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1. Motivation

Attempting the multiple spherical pendulum problem with a bivector parameterized Lagrangian
has just been attempted ([1]), but did not turn out to be an effective approach. Here a variation
is used, employing regular plain old scalar spherical angle parameterized Kinetic energy, but still
employing Geometric Algebra to express the Hermitian quadratic form associated with this en-
ergy term.

The same set of simplifying assumptions will be made. These are point masses, zero friction
at the pivots and rigid nonspringy massless connecting rods between the masses.

2. The Lagrangian.

A two particle spherical pendulum is depicted in figure (1)
The position vector for each particle can be expressed relative to the mass it is connected to (or

the origin for the first particle), as in

zk = zk−1 + e3lkejkθk (1)

jk = e3 ∧
(

e1eiφk
)

(2)

i = e1 ∧ e2 (3)
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Figure 1: Double spherical pendulum.

To express the Kinetic energy for any of the masses mk, we need the derivative of the incre-
mental difference in position

d
dt

(
e3ejkθk

)
= e3

(
jk θ̇kejkθk +

djk
dt

sin θk

)
= e3

(
jk θ̇kejkθk + e3e2φ̇keiφk sin θk

)
=
(

d
dt
[
θk φk

]) [ e1eiφk ejkθk

e2eiφk sin θk

]
Introducing a Hermitian conjugation A† = ÃT, reversing and transposing the matrix, and

writing

Ak =
[

e1eiφk ejkθk

e2eiφk sin θk

]
(4)

Θk =
[

θk
φk

]
(5)

We can now write the relative velocity differential as

(żk − żk−1)2 = l2
k Θ̇

†
k Ak A†

k Θ̇k (6)
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Observe that the inner product is Hermitian under this definition since (Ak A†
k)

† = Ak A†
k . 1

The total (squared) velocity of the kth particle is then

Θ =


Θ1
Θ2
...

ΘN

 (7)

Bk =


l1A1
l2A2

...
lk Ak

0

 (8)

(żk)2 = Θ̇
†BkB†

k Θ̇ (9)

(where the zero matrix in Bk is a N − k by one zero). Summing over all masses and adding in
the potential energy we have for the Lagrangian of the system

K =
1
2

N

∑
k=1

mkΘ̇
†BkB†

k Θ̇ (10)

µk =
N

∑
j=k

mj (11)

Φ = g
N

∑
k=1

µklk cos θk (12)

L = K −Φ (13)

There’s a few layers of equations involved and we still have an unholy mess of matrix and
geometric algebra in the kernel of the kinetic energy quadratic form, but at least this time all the
generalized coordinates of the system are scalars.

3. Some tidy up.

Before continuing with evaluation of the Euler-Lagrange equations it is helpful to make a cou-
ple of observations about the structure of the matrix products that make up our velocity quadratic
forms

Θ̇
†BkB†

k Θ̇ = Θ̇
†




l2
1 A1A†

1 l1l2A1A†
2 . . . l1lk A1A†

k
l2l1A2A†

1 l2
2 A2A†

2 . . . l2lk A2A†
k

...
lkl1Ak A†

1 lkl2Ak A†
2 . . . l2

k Ak A†
k

 0

0 0

 Θ̇ (14)

1Realized later, and being too lazy to adjust everything in these notes, the use of reversion here is not neccessary.
Since the generalized coordinates are scalars we could use transposition instead of Hermitian conjugation. All the
matrix elements are vectors so reversal doesn’t change anything.
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Specifically, consider the Aa A†
b products that make up the elements of the matrices Qk = BkB†

k .
Without knowing anything about the grades that make up the elements of Qk, since it is Hermitian
(by this definition of Hermitian) there can be no elements of grade order two or three in the final
matrix. This is because reversion of such grades inverts the sign, and the matrix elements in Qk all
equal their reverse. Additionally, the elements of the multivector column matrices Ak are vectors,
so in the product Aa A†

b we can only have scalar and bivector (grade two) elements. The resulting
one by one scalar matrix is a sum over all the mixed angular velocities θ̇a θ̇b, θ̇aφ̇b, and φ̇aφ̇b, so
once this summation is complete any bivector grades of Aa A†

b must cancel out. This is consistent
with the expectation that we have a one by one scalar matrix result out of this in the end (i.e.
a number). The end result is a freedom to exploit the convienence of explicitly using a scalar
selection operator that filters out any vector, bivector, and trivector grades in the products Aa A†

b .
We will get the same result if we write

Θ̇
†BkB†

k Θ̇ = Θ̇
†




l2
1

〈
A1A†

1

〉
l1l2
〈

A1A†
2
〉

. . . l1lk
〈

A1A†
k

〉
l2l1
〈

A2A†
1

〉
l2
2
〈

A2A†
2
〉

. . . l2lk
〈

A2A†
k

〉
...

lkl1
〈

Ak A†
1

〉
lkl2
〈

Ak A†
2
〉

. . . l2
k

〈
Ak A†

k

〉
 0

0 0

 Θ̇ (15)

Pulling in the summation over mk we have

∑
k

mkΘ̇
†BkB†

k Θ̇ = Θ̇
†[

µmax(r,c)lrlc
〈

Ar A†
c
〉]

rcΘ̇ (16)

It appears justifiable to lable the µmax(r,c)lrlc factors of the angular velocity matrices as moments
of inertia in a generalized sense. Using this block matrix form, and scalar selection, we can now
write the Lagrangian in a slightly tidier form

µk =
N

∑
j=k

mj (17)

Q =
[
µmax(r,c)lrlc Ar A†

c
]

rc (18)

K =
1
2

Θ̇
†QΘ̇ =

1
2

Θ̇
T〈Q〉Θ̇ (19)

Φ = g
N

∑
k=1

µklk cos θk (20)

L = K −Φ (21)

After some expansion, writing Sθ = sin θ, Cφ = cos φ and so forth, one can find that the scalar
parts of the block matrixes Ar A†

c contained in Q are

〈
Ar A†

c

〉
=
[

Cφc−φr Cθr Cθc + Sθr Sθc −Sφc−φr Cθr Sθc

Sφc−φr Cθc Sθr Cφc−φr Sθr Sθc

]
(22)

The diagonal blocks are particularily simple and have no φ dependence
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〈
Ar A†

r

〉
=
[

1 0
0 sin2 θr

]
(23)

Observe also that
〈

Ar A†
c
〉T =

〈
Ac A†

r
〉

, so the scalar matrix

〈Q〉 =
[
µmax(r,c)lrlc

〈
Ar A†

c
〉]

rc (24)

is a real symmetric matrix. We have the option of using this explicit scalar expansion if desired
for further computations associated with this problem. That completely eliminates the Geometric
algebra from the problem, and is probably a logical way to formulate things for numerical work
since one can then exploit any pre existing matrix algebra system without having to create one
that understands non-commuting variables and vector products.

4. Evaluating the Euler-Lagrange equations.

For the acceleration terms of the Euler-Lagrange equations our computation reduces nicely to
a function of only 〈Q〉

d
dt

∂L
∂θ̇a

=
1
2

d
dt

(
∂Θ̇

∂θ̇a

T

〈Q〉Θ̇ + Θ̇
T〈Q〉 ∂Θ̇

∂θ̇a

)

=
d
dt
([

δac
[
1 0

]]
c〈Q〉Θ̇

)
and

d
dt

∂L
∂φ̇a

=
1
2

d
dt

(
∂Θ̇

∂φ̇a

T

〈Q〉Θ̇ + Θ̇
T〈Q〉 ∂Θ̇

∂φ̇a

)

=
d
dt
([

δac
[
0 1

]]
c〈Q〉Θ̇

)
The last groupings above made use of 〈Q〉 = 〈Q〉T, and in particular (〈Q〉 + 〈Q〉T)/2 = 〈Q〉.

We can now form a column matrix putting all the angular velocity gradient in a tidy block matrix
representation

∇Θ̇L =

[[
∂L
∂θ̇r
∂L
∂φ̇r

]]
r

= 〈Q〉Θ̇ (25)

A small aside on Hamiltonian form. This velocity gradient is also the conjugate momentum
of the Hamiltonian, so if we wish to express the Hamiltonian in terms of conjugate momenta, we
require invertability of 〈Q〉 at the point in time that we evaluate things. Writing

PΘ = ∇Θ̇L (26)
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and noting that (〈Q〉−1)T = 〈Q〉−1, we get for the kinetic energy portion of the Hamiltonian

K =
1
2

PΘ
T〈Q〉−1PΘ (27)

Now, the invertability of 〈Q〉 cannot be taken for granted. Even in the single particle case we
do not have invertability. For the single particle case we have

〈Q〉 = ml2
[

1 0
0 sin2 θ

]
(28)

so at θ = ±π/2 this quadratic form is singlular, and the planar angular momentum becomes
a constant of motion.

Returning to the evaluation of the Euler-Lagrange equations, the problem is now reduced to
calculating the right hand side of the following system

d
dt
(
〈Q〉Θ̇

)
=

[[
∂L
∂θr
∂L
∂φr

]]
r

(29)

With back substituition of 22, and 24 we have a complete non-multivector expansion of the left
hand side. For the right hand side taking the θa and φa derivatives respectively we get

∂L
∂θa

=
1
2

Θ̇
†
[
µmax(r,c)lrlc

〈
∂Ar
∂θa

A†
c + Ar

∂Ac
∂θa

†〉]
rc

Θ̇ − gµala sin θa (30)

∂L
∂φa

=
1
2

Θ̇
†
[
µmax(r,c)lrlc

〈
∂Ar
∂φa

A†
c + Ar

∂Ac
∂φa

†〉]
rc

Θ̇ (31)

So to procede we must consider the
〈

Ar A†
c
〉

partials. A bit of thought shows that the matrices
of partials above are mostly zeros. Illustrating by example, consider ∂〈Q〉/∂θ2, which in block
matrix form is

∂〈Q〉
∂θ2

=



0 1
2 µ2l1l2

〈
A1

∂A2
∂θ2

†〉
0 . . . 0

1
2 µ2l2l1

〈
∂A2
∂θ2

A†
1

〉
1
2 µ2l2l2

〈
A2

∂A2
∂θ2

†
+ ∂A2

∂θ2
A†

2

〉
1
2 µ3l2l3

〈
∂A2
∂θ2

A†
3

〉
. . . 1

2 µN l2lN

〈
∂A2
∂θ2

A†
N

〉
0 1

2 µ3l3l2
〈

A3
∂A2
∂θ2

†〉
0 . . . 0

0
... 0 . . . 0

0 1
2 µN lN l2

〈
AN

∂A2
∂θ2

†〉
0 . . . 0


(32)

Observe that the diagonal term has a scalar plus its reverse, so we can drop the one half factor
and one of the summands for a total contribution to ∂L/∂θ2 of just
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µ2l22Θ̇
T
2

〈
∂A2

∂θ2
A†

2

〉
Θ̇2

Now consider one of the pairs of off diagonal terms. Adding these we contributions to ∂L/∂θ2
of

1
2

µ2l1l2Θ̇
T
1

〈
A1

∂A2

∂θ2

†
〉

Θ̇2 +
1
2

µ2l2l1Θ̇
T
2

〈
∂A2

∂θ2
A†

1

〉
Θ̇1 =

1
2

µ2l1l2Θ̇
T
1

〈
A1

∂A2

∂θ2

†

+ A1
∂A2

∂θ2

†
〉

Θ̇2

= µ2l1l2Θ̇
T
1

〈
A1

∂A2

∂θ2

†
〉

Θ̇2

This has exactly the same form as the diagonal term, so summing over all terms we get for the
position gradient components of the Euler-Lagrange equation just

∂L
∂θa

= ∑
k

µmax(k,a)lklaΘ̇
T
k

〈
Ak

∂Aa

∂θa

†
〉

Θ̇a − gµala sin θa (33)

∂L
∂φa

= ∑
k

µmax(k,a)lklaΘ̇
T
k

〈
Ak

∂Aa

∂φa

†
〉

Θ̇a (34)

The only thing that remains to do is evaluate the
〈

Ak∂Aa/∂φa
†
〉

matrixes.
It should be possible but it is tedious to calculate the block matrix derivative terms from the

Aa partials using

∂Aa

∂θa
=
[
−e3ejaθa

e2eiφa Cθa

]
(35)

∂Aa

∂φa
=
[

e2eiφa Cθa

−e1eiφa Sθa

]
(36)

However multiplying this out and reducing is a bit tedious and would be a better job for a
symbolic algebra package. With 22 available to use, one gets easily

〈
Ak

∂Ac

∂θc

†
〉

=
[
−Cφa−φk Cθk Sθa + Sθk Cθa −Sφa−φk Cθk Cθa

−Sφa−φk Sθa Sθk Cφa−φk(1 + δka)Sθk Cθa

]
(37)

〈
Ak

∂Aa

∂φa

†
〉

=
[
−Sφa−φk Cθk Cθa + Sθk Sθa −Cφa−φk Cθk Sθa

Cφa−φk Cθa Sθk −Sφa−φk Sθk Sθa

]
(38)

7



The right hand side of the Euler-Lagrange equations now becomes

∇ΘL = ∑
k

µmax(k,r)lklrΘ̇
T
k

〈
Ak

∂Ar
∂θr

†〉
Θ̇r

µmax(k,r)lklrΘ̇
T
k

〈
Ak

∂Ar
∂φr

†〉
Θ̇r


r

− g
[

µrlr sin θr

[
1
0

]]
r

(39)

Can the Θ̇a matrices be factored out, perhaps allowing for expression as a function of Θ̇? How
to do that if it is possible is not obvious. The driving reason to do so would be to put things into
a tidy form where things are a function of the system angular velocity vector Θ, but this is not
possible anyways since the gradient is non-linear.

5. Hamiltonian form and linearization.

Having calculated the Hamiltonian equations for the multiple mass planar pendulum in [2],
doing so for the spherical pendulum can now be done by inspection. With the introduction of a
phase space vector for the system using the conjugate momenta (for angles where these conjugate
momenta are non-singlular)

z =
[

PΘ

Θ

]
(40)

we can write the Hamiltonian equations

dz
dt

=
[

∇ΘL
〈Q〉−1PΘ

]
(41)

The position gradient is given explicitly in 39, and that can be substituted here. That gradient
is expressed in terms of Θ̇k and not the conjugate momenta, but the mapping required to express
the whole system in terms of the conjugate momenta is simple enough

Θ̇k =
[
δkc I22

]
c〈Q〉

−1PΘ (42)

It is apparent that for any sort of numerical treatment use of a angular momentum and angular
position phase space vector is not prudent. If the aim is nothing more than working with a first
order system instead of second order, then we are probably better off with an angular velocity
plus angular position phase space system.

d
dt

[
〈Q〉Θ̇

Θ

]
=
[
∇ΘL

Θ̇

]
(43)

This eliminates the requirement for inverting the sometimes singular matrix 〈Q〉, but one is
still left with something that is perhaps tricky to work with since we have the possibility of zeros
on the left hand side. The resulting equation is of the form

Mx′ = f (x) (44)
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where M =
[
〈Q〉 0

0 I

]
is a possibly singular matrix, and f is a non-linear function of the com-

ponents of Θ, and Θ̇. This is concievably linearizable in the neighbourhood of a particular phase
space point x0. If that is done, resulting in an equation of the form

My′ = f (x0) + By (45)

where x = y + x0 and B is an appropriate matrix of partials (the specifics of which don’t really
have to be spelled out here). Because of the possible singularities of M the exponentiation tech-
niques applied to the linearized planar pendulum may not be possible with such a linearization.
Study of this less well formed system of LDEs probably has interesting aspects, but is also likely
best tackled independently of the specifics of the spherical pendulum problem.

5.1. Thoughts about the Hamiltonian singularity.

The fact that the Hamiltonian goes singular on the horizontal in this spherical polar repre-
sentation is actually what I think is the most interesting bit in the problem (the rest being a lot
mechanical details). On the horizontal φ = 0 or φ̇ = 37000 radians/sec makes no difference to
the dynamics. All you can say is that the horizontal plane angular momentum is a constant of
the system. It seems very much like the increasing uncertaintly that you get in the corresponding
radial QM equation. Once you start pinning down the θ angle, you loose the ability to say much
about φ.

It is also kind of curious how the energy of the system is never ill defined but a choice of a par-
ticular orientation to use as a reference for observations of the momenta introduces the singularity
as the system approaches the horizontal in that reference frame.

Perhaps there are some deeper connections relating these classical and QM similarity. Would
learning about symplectic flows and phase space volume invariance shed some light on this?

6. A summary.

A fair amount of notation was introduced along the way in the process of formulating the
spherical pendulum equations. It is worthwhile to do a final consise summary of notation and
results before moving on for future reference.

The positions of the masses are given by

zk = zk−1 + e3lkejkθk (46)

jk = e3 ∧
(

e1eiφk
)

(47)

i = e1 ∧ e2 (48)

With the introduction of a column vector of vectors (where we multiply matrices using the
Geometric vector product),

Θk =
[

θk
φk

]
(49)
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Θ =
[
Θ1 Θ2 . . . ΘN

]T (50)

and a matrix of velocity components (with matrix multiplication of the vector elements using
the Geometric vector product), we can form the Lagrangian

Ak =
[

e1eiφk ejkθk

e2eiφk Sθk

]
(51)

µk =
N

∑
j=k

mj (52)

〈Q〉 =
[
µmax(r,c)lrlc

〈
Ar AT

c
〉]

rc (53)

K =
1
2

Θ̇
T〈Q〉Θ̇ (54)

Φ = g
N

∑
k=1

µklkCθk (55)

L = K −Φ (56)

An explicit scalar matrix evaluation of the (symmetric) block matrix components of 〈Q〉 was
evaluated and found to be

〈
Ar AT

c

〉
=
[

Cφc−φr Cθr Cθc + Sθr Sθc −Sφc−φr Cθr Sθc

Sφc−φr Cθc Sθr Cφc−φr Sθr Sθc

]
(57)

These can be used if explicit evaluation of the Kinetic energy is desired, avoiding redundant
summation over the pairs of skew entries in the quadratic form matrix 〈Q〉

K =
1
2 ∑

k
µkl2

k Θ̇
T
k

〈
Ak AT

k

〉
Θ̇k + ∑

r<c
µmax(r,c)lrlcΘ̇

T
r

〈
Ar AT

c

〉
Θ̇c (58)

We utilize angular position and velocity gradients

∇Θk =

[
∂

∂θk
∂

∂φk

]
(59)

∇Θ̇k
=

[
∂

∂θ̇k
∂

∂φ̇k

]
(60)

∇Θ =
[
∇T

Θ1
∇T

Θ2
. . . ∇T

ΘN

]T
(61)

∇Θ̇ =
[
∇Θ̇1

T ∇Θ̇2

T . . . ∇Θ̇N
T
]T

(62)

and use these to form the Euler-Lagrange equations for the system in column vector form

d
dt
∇Θ̇L = ∇ΘL (63)
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For the canonical momenta we found the simple result

∇Θ̇L = 〈Q〉Θ̇ (64)

For the position gradient portion of the Euler-Lagrange equations 63 we found in block matrix
form

∇ΘL = ∑
k

µmax(k,r)lklrΘ̇
T
k

〈
Ak

∂Ar
∂θr

†〉
Θ̇r

µmax(k,r)lklrΘ̇
T
k

〈
Ak

∂Ar
∂φr

†〉
Θ̇r


r

− g
[

µrlrSθr

[
1
0

]]
r

(65)

〈
Ak

∂Ac

∂θc

†
〉

=
[
−Cφa−φk Cθk Sθa + Sθk Cθa −Sφa−φk Cθk Cθa

−Sφa−φk Sθa Sθk Cφa−φk(1 + δka)Sθk Cθa

]
(66)

〈
Ak

∂Aa

∂φa

†
〉

=
[
−Sφa−φk Cθk Cθa + Sθk Sθa −Cφa−φk Cθk Sθa

Cφa−φk Cθa Sθk −Sφa−φk Sθk Sθa

]
(67)

A set of Hamiltonian equations for the system could also be formed. However, this requires
that one somehow restrict attention to the subset of phase space where the canonical momenta
matrix 〈Q〉 is non-singular, something not generally possible.
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