired.

A conclusion from the first analysis was that the orientation of both the electric and magnetic
field components must be perpendicular to the angular velocity and wave number vectors within
the entire spatial volume. This was a requirement for the field solutions to retain a bivector grade
(STA/Dirac basis).

Here a specific orientation of the Fourier volume so that two of the axis lie in the direction
of the initial time electric and magnetic fields will be used. This is expected to simplify the
treatment.

Also note that having obtained some results in a first attempt hindsight now allows a few
choices of variables that will be seen to be appropriate. The natural motivation for any such
choices can be found in the initial treatment.

120.1.1 Notation

Conventions, definitions, and notation used here will largely follow 119. Also of possible aid in
that document is a a table of symbols and their definitions.

985
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120.2 a concise review of results

120.2.1 Fourier series and coefficients

A notation for a 3D Fourier series for a spatially periodic function and its Fourier coefficients
was developed

f (x) =
∑

k
f̂ke−ik·x

f̂k =
1
V

∫
f (x)eik·xd3x

(120.1)

In the vector context k is

k = 2π
∑

m

σm km

λm
(120.2)

Where λm are the dimensions of the volume of integration, V = λ1λ2λ3 is the volume, and in
an index context k = {k1, k2, k3} is a triplet of integers, positive, negative or zero.

120.2.2 Vacuum solution and constraints

We want to find (STA) bivector solutions F to the vacuum Maxwell equation

∇F = γ0(∂0 +∇)F = 0 (120.3)

We start by assuming a Fourier series solution of the form

F(x, t) =
∑

k
F̂k(t)e−ik·x

(120.4)

For a solution term by term identity is required

∂

∂t
F̂k(t)e−ik·x = −cσmF̂k(t)

∂

∂xm exp
(
−i2π

k jx j

λ j

)
= ickF̂k(t)e−ik·x

(120.5)



120.2 a concise review of results 987

With ω = ck, we have a simple first order single variable differential equation

F̂′k(t) = iωF̂k(t) (120.6)

with solution

F̂k(t) = eiωtF̂k (120.7)

Here, the constant was written as F̂k given prior knowledge that this is will be the Fourier
coefficient of the initial time field. Our assumed solution is now

F(x, t) =
∑

k
eiωtF̂ke−ik·x

(120.8)

Observe that for t = 0, we have

F(x, 0) =
∑

k
F̂ke−ik·x

(120.9)

which is confirmation of the Fourier coefficient role of F̂k

F̂k =
1
V

∫
F(x′, 0)eik·x′d3x′ (120.10)

F(x, t) =
1
V

∑
k

∫
eiωtF(x′, 0)eik·(x′−x)d3x′ (120.11)

It is straightforward to show that F(x, 0), and pseudoscalar exponentials commute. Specifi-
cally we have

Feik·x = eik·xF (120.12)

This follows from the (STA) bivector nature of F.
Another commutativity relation of note is between our time phase exponential and the pseu-

doscalar exponentials. This one is also straightforward to show and will not be done again here

eiωteik·x = eik·xeiωt (120.13)
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Lastly, and most importantly of the commutativity relations, it was also found that the initial
field F(x, 0) must have both electric and magnetic field components perpendicular to all ω ∝
k at all points x in the integration volume. This was because the vacuum Maxwell equation
eq. (120.3) by itself does not impose any grade requirement on the solution in isolation. An
additional requirement that the solution have bivector only values imposes this inherent planar
nature in a charge free region, at least for solutions with spatial periodicity. Some revisiting of
previous Fourier transform solutions attempts at the vacuum equation is required since similar
constraints are expected there too.

The planar constraint can be expressed in terms of dot products of the field components,
but an alternate way of expressing the same thing was seen to be a statement of conjugate
commutativity between this dual spatial vector exponential and the complete field

eiωtF = Fe−iωt (120.14)

The set of Fourier coefficients considered in the sum must be restricted to those values that
eq. (120.14) holds. An effective way to achieve this is to pick a specific orientation of the
coordinate system so the angular velocity bivector is quantized in the same plane as the field.
This means that the angular velocity takes on integer multiples k of this value

iωk = 2πick
σ

λ
(120.15)

Here σ is a unit vector describing the perpendicular to the plane of the field, or equivalently
via a duality relationship iσ is a unit bivector with the same orientation as the field.

120.2.3 Conjugate operations

In order to tackle expansion of energy and momentum in terms of Fourier coefficients, some
conjugation operations will be required.

Such a conjugation is found when computing electric and magnetic field components and
also in the T (γ0) ∝ Fγ0F energy momentum four vector. In both cases it involves products with
γ0.

120.2.4 Electric and magnetic fields

From the total field one can obtain the electric and magnetic fields via coordinates as in

E = σm(F ·σm)

H = σm((−iF) ·σm)
(120.16)
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However, due to the conjugation effect of γ0 (a particular observer’s time basis vector) on F,
we can compute the electric and magnetic field components without resorting to coordinates

E =
1
2

(F − γ0Fγ0)

H =
1
2i

(F + γ0Fγ0)
(120.17)

Such a split is expected to show up when examining the energy and momentum of our Fourier
expressed field in detail.

120.2.5 Conjugate effects on the exponentials

Now, since γ0 anticommutes with i we have a conjugation operation on percolation of γ0

through the products of an exponential

γ0eik·x = e−ik·xγ0 (120.18)

However, since γ0 also anticommutes with any spatial basis vector σk = γkγ0, we have for a
dual spatial vector exponential

γ0eiωt = eiωtγ0 (120.19)

We should now be armed to consider the energy momentum questions that were the desired
goal of the initial treatment.

120.3 plane wave energy and momentum in terms of fourier coefficients

120.3.1 Energy momentum four vector

To obtain the energy component U of the energy momentum four vector (given here in CGS
units)

T (γ0) =
1

8π
Fγ0F̃ =

−1
8π

(Fγ0F) (120.20)

we want a calculation of the field energy for the plane wave solutions of Maxwell’s equation

U = T (γ0) · γ0

= −
1

16π
(Fγ0Fγ0 + γ0Fγ0F)

(120.21)
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Given the observed commutativity relationships, at least some parts of this calculation can
be performed by direct multiplication of eq. (120.11) summed over two sets of wave number
vector indices as in.

F(x, t) =
1
V

∑
k

∫
eiωkt+ik·(a−x)F(a, 0)d3a

=
1
V

∑
m

∫
eiωmt+im·(b−x)F(b, 0)d3b

(120.22)

However, this gets messy fast. Looking for an alternate approach requires some mechanism
for encoding the effect of the γ0 sandwich on the Fourier coefficients of the field bivector. It
has been observed that this operation has a conjugate effect. The form of the stress energy four
vector suggests that a natural conjugate definition will be

F† = γ0F̃γ0 (120.23)

where F̃ is the multivector reverse operation.
This notation for conjugation is in fact what , for Quantum Mechanics, [10] calls the Hermi-

tian adjoint.
In this form our stress energy vector is

T (γ0) =
1

8π
FF†γ0 (120.24)

While the trailing γ0 term here may look a bit out of place, the energy density and the Poynt-
ing vector end up with a very complementary structure

U =
1

16π

(
FF† + (FF†)̃

)
P =

1
16πc

(
FF† − (FF†)̃

) (120.25)

Having this conjugate operation defined it can also be applied to the spacetime split of the
electric and the magnetic fields. That can also now be written in a form that calls out the inherent
complex nature of the fields

E =
1
2

(F + F†)

H =
1
2i

(F − F†)
(120.26)
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120.3.2 Aside. Applications for the conjugate in non-QM contexts

Despite the existence of the QM notation, it does not appear used in the text or ptIII notes
outside of that context. For example, in addition to the stress energy tensor and the spacetime
split of the fields, an additional non-QM example where the conjugate operation could be used,
is in the ptIII hout8 where Rotors that satisfy

v · γ0 =
〈
γ0Rγ0R̃

〉
=

〈
R†R

〉
> 0 (120.27)

are called proper orthochronous. There are likely other places involving a time centric projec-
tions where this conjugation operator would have a natural fit.

120.3.3 Energy density. Take II

For the Fourier coefficient energy calculation we now take eq. (120.8) as the starting point.
We will need the conjugate of the field

F† = γ0

∑
k

eiωtF̂ke−ik·x
˜γ0

= γ0

∑
k

(e−ik·x)̃(−F̂k)(eiωt )̃γ0

= −γ0

∑
k

e−ik·xF̂ke−iωtγ0

= −
∑

k
eik·xγ0F̂kγ0e−iωt

(120.28)

This is

F† =
∑

k
eik·x(F̂k)†e−iωt

(120.29)
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So for the energy we have

FF† + F†F =
∑
m,k

eiωmtF̂mei(k−m)·x(F̂k)†e−iωkt + eik·x(F̂k)†ei(ωm−ωk)tF̂me−im·x

=
∑
m,k

eiωmtF̂m(F̂k)†ei(k−m)·x−iωkt + eik·x(F̂k)†F̂me−i(ωm−ωk)t−im·x

=
∑
m,k

F̂m(F̂k)†ei(k−m)·x−i(ωk−ωm)t + (F̂k)†F̂mei(ωk−ωm)t+i(k−m)·x

=
∑

k
F̂k(F̂k)† + (F̂k)†F̂k

+
∑
m,k

F̂m(F̂k)†ei(k−m)·x−i(ωk−ωm)t + (F̂k)†F̂mei(ωk−ωm)t+i(k−m)·x

(120.30)

In the first sum all the time dependence and all the spatial dependence that is not embedded
in the Fourier coefficients themselves has been eliminated. What is left is something that looks
like it is a real quantity (to be verified) Assuming (also to be verified) that F̂k commutes with its
conjugate we have something that looks like a discrete version of what [18] calls the Rayleigh
energy theorem

∫ ∞

−∞

f (x) f ∗(x)dx =

∫ ∞

−∞

f̂ (k) f̂ ∗(k)dk (120.31)

Here f̂ (k) is the Fourier transform of f (x).
Before going on it is expected that the k , m terms all cancel. Having restricted the orien-

tations of the allowed angular velocity bivectors to scalar multiples of the plane formed by the
(wedge of) the electric and magnetic fields, we have only a single set of indices to sum over (ie:
k = 2πσk/λ). In particular we can sum over k < m, and k > m cases separately and add these
with expectation of cancellation. Let us see if this works out.

Write ω = 2πσ/λ, ωk = kω, and k = ω/c then we have for these terms

∑
m,k

ei(k−m)ω·x/c
(
F̂m(F̂k)†e−i(k−m)ωt + (F̂k)†F̂mei(k−m)ωt

)
(120.32)

120.3.3.1 Hermitian conjugate identities

To get comfortable with the required manipulations, let us find the Hermitian conjugate equiva-
lents to some of the familiar complex number relationships.
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Not all of these will be the same as in “normal” complex numbers. For instance, while for
complex numbers, the identities

z + z = 2<(z)
1
i
(z − z) = 2=(z)

(120.33)

are both real numbers, we have seen for the electric and magnetic fields that we do not get
scalars from the Hermitian conjugates, instead get a spatial vector where we would get a real
number in complex arithmetic. Similarly we get a (bi)vector in the dual space for the field minus
its conjugate.

Some properties:

• Hermitian conjugate of a product

(ab)† = γ0(ab)̃γ0

= γ0(b)̃(a)̃γ0

=
(
γ0(b)̃γ0

) (
γ0(a)̃γ0

) (120.34)

This is our familiar conjugate of a product is the inverted order product of conjugates.

(ab)† = b†a† (120.35)

• conjugate of a pure pseudoscalar exponential

(
eiα

)†
= γ0 (cos(α) + i sin(α))˜γ0

= cos(α) − iγ0 sin(α)γ0

(120.36)

But that is just(
eiα

)†
= e−iα (120.37)

Again in sync with complex analysis. Good.

• conjugate of a dual spatial vector exponential(
eik

)†
= γ0 (cos(k) + i sin(k))˜γ0

= γ0 (cos(k) − sin(k)i) γ0

= cos(k) − i sin(k)

(120.38)
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So, we have

(
eik

)†
= e−ik (120.39)

Again, consistent with complex numbers for this type of multivector object.

• dual spatial vector exponential product with a conjugate.

F†eik = γ0F̃γ0eik

= γ0F̃eikγ0

= γ0e−ikF̃γ0

= eikγ0F̃γ0

(120.40)

So we have conjugate commutation for both the field and its conjugate

F†eik = e−ikF†

Feik = e−ikF
(120.41)

• pseudoscalar exponential product with a conjugate.

For scalar α

F†eiα = γ0F̃γ0eiα

= γ0F̃e−iαγ0

= γ0e−iαF̃γ0

= eiαγ0F̃γ0

(120.42)

In opposition to the dual spatial vector exponential, the plain old pseudoscalar exponen-
tials commute with both the field and its conjugate.

F†eiα = eiαF†

Feiα = eiαF
(120.43)

• Pauli vector conjugate.

(σk)† = γ0γ0γkγ0 = σk (120.44)

Jives with the fact that these in matrix form are called Hermitian.
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• pseudoscalar conjugate.

i† = γ0iγ0 = −i (120.45)

• Field Fourier coefficient conjugate.

(F̂k)† =
1
V

∫
e−ik·xF†(x, 0)d3x = F̂†−k (120.46)

The conjugate of the k Fourier coefficient is the −k Fourier coefficient of the conjugate
field.

Observe that the first three of these properties would have allowed for calculation of eq. (120.29)
by inspection.

120.3.4 Products of Fourier coefficient with another conjugate coefficient

To progress a relationship between the conjugate products of Fourier coefficients may be re-
quired.

120.4 fixme: finish this

I am getting tired of trying to show (using Latex as a tool and also on paper) that the k , m
terms vanish and am going to take a break, and move on for a bit. Come back to this later, but
start with a electric field and magnetic field expansion of the (F̂k)†F̂k + F̂k(F̂k)† term to verify
that this ends up being a scalar as desired and expected (this is perhaps an easier first step than
showing the cross terms are zero).





121
L O R E N T Z G AU G E F O U R I E R VAC U U M P OT E N T I A L S O L U T I O N S

121.1 motivation

In 119 a first order Fourier solution of the Vacuum Maxwell equation was performed. Here a
comparative potential solution is obtained.

121.1.1 Notation

The 3D Fourier series notation developed for this treatment can be found in the original notes
119. Also included there is a table of notation, much of which is also used here.

121.2 second order treatment with potentials

121.2.1 With the Lorentz gauge

Now, it appears that Bohm’s use of potentials allows a nice comparison with the harmonic
oscillator. Let us also try a Fourier solution of the potential equations. Again, use STA instead
of the traditional vector equations, writing A = (φ + a)γ0, and employing the Lorentz gauge
∇ · A = 0 we have for F = ∇∧ A in CGS units

FIXME: Add a, and ψ to notational table below with definitions in terms of E, andH (or the
other way around).

∇2A = 4πJ (121.1)

Again with a spacetime split of the gradient

∇ = γ0(∂0 +∇) = (∂0 −∇)γ0 (121.2)

our four Laplacian can be written

(∂0 −∇)γ0γ
0(∂0 +∇) = (∂0 −∇)(∂0 +∇)

= ∂00 −∇
2 (121.3)
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Our vacuum field equation for the potential is thus

∂ttA = c2
∇

2A (121.4)

Now, as before assume a Fourier solution and see what follows. That is

A(x, t) =
∑

k
Âk(t)e−ik·x

(121.5)

Applied to each component this gives us

Â′′k e−ik·x = c2Âk(t)
∑

m

∂2

(∂xm)2 e−2πi
∑

j k j x j/λ j

= c2Âk(t)
∑

m

(−2πikm/λm)2e−ik·x

= −c2k2Âke−ik·x

(121.6)

So we are left with another big ass set of simplest equations to solve

Â′′k = −c2k2Âk (121.7)

Note that again the origin point k = (0, 0, 0) is a special case. Also of note this time is
that Âk has vector and trivector parts, unlike F̂k which being derived from dual and non-dual
components of a bivector was still a bivector.

It appears that solutions can be found with either left or right handed vector valued integration
constants

Âk(t) = exp(±ickt)Ck

= Dk exp(±ickt)
(121.8)

Since these are equal at t = 0, it appears to imply that these commute with the complex
exponentials as was the case for the bivector field.

For the k = 0 special case we have solutions

Âk(t) = D0t + C0 (121.9)

It does not seem unreasonable to require D0 = 0. Otherwise this time dependent DC Fourier
component will blow up at large and small values, while periodic solutions are sought.
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Putting things back together we have

A(x, t) =
∑

k
exp(±ickt)Ck exp(−ik · x) (121.10)

Here again for t = 0, our integration constants are found to be determined completely by the
initial conditions

A(x, 0) =
∑

k
Cke−ik·x

(121.11)

So we can write

Ck =
1
V

∫
A(x′, 0)eik·x′d3x′ (121.12)

In integral form this is

A(x, t) =

∫ ∑
k

exp(±ikct)A(x′, 0) exp(ik · (x − x′)) (121.13)

This, somewhat surprisingly, is strikingly similar to what we had for the bivector field. That
was:

F(x, t) =

∫
G(x − x′, t)F(x′, 0)d3x′

G(x, t) =
1
V

∑
k

exp (ikct) exp (−ik · x)
(121.14)

We cannot however commute the time phase term to construct a one sided Green’s function
for this potential solution (or perhaps we can but if so shown or attempted to show that this
is possible). We also have a plus or minus variation in the phase term due to the second order
nature of the harmonic oscillator equations for our Fourier coefficients.

121.2.2 Comparing the first and second order solutions

A consequence of working in the Lorentz gauge (∇ · A = 0) is that our field solution should be
a gradient

F = ∇∧ A

= ∇A
(121.15)

FIXME: expand this out using eq. (121.13) to compare to the first order solution.
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A P P E N D I X





A
N OTAT I O N A N D D E F I N I T I O N S

Here is a summary of the notation and definitions that will be used.
The following tables summarize a lot of the notation used in these notes. This largely follows

conventions from [10].

a.1 coordinates and basis vectors

Greek letters range over all indices and English indices range over 1, 2, 3.
Bold vectors are spatial entities and non-bold is used for four vectors and scalars.
Summation convention is often used (less so in earlier notes). This is summation over all sets

of matched upper and lower indices is implied.
While many things could be formulated in a metric signature independent fashion, a time posi-

tive (+,−,−,−) metric signature should be assumed in most cases. Specifically, that is (γ0)2 = 1,
and (γk)2 = −1.

1003
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γµ γµ · γν = ±δµν Four vector basis vector

(γµ · γν = ±δµν)

(γ0)2(γk)2 = −1 Minkowski metric

σk = σk = γk ∧ γ0 Spatial basis bivector. (σk ·σ j = δk j)

= γkγ0

I = γ0 ∧ γ1 ∧ γ2 ∧ γ3 Four-vector pseudoscalar

= γ0γ1γ2γ3

= γ0123

γµ · γν = δµν Reciprocal basis vectors

xµ = x · γµ Vector coordinate

xµ = x · γµ Coordinate for reciprocal basis

x = γµxµ Four vector in terms of coordinates

= γµxµ
x0 = x · γ0 Time coordinate (length dim.)

= ct

x = x ∧ γ0 Spatial vector

= xkσk

x2 = x · x Four vector square.

= xµxµ
x2 = x · x Spatial vector square.

=
∑3

k=1(xk)2

= |x|2

If convient sometimes i will be used for the pseudoscalar.

a.2 electromagnetism

SI units are used in most places, but occasionally natural units are used. In some cases, when
working with material such as [2], CGS modifications of the notation are employed.
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E =
∑

Ekσk Electric field spatial vector

B =
∑

Bkσk Magnetic field spatial vector

E = Ekσk (CGS)Electric field spatial vector

H = Hkσk (CGS)Magnetic field spatial vector

J = γµJµ Current density four vector.

= γµJµ
F = E + IcB Electromagnetic (Faraday) bivector

= Fµνγµ ∧ γν in terms of Faraday tensor

= E + IH (CGS)

J0 = J · γ0 Charge density.

= cρ (current density dimensions.)

= ρ (CGS) (current density dimensions.)

J = J ∧ γ0 Current density spatial vector

= Jkσk
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a.3 differential operators

∂µ = ∂/∂xµ Index up partial.

∂µ = ∂/∂xµ Index down partial.

∂µν = ∂/∂xµ∂/∂xν Index up partial.

∇ =
∑
γµ∂/∂xµ Spacetime gradient

= γµ∂µ

=
∑
γµ∂/∂xµ

= γµ∂
µ

∇ = σk∂k Spatial gradient

Âk = Âk1,k2,k3 Fourier coefficient, integer indices.

∇2A = (∇ · ∇)A Four Laplacian.

= (∂00 −
∑

k ∂kk)A

d3x = dx1dx2dx3 Spatial volume element.

d4x = dx0dx1dx2dx3 Four volume element.∫
∂I =

∫ b
a Integration range I = [a, b]

STA Space Time Algebra

(xyz)̃ = x̃yz = zyx Reverse of a vector product.

a.4 misc

The PV notation is taken from [29] where the author uses it in his Riemann integral proof of the
inverse Fourier integral.

PV
∫ ∞
−∞

= limR→∞
∫ R

R Integral Principle value

Â(k) = F (A(x)) Fourier transform of A

A(x) = F −1(A(k)) Inverse Fourier transform

exp(ikφ) = cos(|k|φ) + ik
|ik| sin(|k|φ) bivector exponential.
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S O M E H E L P F U L I D E N T I T I E S

Theorem B.1: Distribution of inner products

Given two blades As, Br with grades subject to s > r > 0, and a vector b, the inner product
distributes according to

As · (b∧ Br) = (As · b) · Br.

This will allow us, for example, to expand a general inner product of the form dkx · (∂∧ F).
The proof is straightforward, but also mechanical. Start by expanding the wedge and dot

products within a grade selection operator

(B.1)
As · (b ∧ Br) = 〈As(b ∧ Br)〉s−(r+1)

=
1
2
〈
As

(
bBr + (−1)rBrb

)〉
s−(r+1)

Solving for Brb in

(B.2)2b · Br = bBr − (−1)rBrb,

we have

(B.3)As · (b ∧ Br) =
1
2
〈AsbBr + As (bBr − 2b · Br)〉s−(r+1)

= 〈AsbBr〉s−(r+1) −((((
((((

(〈
As (b · Br)

〉
s−(r+1).

The last term above is zero since we are selecting the s− r − 1 grade element of a multivector
with grades s − r + 1 and s + r − 1, which has no terms for r > 0. Now we can expand the Asb
multivector product, for

(B.4)As · (b ∧ Br) = 〈(As · b + As ∧ b) Br〉s−(r+1).

The latter multivector (with the wedge product factor) above has grades s + 1− r and s + 1 + r,
so this selection operator finds nothing. This leaves

(B.5)As · (b ∧ Br) = 〈(As · b) · Br + (As · b) ∧ Br〉s−(r+1).

The first dot products term has grade s − 1 − r and is selected, whereas the wedge term has
grade s − 1 + r , s − r − 1 (for r > 0). �
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Theorem B.2: Distribution of two bivectors

For vectors a, b, and bivector B, we have

(a∧ b) · B =
1
2
(a · (b · B) − b · (a · B)) . (B.6)

Proof follows by applying the scalar selection operator, expanding the wedge product within
it, and eliminating any of the terms that cannot contribute grade zero values

(B.7)

(a ∧ b) · B =

〈
1
2
(ab − ba)B

〉
=

1
2
〈a (b · B +���b ∧ B) − b (a · B +���a ∧ B)〉

=
1
2

〈
a · (b · B) +��

���a ∧ (b · B) − b · (a · B) −���
��b ∧ (a · B)

〉
=

1
2
(a · (b · B) − b · (a · B)) �

Theorem B.3: Inner product of trivector with bivector

Given a bivector B, and trivector a ∧ b ∧ c where a,b and c are vectors, the inner product
is

(B.8)(a ∧ b ∧ c) · B = a((b ∧ c) · B) + b((c ∧ a) · B) + c((a ∧ b) · B).
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This is also problem 1.1(c) from Exercises 2.1 in [19], and submits to a dumb expansion in
successive dot products with a final regrouping. With B = u∧ v

(a∧ b∧ c) · B =
〈
(a∧ b∧ c) (u∧ v)

〉
1

=
〈
(a∧ b∧ c) (uv − u · v)

〉
1

= ((a∧ b∧ c) · u) · v
= (a∧ b) · v (c · u) + (c∧ a) · v (b · u) + (b∧ c) · v (a · u)
= a (b · v) (c · u) − b (a · v) (c · u)

+ c (a · v) (b · u) − a (c · v) (b · u)
+ b (c · v) (a · u) − c (b · v) (a · u)

= a ((b · v) (c · u) − (c · v) (b · u))
+ b ((c · v) (a · u) − (a · v) (c · u))
+ c ((a · v) (b · u) − (b · v) (a · u))

= a (b∧ c) · (u∧ v)
+ b (c∧ a) · (u∧ v)
+ c (a∧ b) · (u∧ v)

= a (b∧ c) · B + b (c∧ a) · B + c (a∧ b) · B. �

(B.9)

Theorem B.4: Distribution of two trivectors

Given a trivector T and three vectors a,b, and c, the entire inner product can be expanded
in terms of any successive set inner products, subject to change of sign with interchange
of any two adjacent vectors within the dot product sequence

(B.10)

(a ∧ b ∧ c) · T = a · (b · (c · T ))
= −a · (c · (b · T ))
= b · (c · (a · T ))
= −b · (a · (c · T ))
= c · (a · (b · T ))
= −c · (b · (a · T )) .

To show this, we first expand within a scalar selection operator

(a∧ b∧ c) · T =
〈
(a∧ b∧ c) T

〉
=

1
6
〈abcT − acbT + bcaT − babT + cabT − cbaT 〉

(B.11)
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Now consider any single term from the scalar selection, such as the first. This can be re-
ordered using the vector dot product identity

(B.12)〈abcT 〉 = 〈a (−cb + 2b · c) T 〉
= −〈acbT 〉 + 2b · c���〈aT 〉.

The vector-trivector product in the latter grade selection operation above contributes only
bivector and quadvector terms, thus contributing nothing. This can be repeated, showing that

(B.13)

〈abcT 〉 = −〈acbT 〉
= +〈bcaT 〉
= −〈bacT 〉
= +〈cabT 〉
= −〈cbaT 〉.

Substituting this back into eq. (B.11) proves theorem B.4.

Theorem B.5: Permutation of two successive dot products with trivector

Given a trivector T and two vectors a and b, alternating the order of the dot products
changes the sign

(B.14)a · (b · T ) = −b · (a · T ) .

This and theorem B.4 are clearly examples of a more general identity, but I’ll not try to prove
that here. To show this one, we have

(B.15)

a · (b · T ) = 〈a (b · T )〉1

=
1
2
〈abT + aTb〉1

=
1
2
〈(−ba +���2a · b) T + (a · T ) b +���a ∧ Tb〉1

=
1
2

(−b · (a · T ) + (a · T ) · b)

= −b · (a · T ) . �

Cancellation of terms above was because they could not contribute to a grade one selection.
We also employed the relation x · B = −B · x for bivector B and vector x.

Theorem B.6: Duality in a plane

For a vector a, and a plane containing a and b, the dual a∗ of this vector with respect to
this plane is
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(B.16)a∗ =
b · (a ∧ b)
(a ∧ b)2 ,

Satisfying

(B.17)a∗ · a = 1,

and

(B.18)a∗ · b = 0.

To demonstrate, we start with the expansion of

(B.19)b · (a ∧ b) = (b · a) b − b2a.

Dotting with a we have

(B.20)a · (b · (a ∧ b)) = a ·
(
(b · a) b − b2a

)
= (b · a)2 − b2a2,

but dotting with b yields zero

(B.21)
b · (b · (a ∧ b)) = b ·

(
(b · a) b − b2a

)
= (b · a) b2 − b2 (a · b)
= 0.

To complete the proof, we note that the product in eq. (B.20) is just the wedge squared

(B.22)

(a ∧ b)2 =
〈
(a ∧ b)2

〉
= 〈(ab − a · b) (ab − a · b)〉
= 〈abab − 2 (a · b) ab〉 + (a · b)2

= 〈ab (−ba + 2a · b)〉 − (a · b)2

= (a · b)2 − a2b2.

This duality relation can be recast with a linear denominator

(B.23)

a∗ =
b · (a ∧ b)
(a ∧ b)2

= b
a ∧ b

(a ∧ b)2

= b
a ∧ b
|a ∧ b|

|a ∧ b|
a ∧ b

1
(a ∧ b)

,
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or

a∗ = b
1

(a∧ b)
. (B.24)

We can use this form after scaling it appropriately to express duality in terms of the pseu-
doscalar.

Theorem B.7: Dual vector in a three vector subspace

In the subspace spanned by {a,b, c}, the dual of a is

a∗ = b∧ c
1

a∧ b∧ c
,

Consider the dot product of â∗ with u ∈ {a,b, c}.

(B.25)

u · a∗ =

〈
ub ∧ c

1
a ∧ b ∧ c

〉
=

〈
u · (b ∧ c)

1
a ∧ b ∧ c

〉
+

〈
u ∧ b ∧ c

1
a ∧ b ∧ c

〉
=
((((

((((
((((

(((
〈
((u · b) c − (u · c) b)

1
a ∧ b ∧ c

〉
+

〈
u ∧ b ∧ c

1
a ∧ b ∧ c

〉
.

The canceled term is eliminated since it is the product of a vector and trivector producing no
scalar term. Substituting a,b, c, and noting that u∧ u = 0, we have

a · a∗ = 1

b · a∗ = 0

c · a∗ = 0.

(B.26)

Theorem B.8: Pseudoscalar selection

For grade k blade K ∈
∧k (i.e. a pseudoscalar ), and vectors a,b, the grade k selection of

this blade sandwiched between the vectors is

〈aKb〉k = (−1)k+1〈Kab〉k = (−1)k+1K (a · b) .
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To show this, we have to consider even and odd grades separately. First for even k we have

(B.27)

〈aKb〉k = 〈(a · K +���a ∧ K) b〉k
=

1
2
〈(aK − Ka) b〉k

=
1
2
〈aKb〉k −

1
2
〈Kab〉k,

or

(B.28)〈aKb〉k = −〈Kab〉k
= −K (a · b) .

Similarly for odd k, we have

(B.29)

〈aKb〉k = 〈(a · K +���a ∧ K) b〉k
=

1
2
〈(aK + Ka) b〉k

=
1
2
〈aKb〉k +

1
2
〈Kab〉k,

or

(B.30)〈aKb〉k = 〈Kab〉k
= K (a · b) .

Adjusting for the signs completes the proof.





C
S O M E F O U R I E R T R A N S F O R M N OT E S

c.1 motivation

In [33] the Fourier transform pairs are written in a somewhat non-orthodox seeming way.

φ(p) =
1
√

2π ~

∫ ∞

−∞

ψ(x)e−ipx/ ~dx

ψ(x) =
1
√

2π ~

∫ ∞

−∞

φ(p)eipx/ ~dp
(C.1)

The aim here is to do verify this form and do a couple associated calculations (like the
Rayleigh energy theorem).

c.2 verify transform pair

As an exercise to verify, in a not particularly rigorous fashion, that we get back our original
function applying the forward and reverse transformations in sequence. Specifically, let us com-
pute

F −1(F (ψ(x))) = PV
1
√

2π ~

∫ ∞

−∞

(
1
√

2π ~

∫ ∞

−∞

ψ(u)e−ipu/ ~du
)

eipx/ ~dp (C.2)

Here PV is the principle value of the integral, which is the specifically symmetric integration

PV
∫ ∞

−∞

= lim
R→∞

∫ R

−R
(C.3)

We have for the integration

F −1(F (ψ(x))) = PV
1

2π ~

∫
duψ(u)

∫
eip(x−u)/ ~dp (C.4)

1015
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Now, let v = (x − u)/ ~, or u = x − v ~ for

1
2π

∫
dvψ(x − v ~)

∫ R

−R
eipvdp =

1
2π

∫
dvψ(x − v ~)

1
iv

eipv
∣∣∣∣∣R
p=−R

=

∫
dvψ(x − v ~)

sin(Rv)
πv

(C.5)

In a hand-waving (aka. Engineering) fashion, one can identify the limit of sin(Rv)/πv as the
Dirac delta function and then declare that this does in fact recover the value of ψ(x) by a Dirac
delta filtering around the point v = 0.

This does in fact work out, but as a strict integration exercise one ought to be able to do
better. Observe that the integral performed here was not really valid for v = 0 in which case the
exponential takes the value of one, so it would be better to treat the neighborhood of v = 0 more
carefully. Doing so

1
2π

∫
dvψ(x − v ~)

∫ R

−R
eipvdp =

∫ −ε

v=−∞

dvψ(x − v ~)
sin(Rv)
πv

+

∫ ∞

v=ε
dvψ(x − v ~)

sin(Rv)
πv

+
1

2π

∫ ε

v=−ε
dvψ(x − v ~)

∫ R

−R
eipvdp

=

∫ ∞

v=ε
dv (ψ(x − v ~) + ψ(x + v ~))

sin(Rv)
πv

+
1

2π

∫ ε

v=−ε
dvψ(x − v ~)

∫ R

−R
eipvdp

(C.6)

Now, evaluating this with ε allowing to tend to zero and R tending to infinity simultaneously
is troublesome seeming. I seem to recall that one can do something to the effect of setting
ε = 1/R, and then carefully take the limit, but it is not obvious to me how exactly to do this
without pulling out an old text. While some kind of ad-hoc limit process can likely be done
and justified in some fashion, one can see why the hard core mathematicians had to invent an
alternate stricter mathematics to deal with this stuff rigorously.

That said, from an intuitive point of view, it is fairly clear that the filtering involved here will
recover the average of ψ(x) in the neighborhood assuming that it is piecewise continuous:

F −1(F (ψ(x))) =
1
2
(ψ(x − ε) + ψ(x + ε)) (C.7)

After digging through my old texts I found a treatment of the Fourier integral very similar
to what I have done above in [29], but the important details are not omitted (like integrability
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conditions). I had read that and some of my treatment is obviously was based on that. That text
treats this still with Riemann (and not Lebesgue) integration, but very carefully.

c.3 parseval’s theorem

In [33] he notes that Parseval’s theorem tells us

∫ ∞

−∞

f (x)g(x)dx =

∫ ∞

−∞

F(k)G∗(k)dk∫ ∞

−∞

| f (x)|2dx =

∫ ∞

−∞

|F(k)|2dk
(C.8)

The last of these in [18] is called Rayleigh’s energy theorem. As a refresher in Fourier manip-
ulation, and to translate to the QM Fourier transform notation, let us go through the arguments
required to prove these.

c.3.1 Convolution

We will need convolution in the QM notation as a first step to express the transform of a product.
Suppose we have two functions φi(x) , and their transform pairs φ̃i(x) = F (φi), then the

transform of the product is

Φ̃12(p) = F (φ1(x)φ2(x)) =
1
√

2π ~

∫ ∞

−∞

φ1(x)φ2(x)e−ipx/ ~dx (C.9)

Now write φ2(x) in terms of its inverse transform

φ2(x)) =
1
√

2π ~

∫ ∞

−∞

φ̃2(u)eiux/ ~du (C.10)

The product transform is now

Φ̃12(p) =
1
√

2π ~

∫ ∞

−∞

φ1(x)
1
√

2π ~

∫ ∞

−∞

φ̃2(u)eiux/ ~due−ipx/ ~dx

=
1
√

2π ~

∫ ∞

−∞

duφ̃2(u)
1
√

2π ~

∫ ∞

−∞

φ1(x)e−ix(p−u)/ ~dx

=
1
√

2π ~

∫ ∞

−∞

duφ̃2(u)φ̃1(p − u)

=
1
√

2π ~

∫ ∞

−∞

dvφ̃1(v)φ̃2(p − v)

(C.11)
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So we have product transform expressed by the convolution integral, but have an extra
1/
√

2π ~ factor in this form

φ1(x)φ2(x)⇔
1
√

2π ~

∫ ∞

−∞

dvφ̃1(v)φ̃2(p − v) (C.12)

c.3.2 Conjugation

Next we need to see how the conjugate transforms. This is pretty straight forward

φ∗(x)⇔
1
√

2π ~

∫ ∞

−∞

φ∗(x)e−ipx/ ~dx

=

(
1
√

2π ~

∫ ∞

−∞

φ(x)eipx/ ~dx
)∗ (C.13)

So we have

φ∗(x)⇔ (φ̃(−p))∗ (C.14)

c.3.3 Rayleigh’s Energy Theorem

Now, we should be set to prove the energy theorem. Let us start with the momentum domain
integral and translate back to position basis

∫ ∞

−∞

dpφ̃(p)φ̃∗(p) =

∫ ∞

−∞

dp
1
√

2π ~

∫ ∞

−∞

dxφ(x)e−ipx/ ~φ̃∗(p)

=

∫ ∞

−∞

dxφ(x)
1
√

2π ~

∫ ∞

−∞

dpφ̃∗(p)e−ipx/ ~

=

∫ ∞

−∞

dxφ(x)
1
√

2π ~

∫ ∞

−∞

dpφ̃∗(−p)eipx/ ~

=

∫ ∞

−∞

dxφ(x)F −1(φ̃∗(−p))

(C.15)

This is exactly our desired result∫ ∞

−∞

dpφ̃(p)φ̃∗(p) =

∫ ∞

−∞

dxφ(x)φ∗(x) (C.16)

Hmm. Did not even need the convolution as the systems book did. Will have to look over
how they did this more closely. Regardless, this method was nicely direct.
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A C H E AT S H E E T F O R F O U R I E R T R A N S F O R M C O N V E N T I O N S

d.1 a cheatsheet for different fourier integral notations

Damn. There are too many different notations for the Fourier transform. Examples are:

f̃ (k) =

∫ ∞

−∞

f (x) exp (−2πikx) dx

f̃ (k) =
1
√

2π

∫ ∞

−∞

f (x) exp (−ikx) dx

f̃ (p) =

√
1

2π ~

∫ ∞

−∞

f (x) exp
(
−ipx
~

)
dx

(D.1)

There are probably many more, with other variations such as using hats over things instead
of twiddles, and so forth.

Unfortunately each of these have different numeric factors for the inverse transform. Having
just been bitten by rogue factors of 2π after innocently switching notations, it seems worthwhile
to express the Fourier transform with a general fudge factor in the exponential. Then it can be
seen at a glance what constants are required in the inverse transform given anybody’s particular
choice of the transform definition.

Where to put all the factors can actually be seen from the QM formulation since one is free
to treat ~ as an arbitrary constant, but let us do it from scratch in a mechanical fashion without
having to think back to QM as a fundamental.

Suppose we define the Fourier transform as

f̃ (s) = κ

∫ ∞

−∞

f (x) exp (−iαsx) dx

f (x) = κ′
∫ ∞

−∞

f̃ (s) exp (iαxs) ds
(D.2)

Now, what factor do we need in the inverse transform to make things work out right? With
the Rigor Police on holiday, let us expand the inverse transform integral in terms of the original
transform and see what these numeric factors must then be to make this work out.
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Omitting temporarily the κ factors to be determined we have

f (x) ∝
∫ ∞

−∞

(∫ ∞

−∞

f (u) exp (−iαsu) du
)

exp (iαxs) ds

=

∫ ∞

−∞

f (u)du
∫ ∞

−∞

exp (iαs(x − u)) ds

=

∫ ∞

−∞

f (u)du lim
R→∞

2π
1

πα(x − u)
sin (αR(x − u))

=

∫ ∞

−∞

f (u)du2πδ (α(x − u))

=
1
α

∫ ∞

−∞

f (v/α)dv2πδ (αx − v)

=
2π
α

f ((αx)/α)

=
2π
α

f (x)

(D.3)

Note that to get the result above, after switching order of integration, and assuming that we
can take the principle value of the integrals, the usual ad-hoc sinc and exponential integral
identification of the delta function was made

PV
1

2π

∫ ∞

−∞

exp (isx) ds = lim
R→∞

1
2π

∫ R

−R
exp (isx) ds

= lim
R→∞

sin (Rx)
πx

≡ δ (x)

(D.4)

The end result is that we will need to fix

κκ′ =
α

2π
(D.5)

to have the transform pair produce the desired result. Our transform pair is therefore

f̃ (s) = κ

∫ ∞

−∞

f (x) exp (−iαsx) dx⇔ f (x) =
α

2πκ

∫ ∞

−∞

f̃ (s) exp (iαsx) ds (D.6)
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d.2 a survey of notations

From eq. (D.6) we can express the required numeric factors that accompany all the various
forward transforms conventions. Let us do a quick survey of the bookshelf, ignoring differences
in the i’s and j’s, differences in the transform variables, and so forth.

From my old systems and signals course, with the book [18] we have, κ = 1, and α = 2π

f̃ (s) =

∫ ∞

−∞

f (x) exp (−2πisx) dx

f (x) =

∫ ∞

−∞

f̃ (s) exp (2πisx) ds
(D.7)

The mathematician’s preference, and that of [2], and [5] appears to be the nicely symmetrical
version, with κ = 1/

√
2π, and α = 1

f̃ (s) =
1
√

2π

∫ ∞

−∞

f (x) exp (−isx) dx

f (x) =
1
√

2π

∫ ∞

−∞

f̃ (s) exp (isx) ds
(D.8)

From the old circuits course using [21], and also in the excellent text [29], we have κ = 1,
and α = 1

f̃ (s) =

∫ ∞

−∞

f (x) exp (−isx) dx

f (x) =
1

2π

∫ ∞

−∞

f̃ (s) exp (isx) ds
(D.9)

and finally, the QM specific version from [33], with α = p/ ~, and κ = 1/
√

2π ~ we have

f̃ (p) =
1
√

2π ~

∫ ∞

−∞

f (x) exp
(
−

ipx
~

)
dx

f (x) =
1
√

2π ~

∫ ∞

−∞

f̃ (p) exp
( ipx
~

)
dp

(D.10)





E
P RO J E C T I O N W I T H G E N E R A L I Z E D D OT P RO D U C T

Figure E.1: Visualizing projection onto a subspace

We can geometrically visualize the projection problem as in fig. E.1. Here the subspace can
be pictured as a plane containing a set of mutually perpendicular basis vectors, as if one has
visually projected all the higher dimensional vectors onto a plane.

For a vector x that contains some part not in the space we want to find the component in
the space p, or characterize the projection operation that produces this vector, and also find the
space of vectors that lie perpendicular to the space.

Expressed in terms of the Euclidean dot product this perpendicularity can be expressed ex-
plicitly as UTn = 0. This is why we say that n is in the null space of UT, N(UT) not the null
space of U itself (N(U)). One perhaps could say this is in the null or perpendicular space of the
set {ui}, but the typical preference to use columns as vectors makes this not entirely unnatural.

In a complex vector space with u · v = u∗v transposition no longer expresses this null space
concept, so the null space is the set of n, such that U∗n = 0, so one would say n ∈ N(U∗).
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One can generalize this projection and nullity to more general dot products. Let us examine
the projection matrix calculation with respect to a more arbitrary inner product. For an inner
product that is conjugate linear in the first variable, and linear in second variable we can write:

〈u, v〉 = u∗Av (E.1)

This is the most general complex bilinear form, and can thus represent any complex dot
product.

The problem is the same as above. We want to repeat the projection derivation done with
the Euclidean dot product, but be more careful with ordering of terms since we now using a
non-commutative dot (inner) product.

We are looking for vectors p =
∑

aiui, and e such that

x = p + e (E.2)

If the inner product defines the projection operation we have for any ui

0 = 〈ui, e〉
= 〈ui, x − p〉

=⇒

〈ui, x〉 = 〈ui,p〉

= 〈ui,
∑

j

a ju j〉

=
∑

j

a j〈ui,u j〉

(E.3)

In matrix form, this is[
〈ui, x〉

]
i
=

[
〈ui,u j〉

]
i j

[ai]i

Or

A = [ai]i =
1[

〈ui,u j〉
]
i j

[
〈ui, x〉

]
i

We can also write our projection in terms of A:

p =
[
u1 u2 · · · uk

]
A = UA
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Thus the projection vector can be written:

p = U
1[

〈ui,u j〉
]
i j

[
〈ui, x〉

]
i

In matrix form this is:

ProjU(x) =

(
U

1
U∗AU

U∗A
)

x (E.4)

Writing W∗ = U∗A, this is

ProjU(x) =

(
U

1
W∗U

W∗A
)

x

which is what the wikipedia article on projection calls an oblique projection. Q: Can any
oblique projection be expressed using just an alternate dot product?





F
M AT H E M AT I C A N OT E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://raw.github.com/peeterjoot/mathematica/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to some

extent.

• Sep 15, 2011 gabook/matrixVectorPotentialsTrig.nb

Some trig double angle reductions.

• Sep 15, 2011 gabook/pendulumDouble.nb

Generate some double pendulum figures.

• May 4, 2014 gabook/sphericalSurfaceAndVolumeElements.nb

In a 4D Euclidean space, this notebook calculates the spherical tangent space basis for
a spherical parameterization of span e2,e3,e4 and their duals on that volume. The duals
are calculated using the Geometric algebra methods, instead of matrix inversion. This
notebook uses clifford.m

• May 4, 2014 gabook/sphericalSurfaceAndVolumeElementsMinkowski.nb

In a 4D Minkowski space, this notebook calculates the spherical tangent space basis for
a spherical parameterization of span e2,e3,e4 and their duals on that volume. The duals
are calculated using the Geometric algebra methods, instead of matrix inversion. This
notebook uses clifford.m
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G
F U RT H E R R E A D I N G

There is a wealth of information on the subject available online, but finding information at an
appropriate level may be difficult. Not all resources use the same notation or nomenclature, and
one can get lost in a sea of product operators. Some of the introductory material also assumes
knowledge of various levels of physics. This is natural since the algebra can be utilized well to
expresses many physics concepts. While natural, this can also be intimidating if one is unpre-
pared, so mathematics that one could potentially understand may be presented in a fashion that
is inaccessible.

g.1 geometric algebra for computer science book

The book Geometric Algebra For Computer Science. by Dorst, Fontijne, and Mann has one of
the best introductions to the subject that I have seen. It is also fairly inexpensive ($60 Canadian).
Compared for example to Hestenes’s “From Clifford Algebra to Geometric Calculus” which I
have seen listed on amazon.com with a default price of $250, discounted to $150.

This book contains particularly good introductions to the dot and wedge products, both for
vectors, and the generalizations. How these can be applied and what they can be used to model
is covered excellently.

Compromises have been made in this book on the order to present information, and what
level of detail to use and when. Many proofs are deferred or placed only in the appendix. For
example, they introduce (define) a scalar product initially (denoted with an asterisk (*)), and
define this using a determinant without motivation. This allows for development of a working
knowledge of how to apply the subject.

Once an ability to apply has been developed they proceed with an axiomatic development.
I would consider an axiomatic approach to the subject very important since there is a sea of
identities associated with the algebra. Figuring out which ones are consequences of the others
can be difficult, if one starts with definitions that are not fundamental. One can easily go in
circles and wonder really are the basic rules (this was my first impression starting with the
Hestenes book “New Foundations for Classical Mechanics”. The book “Geometric Algebra
for Physicists” has an excellent axiomatic development. It however notably makes a similar
compromise first introducing the algebra with a dot plus wedge product formulation to develop
some familiarity.
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This book has three parts. The first is on the algebra, covering the generalized dot and wedge
products, rotors, projections, join, linear transformations as outermorphisms, and all the rest of
the basic material that one would expect. It does this excellently.

The second portion of this book is on the use of a 5D conformal model for 3D graphics
(adding a point at infinity on top of the normal extra viewport dimension that traditional graphics
applications use). I can not comment too much on this part of the book since I loaned it to a
friend after reading the first and last parts of the book.

The last part of the book is on implementation, and makes for an interesting read. Details on
their Gaigen implementation are discussed, as are performance and code size implications of
their implementation.

The only thing negative I have to say about this book is the unfortunate introduction of an
alternate notation for the generalized dot product (L and backwards L). This is distracting if one
started, like I did, with the Hestenes, Cambridge, or Baylis papers or books, and their notation
dominates the literature as far as I can tell. This does not take too long to adjust, since one
mostly just has to mentally substitute dots for L’s (although there are some subtle differences
where this transposition does not necessarily work).

g.2 gaviewer

Performing the GAViewer tutorial exercises is a great way to build some intuition to go along
with the math (putting the geometric back in the algebra).

There are specific GAViewer exercises that you can do independent of the book, and there is
also an excellent interactive tutorial 2003 Game Developer Lecture available here:

Interactive GA tutorial. UvA GA Website: Tutorials
(they have hijacked GAViewer here to use as presentation software, but you can go through

things at your own pace, and do things such as rotating viewpoints). Quite neat, and worth doing
just to play with the graphical cross product manipulation even if you decide not to learn GA.

g.3 other resources from dorst, fontijne , and mann

There are other web resources available associated with this book that are quite good. The best
of these is GAViewer, a graphical geometric calculator that was the product of some of the
research that generated this book.

See , or his paper itself .
Some other links:
Geometric algebra (Clifford algebra)
This is a good tutorial , as it focuses on the geometrical rather than have any tie to physics

(fun but more to know). The following looks like a slightly longer updated version:

http://www.science.uva.nl/ga/tutorials/
http://staff.science.uva.nl/~leo/clifford/index.html
http://staff.science.uva.nl/~leo/clifford/dorst-mann-I.pdf
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GA: a practical tool for efficient geometric representation (Dorst)

g.4 learning ga

Of the various GA primers and workbooks above, here are a couple specific documents that
are noteworthy, and some direct links to a few things that can be found by browsing that were
noteworthy. This is an interactive GA tutorial/presentation for a game programmers conference

that provides a really good intro and has a lot of examples that I found helpful to get an
intuitive feel for all the various product operations and object types. Even if you weare not trying
to learn GA, if you have done any traditional vector algebra/calculus, IMO its worthwhile to
download this just to just to see the animation of how the old cross product varies with changes
to the vectors. You have to download the GAViewer program (graphical vector calculator) to run
the presentation. Once you do that you can use it for other calculation examples, such as those
available in these examples of how to use GAViewer as a standalone tool.. Note that the book
the drills are from use a different notation for dot product (with a slightly different meaning and
uses an oriented L symbol dependent on the grades of the blades.

Jaap Suter’s GA primer. His website, which is referenced in various GA papers no longer (at
least obviously) has this primer on it any longer (Sept/2008).

Ian Bell’s introduction to GA
This author has a wide range of GA information, but looking at it will probably give you a

headache.
GA wikipedia
There are a number of comparisons here between GA identities and traditional vector identi-

ties, that may be helpful to get oriented.
- Maths - Clifford / Geometric Algebra - Martin Baker
A GA intro, a small part in the much larger Euclidean space website.
- As mentioned above there is a lot of learning GA content available in the Cambridge/Baylis/H-

estenes/Dorst/... sites.

g.5 cambridge

The Cambridge GA group has a number of Geometric Algebra publications, including the book
Geometric Algebra for Physicists
This book has an excellent introductory treatment of a number of basic GA concepts, a num-

ber of which are much easier to follow than similar content in Hestenes’s "New Foundations for
Classical Mechanics". When it comes to physics content in this book there are a lot of details
left out, so it is not the best for learning the physics itself if you are new to the topic in question.

http://staff.science.uva.nl/~leo/clifford/dorst-mann-I.pdf
http://www.science.uva.nl/ga/tutorials/
http://www.lomont.org/Math/GeometricAlgebra/Geometric%20Algebra%20Primer%20-%20Suter%20-%202003.pdf
http://www.jaapsuter.com/
http://www.iancgbell.clara.net/maths/geoalg.htm
http://en.wikipedia.org/wiki/Geometric_algebra.
http://www.mrao.cam.ac.uk/~cjld1/pages/book.htm
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Much of the content of their book is actually available online in their publications above, but
it is hard to beat coherent organization and a paper version that you can mark up.

Some other online learning content from the Cambridge group includes
Introduction to Geometric Algebra
This is an HTML version of the Imaginary numbers are not real paper.
A nice starting point is lect1.pdf from the Cambridge PartIII physics course on GA applica-

tions . Only at the very end of this first pdf is any real physics content. taught to what sounds
like final year undergrad physics students. The first parts of this do not need much physics
knowledge.

g.6 baylis

Wiliam Baylis GA page
He uses a scalar plus vector multivector representation for relativity (APS, Algebra of Phys-

ical Space), and an associated conjugate length operation. You will find an intro relativity, GA
workbook, and some papers on GA applied to physics here. Also based on his APS approach is
the following wikibook:

Physics in the Language of Geometric Algebra. An Approach with the Algebra of Physical
Space

g.7 hestenes

Hestenes main page for GA is Geometric Calculus R & D Home Page
This includes a number of primers and introductions to the subject such as Geometric Algebra

Primer. As described in the Introduction page for this primer, this is a workbook, and reading
should not be passive.

Also available is his Oersted Lecture, which contains a good introduction.
If you do not have his “New Foundations of Classical Mechanics” book, you can find some

of the dot-product/wedge-product reduction formulas in the following non-metric treatment of
GA.

Also interesting is this Gauge Theory Gravity with Geometric Algebra paper. This has an
introduction to STA (Space Time Algebra) as used in the Cambridge books. This also shows
at a high level where one can go with a lot of these ideas (like the grad F = J formulation
of Maxwell’s equation, a multivector form that incorporates all of the traditional four vector
Maxwell’s equations). Nice teaser document if you intend to use GA for physics study, but hard
to read even the consumable bits because they are buried in among a lot of other higher level
math and physics.

http://www.mrao.cam.ac.uk/~clifford/introduction/index.html
http://www.mrao.cam.ac.uk/~clifford/publications/ps/imag_numbs.pdf
http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/GeometricAlgebraLectures.zip
http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/GeometricAlgebraLectures.zip
http://www.uwindsor.ca/users/b/baylis/main.nsf
http://en.wikibooks.org/wiki/Physics_in_the_Language_of_Geometric_Algebra._An_Approach_with_the_Algebra_of_Physical_Space
http://en.wikibooks.org/wiki/Physics_in_the_Language_of_Geometric_Algebra._An_Approach_with_the_Algebra_of_Physical_Space
http://modelingnts.la.asu.edu/
http://modelingnts.la.asu.edu/pdf/PrimerGeometricAlgebra.pdf
http://modelingnts.la.asu.edu/pdf/PrimerGeometricAlgebra.pdf
http://modelingnts.la.asu.edu/html/IntroPrimerGeometricAlgebra.html
http://modelingnts.la.asu.edu/pdf/OerstedMedalLecture.pdf
http://modelingnts.la.asu.edu/pdf/UGA.pdf
http://modelingnts.la.asu.edu/pdf/UGA.pdf
http://modelingnts.la.asu.edu/pdf/GTG.w.GC.FP.pdf
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Hestenes, Li and Rockwood in their paper New Algebraic Tools for Classical Geometry in G.
Sommer (ed.) Geom. Computing with Clifford Algebras (Springer, 2001) treat outermorphisms
and determinants in a separate subsection entitled "Outermorphism" of section 1.3 Linear Trans-
formations:

This is a comprehensive doc. Content includes:

• GA intro boilerplate.

• Projection and Rejection.

• Meet and Join.

• Reciprocal vectors (dual frame).

• Vector differentiation.

• Linear transformations.

• Determinants and outermorphisms.

• Rotations.

• Simplexes and boundaries

• Dual quaternions.

g.8 eckhard m . s . hitzer (university of fukui)

From Eckhard’s Geometric Algebra Topics.
Since these are all specific documents, and all at a fairly consumable level for a new learner,

I have listed them here specifically:

• Axioms of geometric algebra

• The use of quadratic forms in geometric algebra

• The geometric product and derived products

• Determinants in geometric algebra

• Gram-Schmidt orthogonalization in geometric algebra

• What is an imaginary number?

• Simplical calculus:

http://modelingnts.la.asu.edu/pdf/CompGeom-ch1.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/axioms.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/qform.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/products.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/det.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/GS.pdf
http://sinai.mech.fukui-u.ac.jp/gala2/GAtopics/WhatIsi.pdf
http://sinai.mech.fukui-u.ac.jp/gcj/publications/mvdifcalc/mvdc.pdf
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g.9 electrodynamics

John Denker has a number of GA docs that all appear very readable. One such doc is:
Electromagnetism using Geometric Algebra versus Components
This is a nice little doc (there is also an HTML version, but it is very hard to read, and the

first time I saw it I actually missed a lot of content).
The oft repeated introduction to GA is not in this doc, so you have to know the basics first.

Denker takes the ∇F = J/cε0 equation and unpacks it in a brute force but understandable fash-
ion, and shows that these are identical to the vector differential form of Maxwell’s equations. A
few other E&M constructs are shown in their GA form (covariant form of Lorentz force equa-
tion, Lagrangian density, Stress tensor, Poynting Vector. There are also many good comments
on notation issues.

A cautionary note if you have read any of the Cambridge papers. This doc uses a -+++ metric
instead of the +— used in those docs.

Some other Denker GA papers:

• Magnetic field of a straight wire.

• Clifford Intro.

Very nice axiomatic introduction with excellent commentary. Also includes an STA intro.

• Complex numbers.

• Area and Volume.

• Rotations.

(have not read all these yet).
Richard E. Harke, An Introduction to the Mathematics of the Space-Time Algebra
This is a nice complete little doc (4̃0 pages), where many basic GA constructs are developed

axiomatically with associated proofs. This includes some simplical calculus and outermorphism
content, and eventually moves on to STA and Lorentz rotations.

g.10 misc

• A blog like subscription service that carries abstracts for various papers on or using Geo-
metric Algebra.

g.11 collections of other ga bookmarks

• Geomerics. Graphics software for Games, Geometric Algebra references and description.

http://www.av8n.com/physics/maxwell-ga.pdf
http://www.av8n.com/physics/straight-wire.pdf
http://www.av8n.com/physics/clifford-intro.pdf
http://www.av8n.com/physics/complex-clifford.pdf
http://www.av8n.com/physics/area-volume.pdf
http://www.av8n.com/physics/rotations.pdf
http://www.harke.org/ps/intro.ps.gz
http://gaupdate.wordpress.com/
http://www.geomerics.com/geometric-algebra.htm
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• Ramon González Calvet us GA links.

• R. W. Gray’s GA links.

• Cambridge groups GA urls.

g.12 exterior algebra and differential forms

• Grassmann Algebra Book

Pdf files of a book draft entitled Grassmann Algebra: Exploring applications of extended
vector algebra with Mathematica.

This has some useful info. In particular, a great example of solving linear systems with
the wedge product.

• The Cornell Library Historical Mathematics Monographs - hyde on grassman

• A Geometric Approach to Differential Forms by David Bachman

g.13 software

• Gaigen 2

• CLICAL for Clifford Algebra Calculations

• nklein software. Geoma.

http://www.xtec.es/~rgonzal1/links.htm
http://www.rwgrayprojects.com/GeometricAlgebra/references.html
http://www.mrao.cam.ac.uk/~clifford/pages/links.htm
http://www.grassmannalgebra.info/grassmannalgebra/book/index.htm
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00540001&seq=15&frames=0&view=50
http://www.math.boun.edu.tr/instructors/ozturk/eskiders/fall04math488/bachman.pdf
http://staff.science.uva.nl/~fontijne/gaigen2.html
http://users.tkk.fi/~ppuska/mirror/Lounesto/CLICAL.htm
http://www.nklein.com/products/geoma/
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• October 13, 2007 4 Comparison of many traditional vector and GA identities

• October 13, 2007 6 Torque

• October 16, 2007 7 Derivatives of a unit vector

• October 16, 2007 5 Cramer’s rule

• October 22, 2007 8 Radial components of vector derivatives

• January 1, 2008 14 More details on NFCM plane formulation

• January 29, 2008 9 Rotational dynamics

• January 29, 2008 64 Maxwell’s equations expressed with Geometric Algebra

• February 2, 2008 15 Quaternions

• February 4, 2008 17 Legendre Polynomials

• February 15, 2008 50 Inertia Tensor

• February 19, 2008 29 Rotor Notes

• February 28, 2008 52 Exponential Solutions to Laplace Equation in RN

• March 9, 2008 10 Bivector Geometry

• March 9, 2008 11 Trivector geometry

• March 12, 2008 33 Exponential of a blade

• March 16, 2008 12 Multivector product grade zero terms

• March 17, 2008 25 Angle between geometric elements

• March 17, 2008 3 An earlier attempt to intuitively introduce the dot, wedge, cross, and
geometric products

• March 25, 2008 13 Blade grade reduction
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• March 29, 2008 21 Reciprocal Frame Vectors

• March 31, 2008 38 Exterior derivative and chain rule components of the gradient

• April 1, 2008 26 Orthogonal decomposition take II

• April 11, 2008 22 Matrix review

• April 13, 2008 51 Satellite triangulation over sphere

• April 30, 2008 47 Kinetic Energy in rotational frame

• May 16, 2008 27 Matrix of grade k multivector linear transformations

• May 16, 2008 24 Projection and Moore-Penrose vector inverse

• May 16, 2008 23 Oblique projection and reciprocal frame vectors

• May 17, 2008 E Projection with generalized dot product

• June 6, 2008 49 Gradient and tensor notes

• June 10, 2008 45 Angular Velocity and Acceleration. Again

• June 25, 2008 56 Wave equation based Lorentz transformation derivation

A derivation of the Lorentz transformation requiring invariance of electrodynamic wave
equation. A mechanical approach very similar to the usual spherical light shell invariance,
but one that doesn’t require the difficult conceptualization of speed of light invariance.

• July 8, 2008 46 Cross product Radial decomposition

• July 12, 2008 65 Back to Maxwell’s equations

• July 16, 2008 60 Lorentz transformation of spacetime gradient

• July 20, 2008 70 Magnetic field between two parallel wires

• August 1, 2008 59 Four vector dot product invariance and Lorentz rotors

Rotor form of the Lorentz boost, and invariance of four vector dot product.

• August 13, 2008 16 Cauchy Equations expressed as a gradient

• August 13, 2008 58 Understanding four velocity transform from rest frame

Explicit expansion of Lorentz boost applied to rest frame event vector.

• August 15, 2008 77 Four vector potential
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• August 16, 2008 90 Lorentz force Law

• August 28, 2008 57 Equations of motion given mass variation with spacetime position

• September 2, 2008 20 OuterMorphism Question

• September 5, 2008 78 Metric signature dependencies

Examination of metric dependencies in STA and relationships to tensor expression

• September 7, 2008 76 Tensor relations from bivector field equation

• September 9, 2008 74 Vector forms of Maxwell’s equations as projection and rejection
operations

• September 26, 2008 75 Application of Stokes Integrals to Maxwell’s Equation

• October 26, 2008 61 GravitoElectroMagnetism

Rough notes (mostly questions) about GravitoElectroMagnetism.

• November 1, 2008 30 Euler Angle Notes

• November 8, 2008 53 Hyper complex numbers and symplectic structure

• November 13, 2008 31 Spherical polar coordinates

• November 22, 2008 68 Gaussian Surface invariance for radial field

• November 23, 2008 71 Field due to line charge in arc

• November 23, 2008 72 Charge line element

• November 27, 2008 19 Some NFCM exercise solutions and notes

• November 30, 2008 67 Expressing wave equation exponential solutions using four vec-
tors

Four vector exponential solutions of arbitrary velocity wave equations.

• November 30, 2008 32 Rotor interpolation calculation

• December 6, 2008 108 Pauli Matrixes in Clifford Algebra

Pauli algebra notes. Apply the Pauli algebra in a GA like fashion for spatial relationships.
Wedge, dot and cross products expressed in terms of commutator and anticommutators.

• December 11, 2008 105 Bohr Model

Derivation and notes on the Bohr model.
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• December 13, 2008 109 Gamma Matrices

• December 21, 2008 107 Dirac Lagrangian

An attempt to decode the Dirac equation Lagrangians found in wikipedia. Calculate the
field equations from the Lagrangians once all the terms were understood. Includes a trans-
lation between the matrix and Doran/Lasenby notations for dagger and Dirac adjoint.

• December 27, 2008 101 Rayleigh-Jeans Law Notes

• December 29, 2008 94 Poynting vector and Electromagnetic Energy conservation

• January 1, 2009 97 Energy momentum tensor

As well as some brute force notes on expanding the tensor, the spacetime divergence of
the rest frame elements of this tensor is used to derive, in a particularly slick fashion IMO,
the Poynting energy momentum current conservation equation. Want to also followup on
what’s here with a relativistic transformation approach, but will have to think it through.

• January 3, 2009 96 Field and wave energy and momentum

Start working out for myself the electrostatic and magnetostatic energy relationships. Got
the electrostatic part done, and got as far as a from first principles Biot-Savart derivation
using the STA formalism. Next work out the magnetostatic energy relationship. Also
intend to tackle wave energy and momentum here, but in the end, may split that into a
separate set of notes. Relate the energy-density-rate + Poynting divergence equation to
the Lorentz force and discuss. Also relates the various terms of the stress energy tensor to
the Lorentz force. See now how the covariant Lorentz force and the stress energy tensor
is related, and also have some intuitive justification now for why we call E2 + B2 the field
energy density. Want to justify in terms of work done against Lorentz force.

• January 5, 2009 40 Vector Differential Identities

Translate some identities from the Feynman lectures into GA form. These apply in higher
dimensions with the GA formalism, and proofs of the generalized identities are derived.
Make a note of the last two identities that I wanted to work through. This is an incomplete
attempt at them. It was trickier than I expected, and probably why they were omitted from
Feynman’s text.

• January 6, 2009 100 DC Power consumption formula for resistive load

Work out P = IV from first principles since I forgot it. Well, from second principles I
suppose, since I utilize my recent Poynting derivation.

• January 9, 2009 C Some Fourier transform notes
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QM formulation, with hbar’s, of the Fourier transform pair, and Rayleigh Energy theorem,
as seen in the book "Quantum Mechanics Demystified". Very non-rigorous treatment,
good only for intuition. Also derive the Rayleigh Energy theorem used (but not proved)
in this text.

• January 11, 2009 106 Schrödinger equation probability conservation

Schrodinger probability density and current conservation equation, and comparison of
four-vectorized current to Dirac Lagrangian.

Calculating the rate of change of probability, and using Schrodinger’s equation and its
conjugate allows for the definition of a probability current, and an electromagnetic like
probability-density/current-density conservation law.

What I thought was interesting was that if you put this into a four vector form as a
spacetime divergence (ie: the Lorentz gauge of electrodynamics), the resulting ’four-
component’ current vector needs only a γ0∂0 term to be added to it, for that current itself
to be the Dirac Lagrangian (omitting the local-gauge term eA). So it looks like taking the
spacetime divergence of the Dirac Lagrangian essentially gives you the probability/cur-
rent conservation equation (except now this would also produce an extra timelike term not
there in the original Schrodinger’s equation.) There are some notational differences with
the wikipedia form of the Dirac Lagrangian, but I believe all the basic content is there
once those differences are accounted for. Very surprising to see the Dirac Lagrangian fall
so naturally out of the Schrodinger (non-relativistic) equation.

I also observe that the probability wave function is perhaps naturally expressed as a rela-
tivistic four vector (with a γ0 term factored out). I still don’t understand how Maxwell’s
equation and QM fit together, but with Maxwell’s equation or Lagrangian expressible
strictly in terms of four vectors (or the four-gradient and four-curl of such four vectors),
there would be a logical cleanliness if one could also express the (relativistic) QM laws
strictly in terms of four vectors. Definitely worth playing with.

• January 13, 2009 48 Polar velocity and acceleration

Straight up column matrix vectors and complex number variants of radial motion deriva-
tives.

• January 18, 2009 95 Time rate of change of the Poynting vector, and its conservation law

These notes contain the conservation calculation itself, and verify the end result of Schwartz’s
tricky relativistic argument, that I have yet to understand, to put the conservation into a
divergence form that is volume integrable.

The derivation itself is not too hard. Reconciling all the different notations is actually the
tricky bit. Schwartz does this in terms of the dual field tensors F and G, Doran/Lasenby
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have their GA FγkF formulation, wikipedia had something different either of than those,
and I’d seen in another paper that Jackson used something completely different. At the
time I did not have Jackson to see how he did it.

Very interesting here is that we end up with what looks like the Lorentz force law by
only looking at conservation requirements based on Maxwell’s equation itself. Calling
the Poynting vector a field momentum density by analogy (because it showed up in what
appeared to be an Energy/momentum (density) four vector) is then seen to be very justi-
fiable. Previously I’d seen that it took two Lagrangians for electrodynamics. One for the
fields and one for the interaction term. But now it looks like the interaction term follows
from the fields (in a hand waving, fuzzy, not yet fully understood way). Quite interesting,
and worth more thought, but seeing how one gets the interaction term from the QM field
equation should probably take precedence.

• January 19, 2009 113 Fourier Solutions to Heat and Wave equations

Apply the series technique to solve for the general time evolution of a wave function for
a free (no potential) particle constrained to a circle, and the transform method for a one
dimensional linear (non-periodic) scenario.

• January 21, 2009 D A cheatsheet for Fourier transform conventions

• January 25, 2009 69 Electrodynamic wave equation solutions

Carry the separation of variables to a reasonable point of completion, deriving a tidy
relativistic solution for Fµν. After this try generalizing that a bit with some intuition that
turned out to be busted. Left my dead ends as a marker pointing where not to go in the
future.

• January 26, 2009 115 Fourier transform solutions to the wave equation

Produces the f (x, t) = g(x − vt) solution quite nicely! This works in a fashion for the 2
and 3D cases too, but there the Green’s function doesn’t reduce nicely to a delta function
as in the 1D case.

• January 29, 2009 116 Fourier transform solutions to Maxwell’s equation

Work out a Green’s function solution of sorts for the non-homogeneous Maxwell’s equa-
tion.

• January 31, 2009 117 First order Fourier transform solution of Maxwell’s equation

Application of the Fourier transform to the spacetime split of the gradient term of Maxwell’s
equation allows for a complete solution of both the vacuum and current forced fields with-
out requiring any computation with four vector potentials. Presuming I got all the math
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right, this is a beautiful application of both Fourier theory and the STA algebra. Note that
the Rigor police are thoroughly away on vacation in this particular set of notes!

• February 1, 2009 118 4D Fourier transforms applied to Maxwell’s equation

Wow, using a spacetime Fourier transform for a Maxwell’s solution is much simpler. This
is a neat result.

• February 3, 2009 119 Fourier series Vacuum Maxwell’s equations

Go through Bohm’s treatment that preps for the Rayleigh-Jeans result in his quantum
book in a more natural way. I use complex exponentials, with the STA pseudoscalar for i,
and use the much simpler STA Maxwell vacuum equation as the base.

• February 7, 2009 121 Lorentz Gauge Fourier Vacuum potential solutions

Split from the first order treatment.

• February 8, 2009 120 Plane wave Fourier series solutions to the Maxwell vacuum equa-
tion

My first attempt is getting confusing, especially after seeing after the fact that plane wave
constraints on the solution are required for the solution to maintain a grade two form.
Summarizes results from the first attempt in a more coherent, albeit denser, form.

• February 13, 2009 98 Lorentz force relation to the energy momentum tensor

Express the energy momentum tensor in terms of the four vector Lorentz force. This
builds on the previous observation that the T (γ0) is related to the work done against the
Lorentz force.

• February 17, 2009 99 Energy momentum tensor relation to Lorentz force

• February 18, 2009 114 Poisson and retarded Potential Green’s functions from Fourier
kernels

Work through the details of how to derive the Poisson integral kernel starting with the
Fourier transform derived Green’s function. Do the same thing with the wave equation,
and produce the retarded and advanced form solutions. A few years in the works since
seeing them in Feynman and wondering where they came from. Feb 25. Did a reduction
of the 1D forced wave equation’s Green function to a difference of unit step functions.
Have to compute derivatives to see if this really works.

• February 26, 2009 39 Spherical and hyperspherical parametrization

Volume calculations for 1-sphere (circle), 2-sphere (sphere), 3-sphere (hypersphere). Fol-
lowup with a calculation of the differential volume element for the hypersphere (ie: Minkowski
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spaces of signature (+,-,-,-). Plan to use these results in an attempt to reduce the 4D hy-
perbolic Green’s functions that we get from Fourier transforming Maxwell’s equation.

• March 13, 2009 18 Levi-Civitica summation identity

A summation identity given in Byron and Fuller, ch 1. Initial proof with a perl script, then
note equivalence to bivector dot product.

• March 18, 2009 91 Lorentz force rotor formulation

Time evolution of a particle in a field as a bivector differential equation, solving for the
active Lorentz transformation on the rest frame worldline. Work it out at my own pace in
both the GA and tensor formalism.

• April 18, 2009 73 Biot Savart Derivation

• April 28, 2009 37 Developing some intuition for Multivariable and Multivector Taylor
Series

Explicit expansion and Hessian matrix connection. Factor out the gradient from the direc-
tion derivative for a few different multivector spaces.

• May 23, 2009 89 Lorentz boost of Lorentz force equations

My own attempt to walk through the Lorentz transformation of the pair of Lorentz force
and power equations, as done in Bohm’s ’The Special Theory of Relativity’. Bohm’s text
left out a number of details, as well as had a number of sign typos and some dropped
terms. Try to get it right. Was able to do some of it, but part of the final "the reader can
verify bits" have me stumped. How to do those last bits is not obvious to me, which is
likely why Bohm left this out of this pseudo-layman book. This set of notes starts off with
a large digression on how to express and translate from the GA hyperbolic exponential
Lorentz boost formulation to the "classical" coordinate and vector representations used
in the Bohm text and other places. My initial reason for writing that up for myself all in
one place was that I intended to try the Lorentz force boost procedure of the Bohm text
completely in GA form, but I also have not gotten to attempting that. My goal was to
finish the details of the "old-fashioned" way first, but the algebra for that way is so messy
I don’t see how to do it.

• May 28, 2009 66 Macroscopic Maxwell’s equation

Got my "new" second hand 2nd ed. of Jackson’s Classical Electrodynamics in the mail,
and got distracted reading the introduction. Turns out that a trivector "current" term (with
basis vectors in the Dirac vector space) to supplement the four-vector current completely
summarizes the mess of B,D,H, E,M, P, J, ρ variables nicely in a fashion very similar to
the ∇F = J variation of Maxwell’s equation for the microscopic case.
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• June 1, 2009 63 Poincare transformations

A paper used a specific antisymmetric object for linearized Poincare transformations. Try
to figure this out. Turns out to be a representation of the bivector that encodes the plane
of rotation or spacetime boost plane.

• June 21, 2009 79 Wave equation form of Maxwell’s equations

Fill in missing details from Jackson, and find the wave equation from Maxwell’s equa-
tions with and without Geometric Algebra

• June 27, 2009 62 Relativistic Doppler formula

Deriving the Doppler shift result with a Lorentz boost is much simpler than the time
dilation argument in wikipedia.

• July 2, 2009 80 Space time algebra solutions of the Maxwell equation for discrete fre-
quencies

Exploring vacuum Maxwell solutions using Geometric Algebra formalism. Motivate with
Fourier transform techniques, and examine the result and constraints required for solu-
tion.

• July 27, 2009 110 Bivector form of quantum angular momentum operator

Exploring a wedge product formulation of the angular momentum operator in Cartesian
and spherical polar representations. Lots of good stuff here!

• July 30, 2009 81 Transverse electric and magnetic fields

Coupling between transverse and propagation direction components of wave guide solu-
tions is examined using Geometric Algebra.

• Aug 6, 2009 82 Comparing phasor and geometric transverse solutions to the Maxwell
equation

Attempting to use the pseudoscalar as the imaginary in a wave equation phasor expression
leads to specific results. Examine these and contrast to scalar imaginary phasors.

• Aug 10, 2009 83 Covariant Maxwell equation in media

Formulate the Maxwell equation in media (from Jackson) without an explicit spacetime
split.

• Aug 14, 2009 92 (INCOMPLETE) Geometry of Maxwell radiation solutions

After having some trouble with pseudoscalar phasor representations of the wave equation,
step back and examine the geometry that these require. Find that the use of Iẑ for the
imaginary means that only transverse solutions can be encoded.
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• Aug 16, 2009 111 Graphical representation of Spherical Harmonics for l = 1

Observations that the first set of spherical harmonic associated Legendre eigenfunctions
have a natural representation as projections from rotated spherical polar rotation points.

• Aug 31, 2009 34 Generator of rotations in arbitrary dimensions.

Similar to the exponential translation operator, the exponential operator that generates
rotations is derived. Geometric Algebra is used (with an attempt to make this somewhat
understandable without a lot of GA background). Explicit coordinate expansion is also
covered, as well as a comparison to how the same derivation technique could be done
with matrix only methods. The results obtained apply to Euclidean and other metrics and
also to all dimensions, both 2D and greater or equal to 3D (unlike the cross product form).

• Sept 6, 2009 112 Bivector grades of the squared angular momentum operator.

The squared angular momentum operator can potentially have scalar, bivector, and (four)
pseudoscalar components (depending on the dimension of the space). Here just the bivec-
tor grades of that product are calculated. With this the complete factorization of the Lapla-
cian can be obtained.

• Sept 13, 2009 93 Relativistic classical proton electron interaction.

An attempt to setup (but not yet solve) the equations for relativistically correct proton
electron interaction.

• Sept 20, 2009 35 Spherical Polar unit vectors in exponential form.

An exponential representation of spherical polar unit vectors. This was observed when
considering the bivector form of the angular momentum operator, and is reiterated here
independent of any quantum mechanical context.

• Sept 24, 2009 84 Electromagnetic Gauge invariance.

Show the gauge invariance of the Lorentz force equations. Start with the four vector
representation since these transformation relations are simpler there and then show the
invariance in the explicit space and time representation.

• Dec 1, 2009 41 Polar form for the gradient and Laplacian.

Explore a chain rule derivation of the polar form of the Laplacian, and the validity of my
old First year Professor’s statements about divergence of the gradient being the only way
to express the general Laplacian. His insistence that the grad dot grad not being generally
valid is reconciled here with reality, and the key is that the action on the unit vectors also
has to be considered.
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• Dec 13, 2009 102 Energy and momentum for Complex electric and magnetic field pha-
sors.

Work out the conservation equations for the energy and Poynting vectors in a complex
representation. This fills in some gaps in Jackson, but tackles the problem from a GA
starting point.

• Dec 16, 2009 103 Electrodynamic field energy for vacuum.

Apply the previous complex energy momentum tensor results to the calculation that
Bohm does in his QM book for vacuum energy of a periodic electromagnetic field. I’d
tried to do this a couple times using complex exponentials and never really gotten it right
because of attempting to use the pseudoscalar as the imaginary for the phasors, instead
of introducing a completely separate commuting imaginary. The end result is an energy
expression for the volume element that has the structure of a mechanical Hamiltonian.

• Dec 21, 2009 104 Energy and momentum for assumed Fourier transform solutions to the
homogeneous Maxwell equation.

Fourier transform instead of series treatment of the previous, determining the Hamiltonian
like energy expression for a wave packet.

• Mar 7, 2010 54 Newton’s method for intersection of curves in a plane.

Refresh my memory on Newton’s method. Then take the same idea and apply it to finding
the intersection of two arbitrary curves in a plane. This provides a nice example for the
use of the wedge product in linear system solutions. Curiously, the more general result
for the iteration of an intersection estimate is tidier and prettier than that of a curve with
a line.

• May 15, 2010 55 Center of mass of a toroidal segment.

Calculate the volume element for a toroidal segment, and then the center of mass. This is
a nice application of bivector rotation exponentials.

• Oct 20, 2010 42 Derivation of the spherical polar Laplacian

A derivation of the spherical polar Laplacian.

• Oct 30, 2010 85 Multivector commutators and Lorentz boosts.

Use of commutator and anticommutator to find components of a multivector that are
effected by a Lorentz boost. Utilize this to boost the electrodynamic field bivector, and
show how a small velocity introduction perpendicular to the a electrostatics field results
in a specific magnetic field. ie. consider the magnetic field seen by the electron as it orbits
a proton.
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• Dec 27, 2010 28 Vector form of Julia fractal.

Vector form of Julia fractal.

• April 30, 2011 86 A cylindrical Lienard-Wiechert potential calculation using multivector
matrix products.

A cylindrical Lienard-Wiechert potential calculation using multivector matrix products.

• Jan 27, 2012 36 Infinitesimal rotations.

Derive the cross product result for infinitesimal rotations with and without GA.

• Mar 16, 2012 2 Geometric Algebra. The very quickest introduction.

• Sept 2, 2012 88 Plane wave solutions in linear isotropic charge free media using Geomet-
ric Algebra

Work through the plane wave solution to Maxwell’s equation in linear isotropic charge
free media without boundary value constraints. I may have attempted to blunder through
this before, but believe this to be more clear than any previous attempts. What’s missing is
relating this to polarization states of different types and relationships to Jones vectors and
so forth. Also, it’s likely possible to express things in a way that doesn’t require taking
any real parts provided one uses the pseudoscalar instead of the scalar complex imaginary
appropriately.

• January 04, 2013 43 Tangent planes and normals in three and four dimensions

Figure out how to express a surface normal in 3d and a "volume" normal in 4d.

• May 17, 2014 44 Stokes theorem in Geometric algebra

New rewrite from scratch of Stokes theorem, properly treating curvilinear coordinates.
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1-form, 352

acceleration, 378
polar, 397

Ampere Maxwell law, 562
Ampere-Maxwell equation, 555
angular acceleration, 373
angular momentum conservation, 821
angular momentum operator, 871

bivector grades, 901
angular velocity, 65, 373
anticommutator, 866
antisymmetric sum

Pauli matrix, 842

Biot Savart, 555
bivector, 73, 367

intersecting planes, 85
rotation, 85

blade
exponentiation, 243

body angular acceleration, 392
Bohr model, 819
boost, 465

Cauchy equations, 123
Cayley Klein angle, 230
center of mass

toroidal segment, 441
cgs, 626
chain rule, 293
change of basis, 402
charge conservation, 513
charge density, 512
circular motion, 72

commutator, 649
complex numbers, 45, 286
conjugation, 868
continuity equation, 523
contour integral, 288
contraction

Levi-Civitica tensor, 133
convolution, 912, 1017
coordinate

spherical, 353
Cramer’s rule, 49
cross product

introduction, 19
curl, 540

curl, 311
divergence, 310

current density, 512, 571
current density conservation, 513
curvilinear basis, 337
curvilinear coordinate, 334
cyclic permutation, 676

derivative
unit vector, 378

differential forms, 334
Dirac Lagrangian, 829
directional derivative, 288
divergence, 539, 810

gradient, 310
divergence theorem, 359

2D, 361
3D, 363
4D, 365

Doppler equation
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relativistic, 489
dot product, 36

introduction, 19
symmetric sum, 37

dual, 1010
dual basis, 337, 354
duality, 334

electric field
transverse, 625

electrostatics, 559
energy, 798

electrodynamic field, 795
energy conservation

electromagnetic, 723
energy density, 991
energy momentum, 989
Euler angle, 223
exterior derivative, 293

Faraday bivector, 534
Faraday tensor, 945
Faraday’s law, 561, 573
four potential, 591
four vector, 525
four velocity, 465
four-Laplacian, 603
Fourier series, 910
Fourier transform, 1015, 1019

4D, 963
heat equation, 909
vacuum potential, 997
wave equation, 909, 933

Galilean transformation, 453
gamma matrices, 865
gauge freedom, 557
gauge invariance, 647
gauge transformation, 800, 809, 810
Gauss’s law, 531, 559, 560, 570

geometric product
introduction, 13, 19

grade reduction, 99
grade selection, 75
gradient, 123, 293, 399, 602

curl, 310
divergence, 309
polar form, 317

Gram-Schmidt, 38
Gravito-electromagnetism, 483
Green’s function, 915, 944
Green’s theorem, 337

Hamiltonian, 800
heat equation

Fourier transform, 909
Hermitian conjugate, 992
Hermitian transpose, 657
hypercomplex numbers, 429
hyperspherical parametrization, 297
hypervolume element, 113

identities, 31
inertial tensor, 407
intersection, 433

Jacobian, 402
Julia fractal, 201

Kepler’s laws, 70
kinetic energy, 385

Lagrange identity, 33
Laplace equation, 423
Laplacian, 602, 909

Poisson solution, 785
polar form, 317
spherical polar, 323

Legendre polynomial, 127
Levi-Civitica tensor, 133
Lienard-Wiechert potential, 655
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line charge, 547
line element, 551
Lorentz boost, 649
Lorentz force, 691

boost, 681
energy momentum tensor, 759, 763
rotor, 699
tensor, 703, 762
vector form, 762

Lorentz gauge, 535, 593, 997
Lorentz invariance, 471
Lorentz transformation

wave equation, 449

magnetic field
parallel wires, 543
transverse, 625

magnetostatics, 560, 570
manifold, 336
Mathematica, 354
matrix, 167
Maxwell equation

covariant, 641
energy and momentum, 805
Fourier series, 985
Fourier transform, 805
in matter, 641
space-time algebra, 611
transverse solution, 633

Maxwell’s equation, 521, 605, 667
Fourier transform, 939, 951

Maxwell’s equations, 503, 509
Fourier series, 971
projection, 559
rejection, 559
tensor, 579

metric, 595
Euclidean, 344
Minkowski, 344

metric tensor, 400
Minkowski space, 356
momentum, 799
Moore-Penrose inverse, 191

n-volume, 297
Newton’s method, 433
normal, 327

oblique projection, 179
outermorphism, 145

parallelepiped
volume, 35

parallelogram
area, 34, 40

Pauli matrices, 837, 866
Pauli vector, 838
phasor

energy, 789
momentum, 789

plane
equation, 34
projection, 43
rejection, 43, 110
rotation, 47
wedge product, 109

plane projection
matrix, 169

plane wave, 667
Poincare transformation, 493
Poisson equation, 557
Poisson potential

Green’s function, 919
Poynting vector, 723

conservation law, 731
projection, 191, 1023

bivector, 82
matrix, 167, 173

pseudoscalar, 358, 361, 601, 835, 854, 1012
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quaternion, 47, 119

rapidity, 682
Rayleigh’s Energy Theorem, 1018
Rayleigh-Jeans law, 777
reciprocal basis, 336
reciprocal frame, 151, 179, 598
reciprocal frame vectors, 336
rejection, 41

bivector, 82
relativistic physics, 358
rest frame, 392, 465
retarded potential

Green’s function, 919
rotation

generator, 83, 251
infinitesimal, 273

rotation invariance, 473
rotational frame, 385
rotor, 207

interpolation, 241

scalar product
Pauli matrix, 841

Schrödinger equation
probability conservation, 825

separation of variables, 533
spacetime gradient

Lorentz transformation, 479
spherical harmonics, 897
spherical parametrization, 297
spherical polar coordinates, 231
spherical polar unit vectors, 265
standard basis, 337
Stokes theorem, 334

Maxwell’s equation, 565
stress tensor, 736
summation convention, 1003
symmetric sum

Pauli matrix, 842

symplectic structure, 429

tangent plane, 327, 340
Taylor series, 279
tensor, 367, 399
torque, 53
triangulation, 417
trivector, 89, 368
two-form, 334

unit normal, 67
unit vector

derivative, 59

vector
inversion, 36
Laplacian, 312
plane projection, 111
radial component, 63

vector derivative, 404, 602
vector identities, 309
vector potential, 591, 809
vectors

angle between, 35, 193
velocity

polar, 397

wave equation, 525, 533, 605, 916
forced, 939
Fourier transform, 909, 933
light, 512

wedge
determinant expansion, 33

wedge product, 37
antisymmetric sum, 37
introduction, 19
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