Evaluating the Gaussian integral.

Peeter Joot

Jan 05, 2009. Last Revision: Date : 2009/01/1004 : 32 : 43

1 Plain old Gaussian.

QM solutions appear to involve a lot of Gaussian integrals. Looking at one of the problems in [McMahon(2005)] I tried to recall how to evaluate the simplest of these. Google says the trick is squaring and polar substitution. Let's try this.

Solve

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x \\
& I^{2}=\int_{x=-\infty}^{\infty} e^{-\alpha x^{2}} d x \int_{y=-\infty}^{\infty} e^{-\alpha y^{2}} d y \\
& =\int_{\theta=0}^{2 \pi} \int_{r=0}^{\infty} e^{-\alpha r^{2}} r d r d \theta \\
& =\left.2 \pi \frac{e^{-\alpha r^{2}}}{-2 \alpha}\right|_{r=0} ^{\infty} \\
& =
\end{aligned}
$$

So we have

$$
I=\sqrt{\frac{\pi}{\alpha}}
$$

2 A couple higher order Gaussian's and normalization exersize.

In order to do the normalization exersize for

$$
\begin{equation*}
\psi=\left(A e^{-\frac{x^{2}}{a}}+B x e^{-\frac{x^{2}}{b}}\right) e^{-i c t} \tag{1}
\end{equation*}
$$

We want to calculate

$$
\int \psi^{*} \psi=|A|^{2} e^{-2 \frac{x^{2}}{a}}+|B|^{2} x^{2} e^{-2 \frac{x^{2}}{b}}+(A \bar{B}+B \bar{A}) x e^{-x^{2}\left(\frac{1}{a}+\frac{1}{b}\right)}
$$

so we need the $n=1,2$ versions of the following Gaussians

$$
I_{n}=\int x^{n} e^{-\alpha x^{2}} d x
$$

The $n=1$ case is directly integratable:

$$
\begin{aligned}
I_{1} & =\int x e^{-\alpha x^{2}} d x \\
& =\int\left(\frac{e^{-\alpha x^{2}}}{-2 \alpha}\right)^{\prime} d x \\
& =0
\end{aligned}
$$

(integration bounds are $\pm \infty$ so the exponential vanishes).
Next. I_{2} follows with integration by parts

$$
\begin{aligned}
I_{2} & =\int x^{2} e^{-\alpha x^{2}} d x \\
& =\int x\left(x e^{-\alpha x^{2}}\right) d x \\
& =\int x\left(\frac{e^{-\alpha x^{2}}}{-2 \alpha}\right)^{\prime} d x \\
& =-\int \frac{e^{-\alpha x^{2}}}{-2 \alpha} d x \\
& =\frac{1}{2 \alpha} \int e^{-\alpha x^{2}} d x \\
& =\frac{1}{2 \alpha} \sqrt{\frac{\pi}{\alpha}}
\end{aligned}
$$

So the normalization required for 1 is

$$
1=|A|^{2} \sqrt{\frac{\pi a}{2}}+\frac{|B|^{2}}{2} \sqrt{\frac{\pi b}{2} \frac{b}{2}}
$$

The values a, and b are presumably due to boundary conditions, and this then fixes $|A|$ in terms of $|B|$ or the other way around.

3 Generalized.

Let

$$
\begin{equation*}
I_{n}=\int_{-\infty}^{\infty} x^{n} e^{-\alpha x^{2}} d x \tag{2}
\end{equation*}
$$

We've solved this for $I_{0}=\sqrt{\pi / \alpha}, I_{1}=0$, and I_{2}. A quick calculation shows that $I_{2 k+1}=0$ too:

$$
\begin{aligned}
I_{n} & =\int_{-\infty}^{\infty} x^{n} e^{-\alpha x^{2}} d x \\
& =\int_{0}^{\infty} x^{n} e^{-\alpha x^{2}} d x+\int_{-\infty}^{0} x^{n} e^{-\alpha x^{2}} d x \\
& =\int_{0}^{\infty} x^{n} e^{-\alpha x^{2}} d x+\int_{\infty}^{0}(-x)^{n} e^{-\alpha x^{2}}(-d x) \\
& =\int_{0}^{\infty} x^{n} e^{-\alpha x^{2}} d x+\int_{0}^{\infty}(-x)^{n} e^{-\alpha x^{2}} d x \\
& =\int_{0}^{\infty}\left(x^{n}+(-x)^{n}\right) e^{-\alpha x^{2}} d x
\end{aligned}
$$

But if n is odd $(-x)^{n}=-x^{n}$, so this is zero.
Now, for n even, we can integrate by parts, as done for I_{2}.

$$
\begin{aligned}
I_{2 m} & =\int x^{2 m} e^{-\alpha x^{2}} d x \\
& =\int x^{2 m-1}\left(x e^{-\alpha x^{2}}\right) d x \\
& =\int x^{2 m-1}\left(\frac{e^{-\alpha x^{2}}}{-2 \alpha}\right)^{\prime} d x \\
& =-\int(2 m-1) x^{2 m-2} \frac{e^{-\alpha x^{2}}}{-2 \alpha} d x
\end{aligned}
$$

This gives us a recurrance relationship for the even order terms

$$
\begin{equation*}
I_{2 m}=\frac{2 m-1}{2 \alpha} I_{2 m-2} \tag{3}
\end{equation*}
$$

Expanding this explicitly for the first few m shows the pattern

$$
\begin{array}{lll}
I_{2}=\frac{2-1}{2 \alpha} I_{0} & =\frac{1}{2 \alpha} \sqrt{\frac{\pi}{\alpha}} \\
I_{4} & =\frac{4-1}{2 \alpha} \frac{2-1}{2 \alpha} I_{0} & =\frac{3.1}{(2 \alpha)^{2}} \sqrt{\frac{\pi}{\alpha}} \\
I_{6} & =\frac{6-1}{2 \alpha} \frac{4-1}{2 \alpha} \frac{2-1}{2 \alpha} I_{0} & =\frac{5.3 .1}{(2 \alpha)^{3}} \sqrt{\frac{\pi}{\alpha}}
\end{array}
$$

Or

$$
\begin{align*}
I_{0} & =\sqrt{\frac{\pi}{\alpha}} \tag{4}\\
I_{2 m-1} & =0 \tag{5}\\
I_{2 m} & =\frac{(2 m-1)(2 m-3) \cdots(3)(1)}{(2 \alpha)^{m}} \sqrt{\frac{\pi}{\alpha}} \tag{6}
\end{align*}
$$

References

[McMahon(2005)] D. McMahon. Quantum Mechanics Demystified. McGrawHill Professional, 2005.

