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1 Motivation.
The book [Doran and Lasenby(2003)] uses Geometric Calculus heavily in its La-
grangian treatment. In particular it is used in some incomprehensible seeming ways
in the stress energy tensor treatment.
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In the treatment of transformation of the dependent variables (not the field variables
themselves) of field Lagrangians, there is one bit that appears to be the first order lin-
ear term from a multivariable Taylor series expansion. Play with multivariable Taylor
series here a bit to develop some intuition with it.

2 Single variable case, and generalization of it.
For the single variable case, Taylor series takes the form

f (x) =
∑ xk

k!
dk f (x)

dxk

∣∣∣∣∣∣
x=0

(1)

or

f (x0 + ε) =
∑ εk

k!
dk f (x)

dxk

∣∣∣∣∣∣
x=x0

(2)

As pointed out in [Byron and Fuller(1992)], this can (as they demonstrated for
polynomials) be put into exponential operator form

f (x0 + ε) = eεd/dx f (x)
∣∣∣∣
x=x0

(3)

Without proof, the multivector generalization of this is

f (x0 + ε) = eε·∇ f (x)
∣∣∣
x=x0

(4)

Or in full,

f (x0 + ε) =
∑ 1

k!
(ε · ∇)k f (x)

∣∣∣
x=x0

(5)

Let’s work with this, and develop some comfort with what it means, then revisit the
proof.

3 Directional Derivatives.
First a definition of directional derivative is required.

In standard two variable vector calculus the directional derivative is defined in one
of the following ways

∇u f (x, y) = lim
h→0

f (x + ah, y + bh) − f (x, y)
h

(6)

u = (a, b) (7)

2

http://tutorial.math.lamar.edu/Classes/CalcIII/DirectionalDeriv.aspx


Or in a more general vector form as

∇u f (x) = lim
h→0

f (x + hu) − f (x)
h

(8)

Or in terms of the gradient as

∇u f (x) =
u
|u|
·∇ f (9)

Each of these was for a vector parametrized scalar function, although the wikipedia
article does mention a vector valued form that is identical to that use by [Doran and
Lasenby(2003)]. Specifically, that is

(ε · ∇) f (x) = lim
h→0

f (x + hε) − f (x)
h

(10)

=
∂ f (x + hε)
∂h

∣∣∣∣∣∣
h=0

(11)

Observe that this definition as a limit avoids the requirement to define the gradient
upfront. That definition is not necessarily obvious especially for multivector valued
functions.

4 Work some examples.

4.1 First order linear vector polynomial.
Let

f (x) = a + x

For this simplest of vector valued vector parametrized functions we have

∂ f (x + hε)
∂h

=
∂

∂h
(a + x + hε)

= ε
= (ε · ∇) f

with no requirement to evaluate at h = 0 to complete the directional derivative
computation.

The Taylor series expansion about 0 is thus

f (ε) = (ε · ∇)0 f
∣∣∣
x=0 + (ε · ∇)1 f

∣∣∣
x=0

= a + ε

Nothing else could be expected.
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4.2 Second order vector parametrized multivector polynomial.
Now, step up the complexity slightly, and introduce a multivector valued second degree
polynomial, say,

f (x) = α+ a + xy + wx + cx2 + dxe + xgx (12)

Here α is a scalar, and all the other variables are vectors, so we have grades ≤ 3.
For the first order partial we have

∂ f (x + hε)
∂h

=
∂

∂h
(α+ a + (x + hε)y + w(x + hε) + c(x + hε)2 + d(x + hε)e + (x + hε)g(x + hε))

= εy + wε + cε(x + hε) + c(x + hε)ε + cε + dεe + εg(x + hε) + (x + hε)gε

Evaluation at h = 0 we have

(ε · ∇) f = εy + wε + cεx + cxε + cε + dεe + εgx + xgε

By inspection we have

(ε · ∇)2 f = +2cε2 + 2εgε

Combining things forming the Taylor series expansion about the origin we should
recover our function

f (ε) =
1
0!

(ε · ∇)0 f
∣∣∣
x=0 +

1
1!

(ε · ∇)1 f
∣∣∣
x=0 +

1
2

(ε · ∇)2 f
∣∣∣
x=0

=
1
1
(α+ a) +

1
1
(εy + wε + cε + dεe) +

1
2
(2cε2 + 2εgε)

= α+ a + εy + wε + cε + dεe + cε2 + εgε

This should match 12, with an x = ε substitution, and does. With the vector factors
in these functions commutativity assumptions could not be made. These calculations
help provide a small verification that this form of Taylor series does in fact work out
fine with such non-commutative variables.

Observe as well that there was really no requirement in this example that x or any
of the other factors to be vectors. If they were all bivectors or trivectors or some mix
the calculations would have had the same results.
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5 Proof of the multivector Taylor expansion.
A peek back into [Hestenes(1999)] shows that 5 was in fact proved, but it was done in
a very sneaky and clever way. Rather than try to prove treat the multivector parameters
explicitly, the following scalar parametrized hybrid function was created

G(τ) = F(x0 + τa) (13)

The scalar parametrized function G(τ) can be Taylor expanded about the origin,
and then evaluated at 1 resulting in 5 in terms of powers of (a · ∇). I won’t reproduce
or try to enhance that proof for myself here since it is actually quite clear in the text.
Obviously the trick is non-intuitive enough that when thinking about how to prove this
myself it didn’t occur to me.

6 Explicit expansion for a scalar function.
Now, despite the a · ∇ notation being unfamiliar seeming, the end result isn’t. Explicit
expansion of this for a vector to scalar mapping will show this. In fact this will also
account for the Hessian matrix, as in

y = f (x + ∆x) ≈ f (x) + J(x)∆x +
1
2

∆xTH(x)∆x

providing not only the background on where this comes from, but also the so often
omitted third order and higher generalizations (most often referred to as · · · ). Poking
around a bit I see that the wikipedia Taylor Series does explicitly define the higher
order case, but if I’d seen that before the connection to the Hessian wasn’t obvious.

6.1 Two variable case.
Rather than start with the general case, the expansion of the first few powers of (a ·∇) f
for the two variable case is enough to show the pattern. How to further generalize this
scalar function case will be clear from inspection.

Starting with the first order term, writing a = (a, b) we have

(a ·∇) f (x, y) =
∂

∂τ
f (x + aτ, y + bτ)

∣∣∣∣∣
τ=0

=
(
∂

∂x + aτ
f (x + aτ, y + bτ)

∂(x + aτ)
∂τ

)∣∣∣∣∣∣
τ=0

+
(
∂

∂y + bτ
f (x + aτ, y + bτ)

∂(y + bτ)
∂τ

)∣∣∣∣∣∣
τ=0

= a
∂ f
∂x

+ b
∂ f
∂y

= a · (∇ f )
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For the second derivative operation we have

(a ·∇)2 f (x, y) = (a ·∇) ((a ·∇) f (x, y))

= (a ·∇)
(
a
∂ f
∂x

+ b
∂ f
∂y

)
=
∂

∂τ

(
a
∂ f
∂x

(x + aτ, y + bτ) + b
∂ f
∂y

(x + aτ, y + bτ)
)∣∣∣∣∣∣
τ=0

Especially if one makes a temporary substitution of the partials for some other
named variables, it is clear this follows as before, and one gets

(a ·∇)2 f (x, y) = a2 ∂
2 f
∂x2 + ba

∂2 f
∂y∂x

+ ab
∂2 f
∂x∂y

+ b2 ∂
2 f
∂y2

Similarly the third order derivative operator gives us

(a ·∇)3 f (x, y) = aaa
∂

∂x
∂

∂x
∂

∂x
f + aba

∂

∂x
∂

∂y
∂

∂x
f

+ aab
∂

∂x
∂

∂y
∂

∂x
f + abb

∂

∂x
∂

∂y
∂

∂y
f

+ baa
∂

∂y
∂

∂x
∂

∂x
f + bba

∂

∂y
∂

∂y
∂

∂x
f

+ bab
∂

∂y
∂

∂y
∂

∂x
f + bbb

∂

∂y
∂

∂y
∂

∂y
f

= a3 ∂
3 f
∂x3 + 3a2b

∂2

∂x2
∂ f
∂y

+ 3ab2 ∂

∂x
∂2 f
∂y2 + b3 ∂

3 f
∂y3

We no longer have the notational nicety of being able to use the gradient notation
as was done for the first derivative term. For the first and second order derivative
operations, one has the option of using the gradient and Hessian matrix notations

(a ·∇) f (x, y) = aT
[

fx
fy

]
(14)

(a ·∇)2 f (x, y) = aT
[

fxx fxy
fyx fyy

]
a (15)

But this won’t be helpful past the second derivative.
Additionally, if we continue to restrict oneself to the two variable case, it is clear

that we have
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(a ·∇)n f (x, y) =
n∑

k=0

(
n
k

)
an−kbk

(
∂

∂x

)n−k (
∂

∂y

)k

f (x, y) (16)

But it is also clear that if we switch to more than two variables, a binomial series
expansion of derivative powers in this fashion will no longer work. For example for
three (or more) variables, writing for example a = (a1, a2, a3), we have

(a ·∇) f (x) =
∑

i

(
ai
∂

∂xi

)
f (x) (17)

(a ·∇)2 f (x) =
∑

i j

(
ai
∂

∂xi

) (
a j
∂

∂x j

)
f (x) (18)

(a ·∇)3 f (x) =
∑
i jk

(
ai
∂

∂xi

) (
a j
∂

∂x j

) (
ak
∂

∂xk

)
f (x) (19)

If the partials are all collected into a single indexed object, one really has a tensor.
For the first and second orders we can represent this tensor in matrix form (as the
gradient and Hessian respectively)

7 Gradient with non-Euclidean basis.
The directional derivative has been calculated above for a scalar function. There is
nothing intrinsic to that argument that requires an orthonormal basis.

Suppose we have a basis {γµ}, and a reciprocal frame {γµ}. Let

x = xµγµ = xµγµ

a = aµγµ = aµγµ

The first order directional derivative is then

(a · ∇) f (x) =
∂ f
∂τ

(x + τa)
∣∣∣∣∣
τ=0

This is

(a · ∇) f (x) =
∑
µ

aµ
∂ f
∂xµ

(x) (20)

Now, we are used to ∇ as a standalone object, and want that operator defined such
that we can also write 20 as

a · (∇ f (x)) = (aµγµ) · (∇ f (x))
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Comparing these we see that our partials in 20 do the job provided that we form the
vector operator

∇ =
∑
µ

γµ
∂

∂xµ
(21)

The text [Doran and Lasenby(2003)] defines ∇ in this fashion, but has no logical
motivation of this idea. One sees quickly enough that this definition works, and is the
required form, but building up to the construction in a way that builds on previously
established ideas is still desirable. We see here that this reciprocal frame definition of
the gradient follows inevitably from the definition of the directional derivative. Addi-
tionally this is a definition with how the directional derivative is defined in a standard
Euclidean space with an orthonormal basis.

8 Work out Gradient for a few specific multivector
spaces.

The directional derivative result expressed in 20 holds for arbitrarily parameterized
multivector spaces, and the image space can also be a generalized one. However, the
corresponding result 21 for the gradient itself is good only when the parameters are
vectors. These vector parameters may be non-orthonormal, and the function this is
applied to doesn’t have to be a scalar function.

If we switch to functions parameterized by multivector spaces the vector dot gradi-
ent notation also becomes misleading. The natural generalization of the Taylor expan-
sion for such a function, instead of 4, or 5 should instead be

f (x0 + ε) = e〈ε∇〉 f (x)
∣∣∣
x=x0

(22)

Or in full,

f (x0 + ε) =
∑ 1

k!
〈ε∇〉k f (x)

∣∣∣
x=x0

(23)

One could alternately express this in a notationally less different form using the
scalar product operator instead of grade selection, if one writes

ε∗∇ ≡ 〈ε∇〉

However, regardless of the notation used, the fundamental definition is still going
to be the same (and the same as in the vector case), which operationally is

ε∗∇ f (x) = 〈ε∇〉 f (x) =
∂ f (x + hε)
∂h

∣∣∣∣∣∣
h=0
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8.1 Complex numbers
The simplest grade mixed multivector space is that of the complex numbers. Let’s write
out the directional derivative and gradient in this space explicitly.

Writing

z0 = u + iv

z = x + iy

So we have

〈z0∇〉 f (z) = u
∂ f
∂x

+ v
∂ f
∂y

= u
∂ f
∂x

+ iv
1
i
∂ f
∂y

=
〈
z0

(
∂

∂x
+

1
i
∂

∂y

)〉
f (z)

and we can therefore identify the gradient operator as

∇0,2 =
∂

∂x
+

1
i
∂

∂y

Observe the similarity here between the vector gradient for a 2D Euclidian space,
where we can form complex numbers by (left) factoring out a unit vector, as in

x = e1x + e2y

= e1(x + e1e2y)
= e1(x + iy)
= e1z

It appears that we can form this complex gradient, by (right) factoring out of the
same unit vector from the vector gradient

e1
∂

∂x
+ e2

∂

∂y
=

(
∂

∂x
+ e2e1

∂

∂y

)
e1

=
(
∂

∂x
+

1
i
∂

∂y

)
e1

= ∇0,2e1
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So, if we write ∇ as the R2 vector gradient, with x = e1x + e2y = e1z as above,
we have

∇x = ∇0,2e1e1z

= ∇0,2z

This is a rather curious equivalance between 2D vectors and complex numbers.

8.1.1 Comparison of contour integral and directional derivative Taylor series.

Having a complex gradient is not familiar from standard complex variable theory. Then
again, neither is a non-contour integral formulation of complex Taylor series. The
two of these ought to be equivalent, which seems to imply there is a contour integral
representation of the gradient in a complex number space too (one of the Hestenes
paper’s mentioned this but I didn’t understand the notation).

Let’s do an initial comparision of the two. We need a reminder of the contour
integral form of the complex derivative. For a function f (z) and its derivatives regular
in a neighbourhood of a point z0, we can evaluate

�
f (z)dz

(z − z0)k = −
1

k − 1

�
f (z)dz

(
1

(z − z0)k−1

)′
=

1
k − 1

�
f ′(z)dz

(
1

(z − z0)k−1

)
=

1
(k − 1)(k − 2)

�
f 2(z)dz

(
1

(z − z0)k−2

)
=

1
(k − 1)(k − 2) · · · (k − n)

�
f n(z)dz

(
1

(z − z0)k−n

)
=

1
(k − 1)(k − 2) · · · (1)

�
f k−1(z)dz

z − z0

=
2πi

(k − 1)!
f k−1(z0)

So we have

dk

dzk f (z)
∣∣∣∣∣∣
z0

=
k!

2πi

�
f (z)dz

(z − z0)k+1

Given this we now have a few alternate forms of complex taylor series
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f (z0 + ε) =
∑ 1

k!
〈ε∇〉k f (z)

∣∣∣
z=z0

=
∑ 1

k!
εk

dk

dzk f (z)
∣∣∣∣∣∣
z0

=
1

2πi

∑
εk
�

f (z)dz
(z − z0)k+1

Observe that the the 0, 2 subscript for the gradient has been dropped above (ie: this
is the complex gradient, not the vector form).

8.1.2 Complex gradient compared to the derivative.

A gradient operator has been identified by factoring it out of the directional derivative.
Let’s compare this to a plain old complex derivative.

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

In particular, evaluating this limit for z = z0 + h, approaching z0 along the x-axis,
we have

f ′(z0) = lim
z→z0

f (z) − f (z0)
z − z0

= lim
h→0

f (z0 + h) − f (z0)
h

=
∂ f
∂x

(z0)

Evaluating this limit for z = z0 + ih, approaching z0 along the y-axis, we have

f ′(z0) = lim
h→0

f (z0 + ih) − f (z0)
ih

= −i
∂ f
∂y

(z0)

We have the Cauchy equations by equating these, and if the derivative exists (ie:
independent of path) we require at least

∂ f
∂x

(z0) = −i
∂ f
∂y

(z0)
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Or

0 =
∂ f
∂x

(z0) + i
∂ f
∂y

(z0)

= ∇̃ f (z0)

Premultiplying by ∇ produces the harmonic equation

∇∇̃ f =
(
∂2

∂x2 +
∂2

∂y2

)
f

8.1.3 First order expansion around a point.

The above, while interesting or curious, doesn’t provide a way to express the differen-
tial operator directly in terms of the gradient.

We can write

〈ε∇〉 f (z)
∣∣∣
z0

=
ε

2πi

�
f (z)dz

(z − z0)2

= ε f ′(z0)

One can probably integrate this in some circumstances (perhaps when f(z) is regular
along the straight path from z0 to z = z0 + ε). If so, then we have

ε

∫ z

s=z0

f ′(s)ds =
∫ z

s=z0

〈ε∇〉 f (z)
∣∣∣
z=s ds

Or

f (z) = f (z0) +
∫ z

s=z0

1
ε
〈ε∇〉 f (z)

∣∣∣∣∣
z=s

ds

Is there any validity to doing this? The idea here is to play with some circumstances
where we could see where the multivector gradient may show up. Much more play is
required, some of which for discovery and the rest to do things more rigorously.

8.2 4D scalar plus bivector space
Suppose we form a scalar, bivector space by factoring out the unit time vector in a
Dirac vector representation

x = xµγµ

=
(
x0 + xkγkγ0

)
γ0

=
(
x0 + xkσk

)
γ0

= qγ0

12



This q has the structure of a quaternion-like object (scalar, plus bivector), but the
bivectors all have positive square. Our directional derivative, for multivector direction
Q = Q0 + Qkσk is

〈Q∇〉 f (q) = Q0 ∂ f
∂x0 +

∑
k

Qk ∂ f
∂xk

So, we can write

∇ =
∂

∂x0 +
∑

k

σk
∂

∂xk

We can do something similar for an Euclidian four vector space

x = xµeµ

=
(
x0 + xkeke0

)
e0

=
(
x0 + xkik

)
e0

= qe0

Here each of the bivectors ik have a negative square, much more quaternion-like
(and could easily be defined in an isomorphic fashion). This time we have

∇ =
∂

∂x0 +
∑

k

1
ik

∂

∂xk
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