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1 Motivation

Want to explore the ideas of global and local gauge invariance. I seem to recall
that Susskind used the Klein-Gordon Lagrangian, which had a form something
like

L = ∂µψ∂µψ∗ + αm2ψψ∗ (1)
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Since this was one of the simplest forms to apply the a relativistic gauge
transformation concept to, use this for the gauge transformation exercise. Be-
fore doing that it also seemed reasonable to explore this relativistic QM equa-
tion slightly to get an introductory feel for it.

2 Determine that constant.

We want

∇2ψ = ∂µ∂µψ = −m2c2

h̄2 ψ

So, to start things off let’s do the variation on the Lagrangian density of 1.
For fun, let’s try it with Feynman’s method (first order Taylor expansion, and
no memorization of the field form of the Euler-Lagrange equations).

Write ψ = φ + ε, where φ is the desired solution and ε is a field that vanishes
on the boundaries of the action integral

S =
∫
Ld4x

=
∫ (

∂µ(φ + ε)∂µ(φ + ε)∗ + αm2(φ + ε)(φ + ε)∗
)

d4x

=
∫

d4x∂µφ∂µφ∗ + αm2
∫

φφ∗d4x

+
∫

d4x∂µε∂µφ∗ +
∫

d4x∂µφ∂µε∗

+ αm2
∫

φε∗d4x + αm2
∫

εφ∗d4x

+ αm2
∫

εε∗d4x +
∫

d4x∂µε∂µε∗

Only the mixed ε, φ terms are of interest. The φ only terms are the desired
solution, and don’t vary with ε, and the last two are quadratic and can be
neglected as small. Integration by parts on the remainder we have

δS =
∫

d4x∂µε∂µφ∗ +
∫

d4x∂µφ∂µε∗ + αm2
∫

φε∗d4x + αm2
∫

εφ∗d4x

=
∫

d4xε
(
−∂µ∂µφ∗ + αm2φ∗

)
+
∫

d4x
(
−∂µ∂µφ + αm2φ

)
ε∗

= 2
∫

d4x<
((
−∂µ∂µφ + αm2φ

)
ε∗
)

2



Since we want δS = 0 for all ε, real or imaginary, the inner term gives us
the field equation for the Lagrangian density, and we have

∂µ∂µφ = αm2φ

This determines the constant factor α (and its sign), so we have the La-
grangian density and corresponding field equation with all the units in place.

∂µ∂µψ = −m2c2

h̄2 ψ (2)

L = ∂µψ∂µψ∗ − m2c2

h̄2 ψψ∗ (3)

Now, that wasn’t really any easier to do it that way. Mechanically plugging
into the Euler-Lagrange equations would have gotten us there faster, but Feyn-
man’s method from the Lectures [Feynman et al.(1963)Feynman, Leighton, and
Sands] is pretty cool for its simplicity.

0 = ∂ψ∗L−∑
σ

∂σ
∂L

∂(∂σψ∗)

= −m2c2

h̄2 ψ−∑
σ

∂σ∂σψ

This also gives us, with less fun, the end result from the density

∂σ∂σψ = −m2c2

h̄2 ψ

3 Solutions to the Klein-Gordon equation.

Pauli starts his book [Pauli(2000)] with this relativistic equation, pointing out
that the wave packet

ψ(x, t) =
1

(
√

2π)3

∫
A(k)ei(k·x−ωt)d3k (4)

Satisfies this relativistic scalar wave equation 2.
With a time positive metric we have
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∇2 = ∂µ∂µ

=
1
c2

∂2

∂t2 −
3

∑
a=1

∂2

∂xa2

=
1
c2

∂2

∂t2 −∇2

So to verify that this is a solution we can compute the derivatives for the
wave equation. Those are

1
c2

∂2ψ

∂t2 (x, t) =
1

(
√

2π)3

∫
A(k)

(
(−iω)2

c2

)
ei(k·x−ωt)d3k

∇2ψ(x, t) =
1

(
√

2π)3

∫
A(k)

(
3

∑
a=1

(ika)2

)
ei(k·x−ωt)d3k

So we have

(
∇2 +

m2c2

h̄2

)
ψ =

1
(
√

2π)3

∫
A(k)

(
−ω2

c2 + k2 +
m2c2

h̄2

)
ei(k·x−ωt)d3k

For this to be zero for arbitrary wave number domain wave functions a
constraint is required

−ω2

c2 + k2 +
m2c2

h̄2 = 0

Or with ω = 2πν, and h̄ = h/2π, this is

h2ν2

c2 − h̄2k2 = m2c2

This means that the constraint on the wave number vector k is that it is
incorporated into a four vector momentum vector as

p = (hν/c, h̄k) ≡ (E/c, p)

p2 = (mc)2

Put another way, the integral for the wave packet must not be one over all
wave number space, but the wave number space defined by the hyperbolic
surface in wave number space

k2 =
1

h̄2c2

(
(hν)2 − (mc2)2

)
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3.1 Wave packet as Fourier transform.

Observe that at t = 0 one has

ψ(x, 0) =
1

(
√

2π)3

∫
A(k)ei(k·x)d3k

So A(k) is exactly the Fourier transform of ψ(x, 0) and one can use the
Fourier transform to specify the time evolution of the wave packet in terms
of initial conditions.

ψ(x, t) =
1

(
√

2π)3

∫
ψ̂0(k)ei(k·x−ωt)d3k (5)

That is actually a fairly odd seeming constraint. We have a volume integral
over a surface of zero thickness unless ν varies. Intuitively I’d expect that to be
zero, so this wave packet form doesn’t seem particularly well defined as stated.
Perhaps the value, as in Pauli’s text, is really just to motivate the relativistic
wave equation?

3.2 Normalization.

Although Pauli incorporated the 2π factors into A(k), leaving these explicit
allows for the normalization of the wave number and spatial domains to be
identical.

∫
ψ(x, t)ψ∗(x, t)d3x =

1
(2π)3

∫∫∫
d3xψ̂0(k)ei(k·x−ωt)d3kψ̂∗

0(k′)e−i(k′ ·x−ωt)d3k′

=
∫∫

ψ̂0(k)ψ̂∗
0(k′)d3kd3k′

1
(2π)3

∫
ei((k−k′)·x)d3x

=
∫∫

ψ̂0(k)ψ̂∗
0(k′)δ3(k− k′)d3kd3k′

=
∫

ψ̂0(k)ψ̂∗
0(k)d3k

So, if one has a unit normalized wave packet in the spatial domain, the
wave number domain has the same normalization

∫
|ψ(x, t)|d3x =

∫ ∣∣ψ̂0(k)
∣∣d3k (6)
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4 Probability current?

Given the wave equation and an interpretation of 1 =
∫
|ψ|2 as a probabil-

ity, can one define a probability current meaningfully. This seems somewhat
problematic logically, since computing the derivative, as done in [Joot(c)]

∂ψψ∗

∂t
=

∂ψ

∂t
ψ∗ + ψ

∂ψ∗

∂t
leaves us with nowhere to go. For the Schrödinger equation probability

density, this calculation gave us

ρ = ψψ∗ (7)

J =
h̄

2mi
(ψ∗∇ψ− ψ∇ψ∗) (8)

0 =
∂ρ

∂t
+ ∇ · J (9)

However for the KG equation we don’t have any sort of expression for ∂ψ
∂t

since it is second order.

4.1 Second order derivatives of the probability density.

One could, however, compute a second order derivatives of the density, but
does this product anything useful?

∂2ψψ∗

∂t2 =
∂

∂t

(
∂ψ

∂t
ψ∗ + ψ

∂ψ∗

∂t

)
=

∂2ψ

∂t2 ψ∗ + ψ
∂2ψ∗

∂t2 + 2
∂ψ

∂t
∂ψ∗

∂t

But we have

∂2ψ

∂t2 = c2∇2ψ−
(

mc2

h̄

)2

ψ

This gives

∂2ψψ∗

∂t2 =

(
c2∇2ψ−

(
mc2

h̄

)2

ψ

)
ψ∗ + ψ

(
c2∇2ψ∗ −

(
mc2

h̄

)2

ψ∗
)

+ 2
∂ψ

∂t
∂ψ∗

∂t

= c2
(

ψ∗∇2ψ + ψ∇2ψ∗
)

+ 2

(
∂ψ

∂t
∂ψ∗

∂t
−
(

mc2

h̄

)2

ψψ∗
)
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The first two Laplacian terms can be expressed as divergences with

∇ · (a∇b) = 〈∇(a∇b)〉
= (∇a) · (∇b) + a∇2b

This gives

∂2ψψ∗

∂t2 = c2∇ · (ψ∇ψ∗ + ψ∗∇ψ) + 2

(
∂ψ

∂t
∂ψ∗

∂t
−
(

mc2

h̄

)2

ψψ∗ − c2(∇ψ) · (∇ψ∗)

)

Integrating over all space (assuming the fields vanish at infinity), the diver-
gence terms drop out, and one is left with

∫ (
∂2ψψ∗

∂t2 + 2c2(∇ψ) · (∇ψ∗)− 2
∂ψ

∂t
∂ψ∗

∂t

)
= −2

(
mc2

h̄

)2

This is kind of funny, since it almost takes us full circle back to the La-
grangian we started with. Putting everything back into the integral and group-
ing together

∫ 1
2c2

∂2ψψ∗

∂t2 =
∫ (

∂ψ

∂ct
∂ψ∗

∂ct
− (∇ψ) · (∇ψ∗)− m2c2

h̄2 ψψ∗
)

=
∫ (

∇ψ · ∇ψ∗ − m2c2

h̄2 ψψ∗
)

So we have

∫
d3xL =

1
2

∫
d3x

∂2ψψ∗

∂ct2

On the LHS it almost looks like the original action, but it is integrated over
space instead of spacetime. This integral whatever it is, ends up expressable in
terms of just the time derivatives, so there’s a somewhat natural seeming space
and time pairing here.

5 Radial solution.

What does separation of variables yield for this equation? Let
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ψ(x, t) = φ(x)τ(t)

∇2ψ =
(

1
c2

∂2

∂t2 −∇2
)

φ(x)τ(t)

=
1
c2 φτ′′ − τ∇2φ

= −m2c2

h̄2 φτ

So we have

1
c2

τ′′

τ
− 1

φ
∇2φ = −m2c2

h̄2

Let τ′′/τ = c2κ2, for some constant κ, perhaps imaginary. This gives

∇2φ =
(

κ2 +
m2c2

h̄2

)
φ

Introducing one additional constant

µ2 = κ2 +
m2c2

h̄2

The spatial component of the equation becomes

(
∇2 − µ2

)
φ = 0

Now, let’s return to the equation for τ and integrate. If κ is real then the
solutions are linear combinations of hyperbolic functions

τ = A±e±κct

Here’s where the math allows more than seems regular in a physical con-
text. Hyperbolic seem a bit irregular for the time term of a wave function, so it
probably makes sense to make κ pure imaginary, say κ = ik. Then we have a
sinusoidal phase term for the time dependent function

τ = A±e±ikct
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and the spatial remainder takes the form of a Helmholtz equation.

(
∇2 +

(
k2 +

m2c2

h̄2

))
φ = 0

The Helmholtz equation is also what we would have gotten with separa-
tion of variables for an unforced wave equation, so the spatial solution of the
Klein Gordon equation takes the same form as solutions to the homogeneous
wave equation (example: plane waves or superpositions of them), but with the
wave number vector magnitude is shifted due to the inclusion of the m2c2/h̄2

constant term in the equation above.

6 Gauge transformation.

The concept of gauge transformation is explained very nicely in [Toth()]. Work
through this for the KG Lagrangian.

6.1 Constant phase change.

A global gauge transformation that changes phase everywhere by some con-
stant amount

ψ′ = ψeiθ

does not change the Lagrangian

L′ = ∂µψ′∂µψ′∗ − m2c2

h̄2 ψ′ψ′∗

= ∂µψeiθ∂µψ∗e−iθ − m2c2

h̄2 ψeiθψ∗e−iθ

= L

Because of the symmetry Noether’s theorem can be applied to find a con-
served quantity. In this simple case the Noether’s equation isn’t really neces-
sary. Instead, the conserved quantity can be computed directly.

dL′
dθ

=
∂L′
∂ψ′

∂ψ′

∂θ
+

∂L′
∂ψ′∗

∂ψ′∗

∂θ
+

∂L′
∂(∂µψ′)

∂(∂µψ′)
∂θ

+
∂L′

∂(∂µψ′∗)
∂(∂µψ′∗)

∂θ

Note that summation over µ is implied here, so this is really a chain rule
expansion with respect to all ten field variables.
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At θ = 0, ψ′ = ψ, and this derivative is

dL′
dθ

∣∣∣∣
θ=0

= −m2c2

h̄2 (ψ∗(iψ) + ψ(−iψ∗)) + ∂µψ∗(i∂µψ) + ∂µψ(−i∂µψ∗)

The first term is zero, and one can guess that the remainder can be written
as a divergence as follows (with confirmation)

i∂µ (ψ∂µψ∗ − ψ∗∂µψ) = i
(
∂µψ∂µψ∗ − ∂µψ∗∂µψ + ψ∂µ∂µψ∗ − ψ∗∂µ∂µψ

)
= i
(
∂µψ∂µψ∗ − ∂µψ∗∂µψ

)
− im2c2

h̄2 (ψψ∗ − ψ∗ψ)

(confirming the guess).
We therefore have a spacetime divergence of zero for this current, namely

Jµ = i (ψ∂µψ∗ − ψ∗∂µψ) (10)
∂µ Jµ = 0 (11)

In GA form, with J = γµ Jµ, and ∇ = γµ∂µ this is

J = i (ψ∇ψ∗ − ψ∗∇ψ) (12)
∇ · J = 0 (13)

A relation very much like the vector probability current of the non-relativistic
Schrödinger equation. We’ve seen above, however, that unlike the non-relativistic
equation, because we lack first order time derivatives, we don’t have a way to
relate this to the probability density ρ = ψψ∗.

Working through this helps clarify why the requirement for interpretation
of ρ as a probability current with the corresponding continuity equation was
highlighted in [Bohm(1989)] as one of the reasons for requiring a first order in
time wave equation.

Also see here that this is exactly the result that was found in [Joot(a)] where
the Noether equation for the conserved current was derived. Working this out
by direct calculation, however, provides a nice lead in to an attempt to do the
same for non-constant θ (local gauge transformation).

6.2 Local gauge transformation.

Now, if one lets the field transformation vary with space and time
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θ = θ(xµ) (14)

Then there will be less cancellation in the transformed Lagrangian, and it
will no longer be invariant. We have

ψ′ = ψeiθ

ψ′∗ = ψ∗e−iθ

∂µψ′ = (∂µψ + iψ∂µθ)eiθ

∂µψ′∗ = (∂µψ∗ − iψ∗∂µθ)e−iθ

L′ = ∂µψ′∂µψ′∗ − m2c2

h̄2 ψ′ψ′∗

= (∂µψ + iψ∂µθ)(∂µψ∗ − iψ∗∂µθ)− m2c2

h̄2 ψψ∗

= ∂µψ∂µψ∗ − i(∂µψ)ψ∗(∂µθ) + iψ(∂µθ)(∂µψ∗) +
(
−m2c2

h̄2 + ∂µθ∂µθ

)
ψψ∗

= ∂µψ∂µψ∗ + (∂µθ)Jµ +
(
−m2c2

h̄2 + ∂µθ∂µθ

)
ψψ∗

Introduction of a four vector Aµ = ∂µθ, the transformed Lagrangian be-
comes

L′ = ∂µψ∂µψ∗ + Aµ Jµ +
(
−m2c2

h̄2 + Aµ Aµ

)
ψψ∗ (15)

= (∇ψ) · (∇ψ∗) + A · J +
(
−m2c2

h̄2 + A2
)

ψψ∗ (16)

So if the local gauge transformation is interpreted as supplying an exter-
nal electromagnetic potential A, we have the same A · J coupling term as we
have in the Maxwell field Lagrangian, but the current here is the probability
current, rather than the electric charge/current density vector. Also somewhat
curiously, we have the square of the potential A showing up as a mass term.

6.2.1 Gauge invariant form.

Our transformed Lagrangian can now be written (dropping primes)
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L(ψ, A) = (∇ψ + iψA) · (∇ψ + iψA)∗ − m2c2

h̄2 ψψ∗ (17)

Making an additional local transformation ψ → ψeiα, and writing Bµ = ∂µα
the new transformed Lagrangian becomes

L′ = L(ψ′, A′) = (∇ψ + iψ(A′ + B)) · (∇ψ + iψ(A′ + B))∗ − m2c2

h̄2 ψψ∗

So, if one requires that A transforms as Aµ → Aµ − ∂µα = A′µ (ie: A′ = A−
B), then we have L′ = L, and the new Lagrangian is locally gauge invariant.

We see that local gauge invariance requires that a potential term be included
in the Lagrangian , as in 17, and additionally that both this potential and the
wave field transform in pairs, say,

ψ → ψeiα (18)
Aµ → Aµ − ∂µα (19)

This is exactly what Susskind covered in his relativity lecture on iTunesU,
but going over it all myself, albeit rather after the fact, firms up the ideas. How
do these ideas apply to the Maxwell Lagrangian ... the expectation is that one
can start with the free space form, and find the coupling term A · J via a gauge
transformation of some sort? Would also like to work through this myself for
the non-relativistic wave Lagrangian.

6.2.2 Gauge covariant derivative.

Observe that in 17, we also have something that looks like the gauge covariant
derivative of the Dirac equation

6D = ∇− iA
≡ γµ∂µ − iγµ Aµ

Using this, the gauge transformed Lagrangian can be written

L = ( 6D∗ψ) · ( 6Dψ∗)− m2c2

h̄2 ψψ∗

This is tidier, but comes with the cost of hiding even more in the notation.
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6.2.3 Field equations for the gauge Lagrangian?

What sort of field equation do we end up with after the local gauge transfor-
mation that alters the Lagrangian? Let’s compute this, starting with the trans-
formed density written out in full

L = ∂µψ∂µψ∗ + Aµi (ψ∂µψ∗ − ψ∗∂µψ) +
(
−m2c2

h̄2 + Aµ Aµ

)
ψψ∗

Computing the Euler Lagrange equations, for a variation in ψ∗ we have

0 =
∂L
∂ψ∗ − ∂µ

∂L
∂(∂µψ∗)

= −iAµ∂µψ +
(
−m2c2

h̄2 + Aµ Aµ

)
ψ− ∂µ∂µψ + i∂µ(Aµψ)

= −iAµ∂µψ +
(
−m2c2

h̄2 + Aµ Aµ

)
ψ− ∂µ∂µψ + i(∂µ Aµ)ψ + iAµ(∂µψ)

Toggling indexes on the last term, allows it to cancel with the first, and we
are left with

∇2ψ =
(
−m2c2

h̄2 + A2 + i(∇ · A)
)

ψ

If A is an electromagnetic potential four vector calculated in the Lorentz
gauge where one can choose ∇ · A = 0, then the net effect of the gauge varia-
tion is to add a Aµ Aµ vector product (a Lorentz invariant) to the mass term. In
the Dirac equation I think we have that too, but the potential shows up instead
coupled to the field in a first order power.

Now, comparing to problem 3.10 of [Byron and Fuller(1992)] as worked
in [Joot(b)] the last two terms here differ by a sign factor, and there is also no
A · ∇ term (where I had two such terms instead of an exact cancellation as was
the case here). Is there an error above, or in my solution to this problem?

7 Stress energy tensor.

For completeness sake it would be nice to derive the stress energy tensor for
the KG equation here. Both [Srednicki(2007)] and [Doran and Lasenby(2003)]
mention that this is the resulting symmetry from a spacetime translation. D/L’s
treatment is pretty incomprehensible to me at the moment, and will take a lot
more study before I understand it. Perhaps I can blunder through it on my
own without the GA infrastructure?

TODO (for both the potential free and gauge potential cases).
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