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1. Motivation

A number of discrete multiple particle systems appear to generate coupled differential equa-
tions of the following form

Az′ = b(z) (1)

Where A = A(z) is a matrix, and b(z) a column vector valued non-linear function. How do
we solve such an equation?

2. When the matrix is invertible.

Consider the nicely behaved case where A(z) is invertible for all z. Then we can write

z′ = A−1b(z) (2)

Now with a non-linear function b (like the sines that we have in the pendulum problem from
−∇ cos φ), we can’t solve this thing easily, but in some small-enough neighborhood of some point
(i.e. a point in phase space containing z) we can make a linear approximation.

Suppose our initial phase space point is z0, and we wish to solve for differential displacement
from that point x, namely z = z0 + x. Then we have for our system

x′ = A−1b(z)
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Now we have a linear matrix, corresponding roughly to a first order Taylor expansion of the
original system of equations. Mathematically the problem is now reduced to a column vector
linear system of the form

x′ = Bx + a (4)

When a = 0 the solution is just
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x = eBtx(0) (5)

(where you can evaluate eBt the usual way using an eigenvalue similarity transformation
where the exponential of the inner diagonal term is then simple).

Assuming a non-homogeneous solution of the same form x = eBt f (t) one finds the specific
solution

x = eBt
∫ t

0
e−Bτadτ (6)

So the complete solution (a specific solution plus the homogeneous solution) to the system 4 is
found to be

x = eBt
(

x(0) +
∫ t

0
e−Bτadτ

)
(7)

3. Thoughts to consider for the non-invertible or ill formed matrix

Now, this works out all nice and pleasantly when A is invertible. What do we do when it
is not? Each zero eigenvalue of A looks like it corresponds to a conserved quantity. Manually
removing those zeros from the system can reduce things to the form dealt with here. What is even
trickier seeming is what happens if the matrix is almost invertible. Example

[
1 0
0 0.0000000001

]
z′ = b(z) (8)

This is perfectly invertible mathematically, but numerically you really don’t want to go there,
since you’ll end up with garbage. What I think would work for dealing with this sort of system is
using the SVD (symmetric value decomposition) techniques to determine a orthonormal basis for
all the “non-zero” eigenvalues according to a reasonable numerical threshold for these zeros.

SVD it is relatively new to applied mathematics and wasn’t covered in my linear algebra course
when I was in school (now over ten years ago). I’ve read of it since and was very impressed with
its power and utility (but need more study of it to fully grasp it and its applications). Prof Gilbert
Strang covers this in his online lectures (on iTunesU), and I’d recommend them highly.

Exploring methods of solving (in the neighborhood of a phase space point) these sorts of dif-
ferential equations using SVD is something remaining to be explored in more detail, but intuition
says it is relevant.
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