Lorentz invariance of energy momentum four vector.

Peeter Joot peeter.joot@gmail.com
June 21, 2009. RCS file : invarianceEnMom.ltx, v Last
Revision : 1.2 Date : 2009/06/2201:20:40

Contents

1 Motivation. 1
2 Prerequiste concepts. Wave equation, and Lorentz invariance. 1

1 Motivation.

A blurb on Lorentz invariance eventually removed from other notes. Probably want to merge this with my treatment of application of the chain rule to the wave equation as a method of finding the Lorentz boost matrix.

2 Prerequiste concepts. Wave equation, and Lorentz invariance.

An unforced mechanical wave described by a function $\psi(t, \mathbf{x})$, propagating undamped and unforced with velocity v is described by the familiar equation

$$
\begin{equation*}
\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}-\nabla^{2} \psi=0 \tag{1}
\end{equation*}
$$

For the purposes of this discussion, a relativistic wave is described by (1) with two additional conditions. The first is that the wave speed is $v=c$, the speed of light. The second condition required for the label relativistic is a restriction on the allowed coordinate transformations. These are the linear transformations of space time coordinates $(t, x, y, z) \rightarrow\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ for which the wave equation retains precisely this form

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}-\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{\prime 2}}-\frac{\partial^{2} \psi}{\partial x^{\prime 2}}-\frac{\partial^{2} \psi}{\partial y^{\prime 2}}-\frac{\partial^{2} \psi}{\partial z^{\prime 2}} \tag{2}
\end{equation*}
$$

Such transformations, the Lorentz transformations, are those that introduce no cross term such as $\partial^{2} \psi / \partial x^{\prime} \partial y^{\prime}$, and do not change the wave velocity. One can show that spatial rotations such as

$$
\left[\begin{array}{l}
c t^{\prime} \tag{3}\\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & -\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right]
$$

Or Lorentz boosts such as

$$
\left[\begin{array}{l}
c t^{\prime} \tag{4}\\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
-\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right]
$$

Or any composition of such transformations meet this requirement.
In the linear transformations above the space and time coordinates were merged into a single vector representation, the particle worldline vector, often written with shorthand such as

$$
\begin{equation*}
X \equiv(c t, \mathbf{x}) \tag{5}
\end{equation*}
$$

For such a vector, a Lorentz length can be defined

$$
\begin{equation*}
X^{2} \equiv c^{2} t^{2}-\mathbf{x}^{2} \equiv c^{2} t^{2}-\mathbf{x} \cdot \mathbf{x} \tag{6}
\end{equation*}
$$

Without specific discussion of the wave equation, a more usual but equivalent definition of Lorentz transformations, are those that leave this Lorentz length unchanged, as in

$$
\begin{equation*}
c^{2} t^{2}-\mathbf{x}^{2}=c^{2} t^{\prime 2}-\mathbf{x}^{\prime 2} \tag{7}
\end{equation*}
$$

If we introduce a vector space time derivative operator

$$
\begin{equation*}
\nabla \equiv\left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right) \tag{8}
\end{equation*}
$$

The Lorentz invariant length of this vector operator is in fact our wave equation operator

$$
\begin{equation*}
\square \equiv \nabla^{2}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla \cdot \nabla \tag{9}
\end{equation*}
$$

It is clear that the original requirement for wave equation invariance 2 is also contained within this definition of Lorentz invariant length.

Unit vectors with respect to Lorentz length are neccessarily Lorentz invariant. Considering for example the time rate of change of a particle worldline we have

$$
\begin{equation*}
\left(\frac{d}{d t}(c t, \mathbf{x})\right)^{2}=c^{2}-\mathbf{v}^{2} \tag{10}
\end{equation*}
$$

which implies that the Lorentz length of

$$
\begin{equation*}
\frac{1}{\sqrt{1-\mathbf{v}^{2} / c^{2}}}(1, \mathbf{v} / c) \tag{11}
\end{equation*}
$$

is just one. For the purposes of this Schrödinger equation discussion a scaling of this four vector so that it has dimensions of energy is required

$$
\begin{equation*}
\frac{1}{\sqrt{1-\mathbf{v}^{2} / c^{2}}}\left(m c^{2}, m \mathbf{v} c\right) \tag{12}
\end{equation*}
$$

Algebraically, the Lorentz length of this four vector can easily be confirmed to be $\left(m c^{2}\right)^{2}$. This quantity we will identify as an energy-momentum four vector as follows

$$
\begin{equation*}
P=(E / c, \mathbf{p}) \tag{13}
\end{equation*}
$$

With energy defined as

$$
\begin{equation*}
E \equiv \frac{m c^{2}}{\sqrt{1-\mathbf{v}^{2} / c^{2}}} \tag{14}
\end{equation*}
$$

and spatial momentum defined as

$$
\begin{equation*}
\mathbf{p} \equiv \frac{m \mathbf{v}}{\sqrt{1-\mathbf{v}^{2} / c^{2}}} \tag{15}
\end{equation*}
$$

It is beyond the scope of these notes to provide a good justification for this identification. 1

From (13) that Lorentz length of the energy momentum four vector is

$$
\begin{equation*}
P^{2}=E^{2} / c^{2}-\mathbf{p}^{2}=m^{2} c^{2} \tag{16}
\end{equation*}
$$

[^0]
References

[^0]: ${ }^{1}$ This is a dodge, and having to make a statement like this shows that it is beyond the scope of the author's understanding to coherently justify this identification. In the spirit of my engineering education I can at least work with it.

