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1 Motivation.
In [Byron and Fuller(1992)] (chapter II), an operator solution to the (one dimensional)
quantum harmonic oscillator problem is presented. Try this in a more old fashioned
way, as a comparison.

We want to solve the Schrödinger equation for a quadratic potential

−
h̄2

2m
ψ+

1
2

mω2x2ψ = ih̄
∂ψ

∂t
(1)

2 Setup.

2.1 Separation of variables.
Equation 1 is separable, and to do so we can write

ψ(x, t) = φ(x)T (t)

and proceed to form the separated equation
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−
h̄2

2m
φ′′

φ
+

1
2

mω2x2 = ih̄
T ′

T
= constant

Writing E for the constant, the and solving for the time function we have

(ln(T ))′ = −i
E
h̄

=⇒

ln(T ) = −i
Et
h̄

+ ln(A)

where A is some constant. This yields

T (t) = Ae−iEt/h̄

What remains is now to solve the spatial wave equation

φ′′ −

(
m2ω2

h̄2 x2 −
2mE

h̄2

)
φ = 0 (2)

This doesn’t really look too much like the harmonic oscillator problem of classical
physics. Let’s remind ourself what that was like before continuing.

2.2 Mass on a spring.
The harmonic oscillator problem from classical physics shows up many times, and is
usually first seen when examining motion of a mass on a spring. There we have a
restoring force that accelerates the mass in the opposite direction from its equilibrium
position

mẍ = −kx (3)

This has two complex exponential solutions. With a substitution of the test function

x = eiωt

we have

(−mω2 + k)eiωt = 0

So the test function is a solution provided
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ω2 =
k
m

That doesn’t really help understanding why 2 is labeled the Harmonic oscillator.
Let’s instead put the equation into an energy form. The work done against the spring
(potential energy to be returned when the mass is released) is

W = −
∫

F · dx

= −
∫
−kxdx

=
1
2

k(x2 − x2
0)

So, our Lagrangian is

L =
1
2

mẋ2 −
1
2

k(x2 − x2
0)

The constant term in the potential can be dropped, since it won’t contribute to the
equations of motion. Our conjugate momentum ∂L/∂ẋ is just mẋ, and the Hamiltonian
is therefore

H = ẋ
∂L

∂ẋ
−L

= mẋ2 −

(
1
2

mẋ2 −
1
2

kx2
)

=
1
2

mẋ2 +
1
2

kx2

Or

H =
p2

2m
+

1
2

mω2x2

Ah. In this form we see the structure of the QM Harmonic oscillator equation.
With the position space representation of the momentum operator p ∼ −ih̄∂/∂x we
have something now similar to 1.
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3 Series solution.

3.1 Assuming Gaussian solutions.
Having seen the operator solution of the QM harmonic oscillator problem, we will
cheat, and use that as a starting point. Assume that the solution can be expressed as a
scaled Gaussian as in

φ(x) = f (x)e−αx2/2 (4)

φ′(x) = ( f ′(x) − αx f (x)) e−αx2/2

φ′′(x) = ( f ′′(x) − α f (x) − αx f ′(x)) e−αx2/2 + ( f ′(x) − αx f (x)) (−αx)e−αx2/2

=
(

f ′′(x) − α f (x) − 2αx f ′(x) + α2x2 f (x)
)

e−αx2/2

Substitution of the scaled Gaussian test solution, and its derivatives, gives us

(
f ′′ − α f − 2αx f ′ + α2x2 f −

(
m2ω2

h̄2 x2 −
2mE

h̄2

)
f
)

e−αx2/2 = 0

Since the exponential is never zero, this requires a zero for the differential equation

f ′′ − 2αx f ′ +
((
α2 −

m2ω2

h̄2

)
x2 +

(
2mE

h̄2 − α

))
f = 0 (5)

Compared to 2, this doesn’t really appear to be much of an improvement, but let’s
work with it, looking for a term by term power series solution.

Before doing so, a couple helper variable substitutions appear to be in order. Let

β2 = α2 −
m2ω2

h̄2

σ =
2mE

h̄2 − α

So the new differential equation to solve is

f ′′ − 2αx f ′ + β2x2 f −σ f = 0 (6)

Assuming various power series solutions of the form

fn(x) =
n∑

r=0

ar xr
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derivatives are

f ′n =
n∑

r=0

rar xr−1

f ′′n =
n∑

r=0

r(r − 1)ar xr−2

We have

0 =
n−2∑
r=0

(r + 2)(r + 1)ar+2xr − 2α
n∑

r=1

rar xr + β2
n∑

r=0

ar xr+2 −σ

n∑
r=0

ar xr

This should be enough to figure out recurrence relations for the various constants
in the polynomials.

However, before trying to acquire the recurrence relations in their most general
form, an attempt at a few simple cases, looking for the lowest order polynomial solu-
tions explicitly, gets into trouble.

Specifically, if I try n = 0, n = 1, n = 2 equating each of the polynomial co-
efficients to zero keeps killing all the coefficients in sequence. What’s gone wrong?
FIXME: try again. Had sign errors above.

3.2 Try zeroth order polynomial scaled Gaussian explicitly.
Somewhere above things went wrong. How about a plain old Gaussian? Let’s substi-
tute

ψ = Aeαx2/2

into

−
h̄2

2m
ψ′′ +

(
1
2

mω2x2 − E
)
ψ = 0

Dropping the constant A temporarily the derivatives are

ψ′ = αxeαx2/2

ψ′′ = (α2x2 + α)eαx2/2

This gives (
−(α2x2 + α)

h̄2

2m
+

(
1
2

mω2x2 − E
))

eαx2/2 = 0
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Equating x2 and x0 terms we have

α2h̄2

2m
=

1
2

mω2

αh̄2

2m
= −E

Or

α = ±
mω
h̄

α = −
2mE

h̄2

Since ω =
√

k/m is a given, we want E in terms of ω. Picking α negative for
positive energy, this is

E =
ωh̄
2

The solution to the T ′/T equation is thus

T ∝ e−iωt/2

So, except for the undetermined constant normalization factor, we have one full
solution of the wave equation,

ψ(x, t) = A exp
(
−

mωx2

2h̄
− i
ωt
2

)
The normalization

1 =
∫

ψψ∗

= A2
∫

exp
(
−

mωx2

h̄

)
= A2

√
h̄π
mω

For a normalized solution

ψ(x, t) =
(mω

h̄π

)1/4
exp

(
−

mωx2

2h̄
− i
ωt
2

)
(7)
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3.3 Try first order polynomial scaled Gaussian.
Next, let’s try

ψ = (x + A)e−αx2/2

No coefficient for the first order nomial has been used since we will need a scale
factor in the end for normalization anyways. Taking derivatives

ψ′ = (1 + (x + A)(−αx))e−αx2/2

= (1 − αAx − αx2)e−αx2/2

ψ′′ =
(
−3αx − αA + α2Ax2 + α2x3

)
e−αx2/2

So we have

−
h̄2

2m

(
−3αx − αA + α2Ax2 + α2x3

)
+

(
1
2

mω2x2 − E
)
(x + A) = 0

Equating either cubic or squared terms provides α

α = ±
mω
h̄

This is what we had for the plain old Gaussian as well.
Equating either the first and scalar terms gives us the energy

E =
3αh̄2

2m
=

3ωh̄
2

which differs from the zeroth order case by a factor of three.
It’s curious that the coefficient A cannot be determined. I didn’t expect it to be a

free parameter. Is the normalization enough to fix this and any other leading factor?
With

ψ = (Bx + A) exp(−mωx2/2h̄ − 3iωt/2)
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1 =
∫

ψψ∗

=
∫

(B2x2 + 2ABx + A2)e−mωx2/h̄

=
∫

(B2x2 + A2)e−mωx2/h̄

= A2

√
πh̄
mω

+ B2 1
2π

(
πh̄
mω

)3/2

=

√
πh̄
mω

(
A2 + B2 h̄

2mω

)

In terms of an arbitrary constant B, this gives

It is perhaps reasonable to pick B = 1. Regardless, the general solution for this
first order polynomial scaled Gaussian is

ψ(x, t) =

Bx ±

√√
mω
πh̄
− B2 h̄

2mω

 exp
(
−

mωx2

2h̄
−

3iωt
2

)
I expected something a bit more simple, without this extra degree of freedom. That

probably has to come from the orthonormality conditions on the Hermite polynomials.
There’s also the matter of the error above when trying to tackle the general case.

Now, there isn’t anything here that is particularly special in these two cases, so I’d
expect the error has to be a plain old algebra problem hiding in there somewhere.

3.4 Orthonormality.
What is the inner product for this Hermite polynomial space. I’ve seen statements that
it was something like

( f , g) =
∫

f ge−u2
du

From the problem at hand it is perhaps reasonable to assume that this mathematical
orthogonality relation follows from a plain old integral over the real line for position
of the (phaseless) wave functions. Let’s see if that is the case for the first two that have
been calculated so far.

Let
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f =
(mω

h̄π

)1/4
exp

(
−

mωx2

2h̄

)

g =

x +

√√
mω
πh̄
−

h̄
2mω

 exp
(
−

mωx2

2h̄

)
Here B = 1 has been used for the first order polynomial wave function. We want a

Graham-Shmidt result based on this

h = g − ( f , g) f

( f , g) =
∫ ∞

−∞

f (x)g(x)dx

=
(mω

h̄π

)1/4 ∫ ∞

−∞

dx

x +

√√
mω
πh̄
−

h̄
2mω

 exp
(
−

mωx2

h̄

)

=
(mω

h̄π

)1/4
√√

mω
πh̄
−

h̄
2mω

∫ ∞

−∞

dx exp
(
−

mωx2

h̄

)

=
(mω

h̄π

)1/4
√√

mω
πh̄
−

h̄
2mω

√
πh̄
mω

So we have

( f , g) f =

√√
mω
πh̄
−

h̄
2mω

exp
(
−

mωx2

2h̄

)

g − ( f , g) f = x exp
(
−

mωx2

2h̄

)
This leaves us with two wave function solutions to the Harmonic oscillator equa-

tion, where the spatial parts are orthonormal with respect to an unweighted inner prod-
uct over all (linear position) space. Designating these φ0, and φ1, we have

ψ0 = exp
(
−

mωx2

2h̄
−

iωt
2

)
ψ1 =

√
2π

(mω
πh̄

)3/4
x exp

(
−

mωx2

2h̄
−

3iωt
2

)
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Generalizing, the pattern is clear. We should have

ψN = HN(x) exp
(
−

mωx2

2h̄
−

(2N + 1)iωt
2

)
Where

δnm ∝

∫ ∞

−∞

Hn(x)Hm(x) exp
(
−

mωx2

h̄

)
dx

Where use of the Graham-Schmidt procedure can be used to generate each of these
polynomial functions.

FIXME: show that this orthogonality is enough to guarentee a solution.
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