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1. Motivation

In [1] I blundered my way towards the retarded time Green’s function solution to the 3D wave
equation. Jackson’s [2] (section 12.11) covers this in a much more coherent fashion. It is however
somewhat terse, and some details that were not immediately obvious to me were omitted.

Here are my notes for this section in case I want to refer to it again later.

2. Guts

The starting point is the electrodynamic wave equation

∂αFαβ =
4π

c
Jβ (1)

A substitution of Fαβ = ∂α Aβ − ∂β Aα gives us

∂αFαβ = ∂α∂α Aβ − ∂α∂β Aα = �Aβ − ∂β(∂α Aα) (2)

Thus with the Lorentz condition ∂α Aα = 0 we have

�Aβ =
4π

c
Jβ (3)

A set of four non-homogeneous wave equations to solve. It is assumed that a Green’s function
of the form

�xD(x − x′) = δ4(x − x′) (4)

can be found. Jackson states that this is possible in the absense of boundary surfaces, which
seems to imply that the more general case would require �xD(x, x′) = δ4(x − x′), where D is not
neccessarily a function of the four vector difference x − x′.

What is really meant by this Green’s function? It only takes meaning in the context of the
convolution integral. Namely

Aβ =
∫

d4x′D(x, x′)
4π

c
Jβ(x′) (5)
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So that

�x Aβ =
∫

d4x′�xD(x, x′)
4π

c
Jβ(x′)

=
4π

c

∫
d4x′δ4(x − x′)Jβ(x′)

=
4π

c
Jβ(x)

So if a function with this delta filtering property under the Delambertian can be found we can
find the non-homogeneous solutions directly by four-volume convolution.

It is implied in the text (probably stated explicitly somewhere earlier) that the asymmetric
convention for the Fourier transform pairs is being used

f̃ (k) =
∫

d4z f (z)eik·z (6)

f (z) =
1

(2π)4

∫
d4k f̃ (k)e−ik·z (7)

where d4k = dk0dk1dk2dk3, and d4z = dz0dz1dz2dz3, and k · z = kµzµ = kµzµ.
Assuming the validity of this transform pair, even for the delta distribution, we can find an

integral representation of the delta using the transform pairs. For the Fourier transform of delta
we have

δ̃4(k) =
∫

d4zδ4(z)eik·z

= eik·0

= 1

Performing the inverse transformation provides the delta function exponential integral repre-
sentation

δ4(z) =
1

(2π)4

∫
d4kδ̃4(k)e−ik·z

=
1

(2π)4

∫
d4ke−ik·z

Just as a Fourier representation of the delta can be found, we can integrate by parts to find an
integral representation of the Green’s function that we seek. Taking Fourier transforms
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F (�xD(z))(k) =
∫

d4z∂α∂αD(z)eik·z

= −
∫

d4z∂αD(z)∂αeikβzβ

= −
∫

d4z∂αD(z)ikαeikβzβ

=
∫

d4zD(z)ikα∂αeikβzβ

= −
∫

d4zD(z)kαkαeik·z

= −k2D̃(k)

Usign the assumed delta function property of this Green’s function we also have

F (�xD(z))(k) =
∫

d4zδ4(z)eik·z

= 1

This completely specifies the Fourier transform of the Green’s function

D̃(k) = − 1
k2 (8)

and we can inverse transform to complete the task of finding an initial representation of the
Green’s function itself. That is

D(z) = − 1
(2π)4

∫
d4k

1
k2 e−ik·z (9)

With an explicit spacetime split we have our integral prepped for the contour integration

D(z) = − 1
(2π)4

∫
d3keik·z

∫ ∞

−∞
dk0

1
k2

0 − k2
e−ik0z0 (10)

Here κ = |k| is used as in the text. If we let k0 = Reiθ take on complex values, integrating over
a semicircular arc, we have for the exponential

∣∣∣e−ik0z0

∣∣∣ =
∣∣∣e−iR(cos θ+i sin θ)z0

∣∣∣
=
∣∣∣ez0R sin θe−iz0R cos θ

∣∣∣
=
∣∣∣ez0R sin θ

∣∣∣
In the upper half plane θ ∈ [0, π], so sin θ is never negative, and the integral on an upper

half plane semi-circular contour can only vanish as desired for z0 < 0. Similarily the infinite arc
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Figure 1: Contours strictly above the k0 = 0 axis

Figure 2: Contour around pole
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integral can only be zero for z0 > 0 for a lower half plane contour. This is mentioned in the text
but I felt it more clear just writing out the exponential as above.

Having established the value on the loop at infinity we can now integrate over the contour
r1 as depicted in figure (1). The problem is mainly reduced to an integral of the form figure (2)
around the simple poles at α = ±κ

Iα =
∮ f (z)

z− α
dz (11)

With z = α + Reiθ , and θ ∈ [π/2, 5π/2], we have

Iα =
∫ f (z)

Reiθ Rieiθdθ (12)

with R → 0, we are left with

Iα = 2πi f (α) (13)

There are six arcs on the contour of interest. For the first two around the poles lets lable the
integral contributions Iκ and I−κ. Along the infinite semicircular contour the integral vanishes
with the right sign choice for z0. For the remainder lets write the integral contributions I.

Summing over the complete contour, specially chosen to enclose no poles, we have

I + Iκ + I−κ + 0 = 0 (14)

For this z0 > 0 integral we are left with the residue sum

∫ ∞

−∞
dk0

1
k2

0 − k2
e−ik0z0 = −2πi

(
1

k0 − κ
e−ik0z0

∣∣∣∣
k0=−κ

+
1

k0 + κ
e−ik0z0

∣∣∣∣
k0=κ

)

=
2πi2

κ
sin(κz0)

Since I can never remember the signs and integral orientations for the residue formula so I’ve
always done it “manually” as above picking a zero valued contour.

Now, the issue of where to place the contour wasn’t really discussed mathematically. Phys-
ically this makes the difference between causal and acausal behaviour, but why put the contour
strictly above or below the axis and not right on it. If we put the contour exactly on the k0 = 0 axis
as in (3), then our integrals around the two half circular poles gives us a result off by a factor of
two? There is also an (implied) limiting procedure required to place the contour strictly above the
axis, and the details of this aren’t mentioned (and I also haven’t thought them through). Some of
these would be worth thinking through in more detail, but for now lets ignore these. We are left
with

D(z) =
θ(z0)
(2π)3

∫
d3keik·z 1

κ
sin(κz0) (15)

5



Figure 3: Contour exactly on the k0 = 0 axis?

How to reduce this to the single variable integral in κ was not immediately clear to me. Align-
ing z with the e3 axis, and using a spherical polar representation for k we can write z ·k = Rκ cos θ.
With this and the volume element d3k = κ2 sin θdθdφdκ, we have

D(z) =
θ(z0)
(2π)3

∫ ∞

0
dκ sin(κz0)

∫ 2π

0
dφ
∫ π

0
dθκeiRκ cos θ sin θ (16)

This now happily submits to a nice variable substitution, unlike an integral like
∫

eiµ cos θdθ =
J0(|µ|) which can be evaluated, but only in terms of Bessel functions or messy series expansion.
Writing τ = κ cos θ, and −dτ = κ sin θdθ we have

∫ π

0
dθκeiRκ cos θ sin θ = −

∫ −κ

κ
dτeiRτ

=
eiRκ

iR
− e−iRκ

iR

= 2
1
R

sin(Rκ)

Our Green’s function is now reduced to

D(z) =
θ(z0)
2π2R

∫ ∞

0
dκ sin(κz0) sin(κR) (17)

Expanding out these sines in terms of exponentials we have
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D(z) = − θ(z0)
8π2R

∫ ∞

0
dκ(eiκ(z0+R) + e−iκ(z0+R) − eiκ(R−z0) − eiκ(z0−R))

= − θ(z0)
8π2R

(∫ ∞

0
dκ
(

eiκ(z0+R) − eiκ(R−z0)
)

+
∫ −∞

0
−dκ

(
eiκ(z0+R) − e−iκ(z0−R)

))
=

θ(z0)
8π2R

∫ ∞

−∞
dκ
(

eiκ(R−z0) − eiκ(z0+R)
)

the sign in this first exponential differs from what Jackson obtained but it won’t change the
end result. Did I make a mistake or did he? Wonder what the third edition shows? Using δ(x) =∫

e−ikxdk/2π we have

D(z) =
θ(z0)
4πR

(δ(z0 − R)− δ(−(z0 + R))) (18)

With R = |x− x′| ≥ 0, and z0 = c(t − t′) > 0, this second delta cannot contribute, and we are
left with the retarded Green’s function

Dr(z) =
θ(z0)
4πR

δ(c(t− t′)−
∣∣x− x′

∣∣) (19)

Very slick. I like the procedure, despite a few magic steps (like the choice to offset the contour).
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