
maxwellLagRot

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2009/maxwellLagRot.pdf

Peeter Joot — peeter.joot@gmail.com
Sept 5, 2009 RCS f ile : maxwellLagRot, v Last Revision : 1.4 Date : 2009/07/0803 : 38 : 33

1. Maxwell Lagrangian, rotation of coordinates.

The Maxwell Lagrangian, as well as being the one of interest for the energy momentum tensor,
is also invariant to coordinate system rotation. We may write that Lagrangian density as

L =
ε0

2
〈
(∇∧ A)2〉 − 1

c
A · J (1)

Or in coordinate form as

L = −ε0

2
∂µ Aν(∂µ Aν − ∂ν Aµ)− 1

c
Aα Jα (2)

To (1), we can apply a rotation of coordinates to both the gradient ∇ → R̃∇R, and the field
A→ R̃AR. We have

L′ = ε0

8

〈
((R̃

→
∇R)(R̃AR)− (R̃AR)(R̃

←
∇R))2

〉
− 1

c
〈
(R̃AR)(R̃JR)

〉
(3)

Employing cyclic commutation 〈abc〉 = 〈cab〉, and R̃R = 1, we have L′ = L, and this La-
grangian therefore has a conserved current specified by (??).

From (2) we can calculate (the canonical field momentum?) ∂L/∂(∂µ Aν), and get

γν
∂L

∂(∂µ Aν)
= −ε0γνFµν (4)

This can be written in terms of the total field F = ∇∧ A, after observing

γµ · F = γµ · (γα ∧ γν∂α Aν)
= (γνδµ

α − γαδµ
ν)∂α Aν

= γνFµν

This leaves us so far with the Noether current conservation of

0 = −ε0∂µ

(
(γµ · F) · ∂A′

∂θ

∣∣∣∣
θ=0

)
(5)

1



The specifics of the Lorentz transformation used in the coordinate transformation weren’t re-
quired to get this far, but if we assume a singly parametrized rotation or boost we can use an
exponential representation for the rotation

R = eiθ/2 (6)
A′ = R̃AR (7)

The change of the field variable A′ with respect to theta (a rotation angle or boost rapidity) is
then

dA′

dθ
=

dR̃
dθ

AR + R̃A
dR
dθ

=
dR̃
dθ

RA′ + A′RR̃
dR
dθ

=
1
2

(
−iA′ + A′i

)

But this is just a vector-bivector dot product

dA′

dθ
= A′ · i (8)

Evaluating at θ = 0 we have just A · i, and we are left with the conservation statement

0 = ∂σ ((γσ · F) · (A · i)) (9)

As a scalar we can write this multiple dot product explicitly using scalar selection, and factor
out the bivector i

∂σ ((γσ · F) · (A · i)) = ∂σ〈(γσ · F) · (A · i)〉

=
1
2

∂σ〈(γσ · F)(Ai− iA)〉

=
1
2

∂σ〈((γσ · F)A− A(γσ · F))i〉

This leaves us with a bivector conservation statement

0 = (∂σ(γσ · F) ∧ A) · i (10)

If this is zero for all spatial and spacetime planes i we must then have

0 = ∂σ ((γσ · F) ∧ A) (11)
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Can we factor out the γσ from this leaving some function of F, and A? Borrowing an identity
from ([1]) (eqn 1.14), we have

(γσ · F) ∧ A = γσ · (A ∧ F)− (γσ · A)F (12)

This allows us to write the conservation current equation in coordinate free form

0 = ∂σ ((γσ · F) ∧ A)
= ∂σγσ · (A ∧ F)− ∂σ(γσ · A)F
= ∇ · (A ∧ F)− (∇ · A)F

In the second term the gradient acts both on A and F. Expanding and reordering for clarity

0 = ∇ · (A ∧ F)− F(∇ · A)− (A · ∇)F (13)

It looks like (13) can be further reduced.
FIXME... trying this I get:

(F · ∇) ∧ A = (∇ · F) ∧ A (14)

note that ∇ · F = J/ε0c, so we have J ∧ A on the right, but something much different seeming
on the left. Suspect that I got it wrong, but if I did get it right, this would be nothing more than
another way of expressing the EOF. END FIXME NOTE.

Let’s come back to that after first relating (11) to the canonical energy momentum tensor. Doing
so will allow us to name this quantity (or at least give it a symbol). To do so, note that this is really
six different conservation relationships since it must be separately true for each component of this
bivector. Dotting this with the unit bivectors γν ∧ γµ will provide an equivalent set of six tensor
equations. Those follow messily, but directly,

0 = ∂σ ((γσ · F) ∧ A) · (γν ∧ γµ)

= ∂σ(Fσα Aβ)(γα ∧ γβ) · (γν ∧ γµ)

= ∂σ(Fσµ Aν − Fσν Aµ)

The six conservation equations, one for each µ 6= ν, are thus

∂σFσµ Aν = ∂σFσν Aµ (15)

Jackson ([2]) labels, but does not name, these left and right side quantities

TD
µν ≡ ∂σFσµ Aν (16)
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and uses these to construct the symmetric energy momentum tensor from the canonical tensor
by subtraction. With this label we have as a consequence of rotation invariance of the Lagrangian
density

TD
µν = TD

νµ (17)

It isn’t at all obvious that this tensor should be symmetric, and it is in perhaps somewhat
strange since subtracting this from the canonical tensor produced the symmetric? A better read of
that difficult Jackson chapter is in order as well as a look for errors above.
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