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1 Motivation.

Stanford iTunesU has some Fourier transform lectures by Prof. Brad Osgood.
He starts with Fourier series and by Lecture 5 has covered this and the solution
of the Heat equation on a ring as an example.

Now, for these lectures I get only sound on my ipod. I can listen along and
pick up most of the lectures since this is review material, but here’s some notes
to firm things up.

Since this heat equation

∇2u = κ∂tu (1)

is also the Schrödinger equation for a free particle in one dimension (once
the constant is fixed appropriately), we can also apply the Fourier technique to
a particle constrained to a circle. It would be interesting afterwards to contrast
this with Susskind’s solution of the same problem (where he used the Fourier
transform and algebraic techniques instead).

2 Preliminaries.

2.1 Laplacian.

Osgood wrote the heat equation for the ring as

1
2

uxx = ut

where x represented an angular position on the ring, and where he set the
heat diffusion constant to 1/2 for convienience. To apply this to the Schrödinger
equation retaining all the desired units we want to be a bit more careful, so let’s
start with the Laplacian in polar coordinates.
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In polar coordinates our gradient is

∇ = θ̂
1
r

∂

∂θ
+ r̂

∂

∂r

squaring this we have

∇2 = ∇ · ∇ = θ̂
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∂

∂θ
·
(
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1
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∂

∂θ

)
+ r̂

∂

∂r
·
(

r̂
∂

∂r

)
=
−1
r3

∂r
∂θ

∂

∂θ
+

1
r2

∂2

∂θ2 +
∂2

∂r2

=
1
r2

∂2

∂θ2 +
∂2

∂r2

So for the circularly constrained where r is constant case we have simply

∇2 =
1
r2

∂2

∂θ2 (2)

and our heat equation to solve becomes

∂2u(θ, t)
∂θ2 = (r2κ)

∂u(θ, t)
∂t

(3)

2.2 Fourier series.

Now we also want Fourier series for a given period. Assuming the absence
of the ”Rigor Police” as Osgood puts it we write for a periodic function f (x)
known on the interval I = [a, a + T]

f (x) = ∑ cke2πikx/T

∫
∂I

f (x)e−2πinx/T = ∑ ck

∫
∂I

e2πi(k−n)x/T

= cnT

So our Fourier coefficient is

f̂ (n) = cn =
1
T

∫
∂I

f (x)e−2πinx/T
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3 Solution of heat equation.

3.1 Basic solution.

Now we are ready to solve the radial heat equation

uθθ = r2κut, (4)

by assuming a Fourier series solution.
Suppose

u(θ, t) = ∑ cn(t)e2πinθ/T

= ∑ cn(t)einθ

Taking derivatives of this assumed solution we have

uθθ = ∑(in)2cneinθ

ut = ∑ c′neinθ

Substituting this back into 4 we have

∑−n2cneinθ = ∑ c′nr2κeinθ

equating components we have

c′n = − n2

r2κ
cn

which is also just an exponential.

cn = An exp
(
− n2

r2κ
t
)

Reassembling we have the time variation of the solution now fixed and can
write

u(θ, t) = ∑ An exp
(
− n2

r2κ
t + inθ

)
(5)
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3.2 As initial value problem.

For the heat equation case, we can assume a known initial heat distribution
f (θ). For an initial time t = 0 we can then write

u(θ, 0) = ∑ Aneinθ = f (θ)

This is just another Fourier series, with Fourier coefficients

An =
1

2π

∫
∂I

f (v)e−invdv

Final reassembly of the results gives us

u(θ, t) = ∑ exp
(
− n2

r2κ
t + inθ

)
1

2π

∫
∂I

f (v)e−invdv (6)

3.3 Convolution.

Osgood’s next step, also with the rigor police in hiding, was to exchange orders
of integration and summation, to write

u(θ, t) =
∫

∂I
f (v)dv

1
2π

∞

∑
n=−∞

exp
(
− n2

r2κ
t− in(v− θ)

)

Introducing a Green’s function g(v, t), we then have the complete solution
in terms of convolution

g(v, t) =
1

2π

∞

∑
n=−∞

exp
(
− n2

r2κ
t− inv

)
(7)

u(θ, t) =
∫

∂I
f (v)g(v− θ, t)dv (8)

Now, this Green’s function is fairly interesting. By summing over paired
negative and positive indexes, we have a set of weighted Gaussians.

g(v, t) =
1

2π
+

∞

∑
n=1

exp
(
− n2

r2κ
t
)

cos(nv)
π

Recalling that the delta function can be expressed as a limit of a sinc func-
tion, seeing something similar in this Green’s function is not entirely unsupris-
ing seeming.
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4 Wave equation.

The QM equation for a free particle is

− h̄2

2m
∇2ψ = ih̄∂tψ (9)

This has the same form of the heat equation, so for the free particle on a
circle our wave equation is

ψθθ = −2mir2

h̄
∂tψ ie: κ = −2mi/h̄

So, if the wave equation was known at an initial time ψ(θ, 0) = φ(θ), we
therefore have by comparision the time evolution of the particle’s wave func-
tion is

g(w, t) =
1

2π
+

∞

∑
n=1

exp
(
− ih̄n2t

2mr2

)
cos(nw)

π

ψ(θ, t) =
∫

∂I
φ(v)g(v− θ, t)dv

5 Fourier transform solution.

Now, lets try this one dimensional heat problem with a Fourier transform in-
stead to compare. Here we don’t try to start with an assumed solution, but
instead take the Fourier transform of both sides of the equation directly.

F (uxx) = κF (ut)

Let’s start with the left hand side, where we can evaluate by integrating by
parts

F (uxx) =
∫ ∞

−∞
uxx(x, t)e−2πisxdx

=
∫ ∞

−∞

∂ux(x, t)
∂x

e−2πisxdx

=
(

ux(x, t)e−2πisx
∣∣∣∞

x=−∞
− (−2πis)

∫ ∞

−∞
ux(x, t)e−2πisxdx

)

So if we assume (or require) that the derivative of our unknown function u
is zero at infinity, and then similarily require the function itself to be zero there,
we have
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F (uxx) = (2πis)
∫ ∞

−∞

∂ux(x, t)
∂x

e−2πisxdx

= (2πis)2
∫ ∞

−∞
u(x, t)e−2πisxdx

= (2πis)2F (u)

Now, for the time derivative. We want

F (ut) =
∫ ∞

−∞
ut(x, t)e−2πisxdx

But can pull the derivative out of the integral for

F (ut) =
∂

∂t

(∫ ∞

−∞
u(x, t)e−2πisxdx

)
=

∂F (u)
∂t

So, now we have an equation relating time derivatives only of the Fourier
transformed solution.

Writing F (u) = û this is

(2πis)2û = κ
∂û
∂t

(10)

With a solution of

û = A(s)e−4π2s2t/κ

Here A(s) is an arbitrary constant in time integration constant, which may
depend on s since it is a solution of our simpler frequency domain partial dif-
ferential equation 10.

Performing an inverse transform to recover u(x, t) we thus have

u(x, t) =
∫ ∞

−∞
ûe2πixsds

=
∫ ∞

−∞
A(s)e−4π2s2t/κe2πixsds

Now, how about initial conditions. Suppose we have u(x, 0) = f (x), then
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f (x) =
∫ ∞

−∞
A(s)e2πixsds

Which is just an inverse Fourier transform in terms of the integration “con-
stant” A(s). We can therefore write the A(s) in terms of the initial time domain
conditions.

A(s) =
∫ ∞

−∞
f (x)e−2πisxdx

= f̂ (s)

and finally have a complete solution of the one dimensional Heat equation.
That is

u(x, t) =
∫ ∞

−∞
f̂ (s)e−4π2s2t/κe2πixsds

5.1 With Green’s function?

If we put in the integral for f̂ (s) explicitly and switch the order as was done
with the Fourier series will we get a similar result? Let’s try

u(x, t) =
∫ ∞

−∞

(∫ ∞

−∞
f (u)e−2πisudu

)
e−4π2s2t/κe2πixsds

=
∫ ∞

−∞
du f (u)

∫ ∞

−∞
e−4π2s2t/κe2πi(x−u)sds

Cool. So, with the introduction of a Green’s function g(w, t) for the funda-
mental solution of the heat equation, we therefore have our solution in terms
of convolution with the initial conditions. It doesn’t get any more general than
this!

g(w, t) =
∫ ∞

−∞
exp

(
−4π2s2t

κ
+ 2πiws

)
ds (11)

u(x, t) =
∫ ∞

−∞
f (u)g(x− u, t)du (12)

Compare this to 7, the solution in terms of Fourier series. The form is almost
identical, but the requirement for periodicity has been removed by switch to
the continuous frequency domain!
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5.2 Wave equation.

With only a change of variables, setting κ = −2mi/h̄ we have the general solu-
tion to the one dimensional zero potential wave equation 9 in terms of an initial
wave function. However, we’ve a form of the Fourier transform that obscures
the physics has been picked here unfortunately. Let’s start over in super speed
mode directly from the wave equation, using the form of the Fourier transform
that substituites 2πs → k for wave number.

We want to solve

− h̄2

2m
ψxx = ih̄ψt

Now calculate

F (ψxx) =
1

2π

∫ ∞

−∞
ψxx(x, t)e−ikxdx

=
1

2π
ψx(x, t)e−ikx

∣∣∣∞

−∞
− (−ik)

1
2π

∫ ∞

−∞
ψx(x, t)e−ikxdx

= · · ·

=
1

2π
(ik)2ψ̂(k)

So we have

− h̄2

2m
(ik)2ψ̂(k, t) = ih̄

∂ψ̂(k, t)
∂t

This provides us the fundamental solutions to the wave function in the
wave number domain

ψ̂(k, t) = A(k) exp
(
− ih̄k2

2m
t
)

ψ(x, t) =
1√
2π

∫ ∞

−∞
A(k) exp

(
− ih̄k2

2m
t
)

exp(ikx)dk

In particular, as before, with an initial time wave function ψ(x, 0) = φ(x)
we have

φ(x) = ψ(x, 0) =
1√
2π

∫ ∞

−∞
A(k) exp(ikx)dk

= F−1(A(k))

So, A(k) = φ̂, and we have
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ψ(x, t) =
1√
2π

∫ ∞

−∞
φ̂(k) exp

(
− ih̄k2

2m
t
)

exp(ikx)dk

So, ending the story we have finally, the general solution for the time evo-
lution of our one dimensional wave function given initial conditions

ψ(x, t) = F−1
(

φ̂(k) exp
(
− ih̄k2

2m
t
))

(13)

or, alternatively, in terms of momentum via k = p/h̄ we have

ψ(x, t) = F−1
(

φ̂(p) exp
(
− ip2

2mh̄
t
))

(14)

Pretty cool! Observe that in the wave number or momentum domain the
time evolution of the wave function is just a continual phase shift relative to
the initial conditions.

5.3 Wave function solutions by Fourier transform for a parti-
cle on a circle.

Now, thinking about how to translate this Fourier transform method to the
wave equation for a particle on a circle (as done by Susskind in his online lec-
tures) makes me realize that one is free to use any sort of integral transform
method appropriate for the problem (Fourier, Laplace, ...). It doesn’t have to
be the Fourier transform. Now, if we happen to pick an integral transform
with θ ∈ [0, π] bounds, what do we have? This is nothing more than the inner
product for the Fourier series, and we come full circle!

Now, the next thing to work out in detail is how to translate from the trans-
form methods to the algebraic bra ket notation. This looks like it will follow
immediately if one calls out the inner product in use explicitly, but that’s an
exploration for a different day.
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