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At the end of section 12.1 in Jackson [1] he states that it is obvious that the Lorentz force
equations are gauge invarient.

dp
dt

= e
(

E +
u
c
× B

)
(1)

dE
dt

= eu · E (2)

Since I didn’t remember what Gauge invariance was, it wasn’t so obvious. But if I looking
ahead to one of the problem 12.2 on this invariance we have a Gauge transformation defined in
four vector form as

Aα → Aα + ∂αψ (3)

In vector form with A = γα Aα, this gauge transformation can be written

A → A +∇ψ (4)

so this is really a statement that we add a spacetime gradient of something to the four vector
potential. Given this, how does the field transform?

F = ∇∧ A
→ ∇∧ (A +∇ψ)
= F +∇∧∇ψ

But ∇ ∧∇ψ = 0 (assuming partials are interchangable) so the field is invariant regardless of
whether we are talking about the Lorentz force

∇F = J/ε0c (5)

or the field equations themselves

dp
dτ

= eF · v/c (6)
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So, once you know the definition of the gauge transformation in four vector form, yes this
justifiably obvious, however, to anybody who is not familiar with Geometric Algebra, perhaps
this is still not so obvious. How does this translate to the more common place tensor or space time
vector notations? The tensor four vector translation is the easier of the two, and there we have

Fαβ = ∂α Aβ − ∂β Aα

→ ∂α(Aβ + ∂βψ)− ∂β(Aα + ∂αψ)

= Fαβ + ∂α∂βψ− ∂β∂αψ

As required for ∇ ∧∇ψ = 0 interchange of partials means the field components Fαβ are un-
changed by adding this gradient. Finally, in plain old spatial vector form, how is this gauge
invariance expressed?

In components we have

A0 → A0 + ∂0ψ = φ +
1
c

∂ψ

∂t
(7)

Ak → Ak + ∂kψ = Ak − ∂ψ

∂xk (8)

This last in vector form is A → A −∇ψ, where the sign inversion comes from ∂k = −∂k =
−∂/∂xk, assuming a +−−− metric.

We want to apply this to the electric and magnetic field components

E = −∇φ− 1
c

∂A
∂t

(9)

B = ∇×A (10)

The electric field transforms as

E → −∇
(

φ +
1
c

∂ψ

∂t

)
− 1

c
∂

∂t
(A−∇ψ)

= E− 1
c
∇∂ψ

∂t
+

1
c

∂

∂t
∇ψ

With partial interchange this is just E. For the magnetic field we have

B → ∇× (A−∇ψ)
= B−∇×∇ψ

Again since the partials interchange we have ∇×∇ψ = 0, so this is just the magnetic field.
Alright. Worked this in three different ways, so now I can say its obvious.
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