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1 Motivation.

Reading of [Bohm(1996)] is a treatment of the Lorentz transform properties of
the Lorentz force equation. This isn’t clear to me without working through it
myself, so do this.

I also have the urge to try this with the GA formulation of the Lorentz
transformation. That may not end up being simpler if one works with the
non-covariant form of the Lorentz force equation, but only trying it will tell.

2 Compare forms of the Lorentz Boost.

Working from the Geometric Algebra form of the Lorentz boost, show equiva-
lence to the standard coordinate matrix form and the vector form from Bohm.

1



2.1 Exponential form.

Write the Lorentz boost of a four vector x = xµγµ = ctγ0 + xkγk as

L(x) = e−αv̂/2xeαv̂/2 (1)

2.2 Invariance property.

A Lorentz transformation (boost or rotation) can be defined as those transfor-
mation that leave the four vector square unchanged.

Following [Doran and Lasenby(2003)], work with a +−−− metric signa-
ture (1 = γ2

0 = −γ2
k), and σk = γkγ0. Our four vector square in this represen-

tation has the familiar invariant form

x2 = (ctγ0 + xmγm)(ctγ0 + xkγk)

= (ctγ0 + xmγm)γ2
0(ctγ0 + xkγk)

= (ct + xmσm)(ct− xkσk)
= (ct + x)(ct− x)

= (ct)2 − x2

and we expect this of the Lorentz boost of equation 1. To verify we have

L(x)2 = e−αv̂/2xeαv̂/2e−αv̂/2xeαv̂/2

= e−αv̂/2xxeαv̂/2

= x2e−αv̂/2eαv̂/2

= x2

2.3 Sign of the rapidity angle.

The factor α will be the rapidity angle, but what sign do we want for a boost
along the positive v̂ direction?

Dropping to coordinates is an easy way to determine the sign convention
in effect. Write v̂ = σ1

L(x) = e−αv̂/2xeαv̂/2

= (cosh(α/2)− σ1 sinh(α/2))(x0γ0 + x1γ1 + x2γ2 + x3γ3)(cosh(α/2) + σ1 sinh(α/2))

σ1 commutes with γ2 and γ3 and anticommutes otherwise, so we have
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L(x) = (x2γ2 + x3γ3)e−αv̂/2eαv̂/2 + (x0γ0 + x1γ1)eαv̂

= x2γ2 + x3γ3 + (x0γ0 + x1γ1)eαv̂

= x2γ2 + x3γ3 + (x0γ0 + x1γ1)(cosh(α) + σ1 sinh(α))

Expanding out just the 0, 1 terms changed by the transformation we have

(x0γ0 + x1γ1)(cosh(α) + σ1 sinh(α))

= x0γ0 cosh(α) + x1γ1 cosh(α) + x0γ0σ1 sinh(α) + x1γ1σ1 sinh(α)

= x0γ0 cosh(α) + x1γ1 cosh(α) + x0γ0γ1γ0 sinh(α) + x1γ1γ1γ0 sinh(α)

= x0γ0 cosh(α) + x1γ1 cosh(α)− x0γ1 sinh(α)− x1γ0 sinh(α)

= γ0(x0 cosh(α)− x1 sinh(α)) + γ1(x1 cosh(α)− x0 sinh(α))

Writing xµ ′ = L(x) · γµ, and xµ = x · γµ, and a substitution of cosh(α) =
1/
√

1− v2/c2, and αv̂ = tanh−1(v/c), we have the traditional coordinate ex-
pression for the one directional Lorentz boost


x0′

x1′

x2′

x3′

 =


cosh α − sinh α 0 0
− sinh α cosh α 0 0

0 0 1 0
0 0 0 1




x0

x1

x2

x3

 (2)

Performing this expansion showed initially showed that I had the wrong
sign for α in the exponentials and I went back and adjusted it all accordingly.

2.4 Expanding out the Lorentz boost for projective and rejec-
tive directions.

Two forms of Lorentz boost representations have been compared above. An
additional one is used in the Bohm text (a vector form of the Lorentz transfor-
mation not using coordinates). Let’s see if we can derive that from the expo-
nential form.

Start with computation of components of a four vector relative to an ob-
server timelike unit vector γ0.

x = xγ0γ0

= (xγ0)γ0

= (x · γ0 + x ∧ γ0)γ0
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For the spatial vector factor above write x = x ∧ γ0, for

x = (x · γ0)γ0 + xγ0

= (x · γ0)γ0 + xv̂v̂γ0

= (x · γ0)γ0 + (x · v̂)v̂γ0 + (x ∧ v̂)v̂γ0

We have the following commutation relations for the various components

v̂(γ0) = −γ0v̂
v̂(v̂γ0) = −(v̂γ0)v̂

v̂((x ∧ v̂)v̂γ0) = ((x ∧ v̂)v̂γ0)v̂

For a four vector u that commutes with v̂ we have e−αv̂/2u = ue−αv̂/2, and
if it anticommutes we have the conjugate relation e−αv̂/2u = ueαv̂/2. This gives
us

L(x) = (x ∧ v̂)v̂γ0 + ((x · γ0)γ0 + (x · v̂)v̂γ0) eαv̂

Now write the exponential as a scalar and spatial vector sum

eαv̂ = cosh α + v̂ sinh α

= γ(1 + v̂ tanh α)
= γ(1 + v̂β)
= γ(1 + v/c)

Expanding out the exponential product above, also writing x0 = ct = x ·γ0,
we have

(x0γ0 + (x · v̂)v̂γ0)eαv̂

= γ(x0γ0 + (x · v̂)v̂γ0)(1 + v/c)

= γ(x0γ0 + (x · v̂)v̂γ0 + x0γ0v/c + (x · v̂)v̂γ0v/c)

So for the total Lorentz boost in vector form we have

L(x) = (x ∧ v̂)v̂γ0 + γ
(

x0 − x · v
c

)
γ0 + γ

(
x · 1

v/c
− x0

)
v
c

γ0 (3)

4



Now a visual inspection shows that this does match equation (15-12) from
the text:

x′ = x− (v̂ · x)v̂ +
(v̂ · x)v̂− vt√

1− (v2/c2)
(4)

t′ =
t− (v · x)/c2√

1− (v2/c2)
(5)

but the equivalence of these is perhaps not so obvious without familiarity
with the GA constructs.

2.5 differential form.

Bohm utilizes a vector differential form of the Lorentz transformation for both
the spacetime and energy-momentum vectors. From equation 4 we can derive
the expressions used. In particular for the transformed spatial component we
have

x′ = x + γ

(
−(v̂ · x)v̂

1
γ

+ (v̂ · x)v̂− vt
)

= x + γ

(
(v̂ · x)v̂

(
1− 1

γ

)
− vt

)
= x + (γ− 1)(v̂ · x)v̂− γvt

So in differential vector form we have

dx′ = dx + (γ− 1)(v̂ · dx)v̂− γvdt (6)

dt′ = γ(dt− (v · dx)/c2) (7)

and by analogy with dx0 = cdt → dE/c, and dx → dp, we also have the
energy momentum transformation

dp′ = dp + (γ− 1)(v̂ · dp)v̂− γvdE/c2 (8)

dE′ = γ(dE− v · dp) (9)

Reflecting on these forms of the Lorentz transformation, they are quite nat-
ural ways to express the vector results. The terms with γ factors are exactly
what we are used to in the coordinate representation (transformation of only
the time component and the projection of the spatial vector in the velocity di-
rection), while the −1 part of the (γ− 1) term just subtracts off the projection
unaltered, leaving dx− (dx · v̂)v̂ = (dx∧ v̂)v̂, the rejection from the v̂ direction.
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3 Lorentz force transformation.

Preliminaries out of the way, now we want to examine the tranform of the
electric and magnetic field as used in the Lorentz force equation. In csg units
as in the text we have

dp
dt

= q
(
E +

v
c
×H

)
(10)

dE
dt

= qE · v (11)

After writing this in differential form

dp = q
(

Edt +
dx
c
×H

)
(12)

dE = qE · dx (13)

and the transformed variation of this equation, also in differential form

dp′ = q
(

E ′dt′ +
dx′

c
×H′

)
(14)

dE′ = qE ′ · dx′ (15)

A brute force insertion of the transform results of equations 6, and 8 into
these is performed. This is mostly a mess of algebra.

While the Bohm book covers some of this, other parts are left for the reader.
Do the whole thing here as an exersize.

3.1 Transforming the Lorentz power equation.

Let’s start with the energy rate equation in its entirety without interleaving the
momentum calculation.

1
q

dE′ = E ′ · dx′

= E ′ ·
(
dx + (γ− 1)(V̂ · dx)V̂− γVdt

)
= E ′ · dx + (γ− 1)(V̂ · dx)E ′ · V̂− γE ′ ·Vdt

1
q

γ(dE−V · dp) =

γE · dx− γV ·
(

Edt +
dx
c
×H

)
=

γE · dx− γV · Edt− γ
1
c

dx · (H×V) =
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Grouping dt and dx terms we have

0 = dx ·
(
E ′ + (γ− 1)V̂(E ′ · V̂)− γE + γ(H×V/c)

)
+ dtγV · (E − E ′)

Now the argument is that both the dt and dx factors must separately equal
zero. Assuming that for now (but come back to this and think it through), and
writing E = E‖ + E⊥ for the projective and rejective components of the field
relative to the boost direction V (same for H and the transformed fields) we
have from the dt term

0 = V · (E‖ + E⊥ − E ′
‖ − E ′

⊥)

= V · (E‖ − E ′
‖)

So we can conclude

E ′
‖ = E‖

Now from the dx coefficient, we have

0 = E ′
‖ + E ′

⊥ + (γ− 1)V̂(E ′
‖ · V̂)− γE‖ − γE⊥ + γ(H⊥ ×V/c)

=

E ′
‖ − V̂(E ′

‖ · V̂)︸ ︷︷ ︸
E ′‖−E ′‖

 + E ′
⊥ − γ

E‖ − V̂(E ′
‖ · V̂)︸ ︷︷ ︸

E‖−E‖

− γE⊥ + γ(H⊥ ×V/c)

This now completely specifies the transformation properties of the electric
field under a V boost

E ′
⊥ = γ

(
E⊥ +

V
c
×H⊥

)
(16)

E ′
‖ = E‖ (17)

(it also confirms the typos in the text).

3.2 Transforming the Lorentz momentum equation.

Now we do the exersize for the reader part, and express the transformed mo-
mentum differential of equation 14 in terms of 6
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1
q

dp′ = E ′dt′ +
dx′

c
×H′

= γE ′dt− γE ′(V · dx)/c2 + dx×H′/c + (γ− 1)(V̂ · dx)V̂×H′/c− γV×H′/cdt

Now for the LHS using 8 and 12 we have

1
q

dp′ = dp/q + (γ− 1)(V̂ · dp/q)V̂− γVdE/qc2

= Edt +
dx
c
×H + (γ− 1)(V̂ · Edt + V̂ · (dx×H/c))V̂− γV(E · dx)/c2

= Edt +
dx
c
×H + (γ− 1)(V̂ · E)V̂dt + (γ− 1)(dx · (H× V̂/c))V̂− γV(E · dx)/c2

Combining these and grouping by dt and dx we have

dt
(
−(E − (V̂ · E)V̂) + γ(E ′ − (V̂ · E)V̂)− γV×H′/c

)
=

γ

c2

(
E ′(V · dx)−V(E · dx)

)
+

dx
c
× (H−H′) +

γ− 1
c

(
(dx · (H× V̂))V̂− (V̂ · dx)(V̂×H′)

)

What a mess, and this is after some initial grouping! From the power result
we have V̂ · E = V̂ · E ′ so we can write the LHS of this mess as

dt
(
−(E − (V̂ · E)V̂) + γ(E ′ − (V̂ · E)V̂)− γV×H′/c

)
= dt

(
−(E − (V̂ · E)V̂) + γ(E ′ − (V̂ · E ′)V̂)− γV×H′/c

)
= dt

(
−E⊥ + γE ′

⊥ − γV×H′/c
)

= dt
(
−E⊥ + γE ′

⊥ − γV×H′
⊥/c

)
If this can separately equal zero independent of the dx terms we have

E⊥ = γ

(
E ′
⊥ −

V
c
×H′

⊥

)
(18)

Constrast this to the result for E ′
⊥ in the first of 16. It differs only by a sign

which has an intuitive relativistic (anti)symmetry that isn’t entirely unsupris-
ing. If a boost along V takes E to E ′, then an boost with opposing direction
makes sense for the reverse.
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Despite being reasonable seeming, a relation like H‖ = H′
‖ was expected

... does that follow from this somehow? Perhaps things will become more clear
after examining the mess on the RHS involving all the dx terms?

The first part of this looks amenable to some algebraic manipulation. Using
(E ′ ∧V) · dx = E ′(V · dx)−V(E ′ · dx), we have

E ′(V · dx)−V(E · dx) = (E ′ ∧V) · dx + V(E ′ · dx)−V(E · dx)

= (E ′ ∧V) · dx + V((E ′ − E) · dx)

and

(E ′ ∧V) · dx =
〈
(E ′ ∧V)dx

〉
1

=
〈
i(E ′ ×V)dx

〉
1

=
〈
i((E ′ ×V) ∧ dx)

〉
1

=
〈

i2((E ′ ×V)× dx)
〉

1

= dx× (E ′ ×V)

Putting things back together, does it improve things?

0 = dx×
(

γ

(
E ′ × V

c

)
+ (H−H′)

)
+

γ

c
V((E ′ − E) · dx)

+ (γ− 1)
(
(dx · (H× V̂))V̂− (V̂ · dx)(V̂×H′)

)
Perhaps the last bit can be factored into dx crossed with some function of

H−H′?
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