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1 Motivation.

In [Joot(a)] a 4D fourier transform solution of Maxwell’s equation yielded a
Green'’s function of the form

ik, xH

G(x) = / / / / %dhdkzd@dh



To attempt to “evaluate” this integral, as done in [Joot(b)|] to produce the re-
tarded time potentials, a hypervolume equivalent to spherical polar coordinate
parameterization is probably desirable.

Before attempting to tackle the problem of interest, the basic question of
how to do volume and weighted volume integrals over a hyperspherical vol-
umes must be considered. Doing this for both Euclidean and Minkowski met-
rics will have to be covered.

2 Euclidean n-volume

2.1 Parameterizations.

The wikipedia article on n-volumes gives a parameterization, which I'll write
out explicitly for the first few dimensions

e 1-sphere (circle)

x! = rcos 1

x% = rsin 1

e 2-sphere (sphere)

x! = rcos P

x? = rsin ¢1 cos ¢o

X3 = rsin (Pl sin (Pz

o 3-sphere (hypersphere)

x! = rcos P

x? = rsin ¢1 cos ¢
x3 = rsin ¢1 sin ¢ cos ¢3
4

X* = rsin¢; sin ¢, sin ¢3

By inspection one can see that we have the desired 2 = ¥;(x?)? relation.
Each of these can be vectorized to produce a parameterized vector that can
trace out all the possible points on the volume

r= kak


http://en.wikipedia.org/wiki/Hypersphere

2.2 Volume elements.

We can form a parallelogram area (or parallopiped volume, ...) element for any
parameterized surface by taking wedge products, as in figure (I} This can also
be done for this spherical parameterization too.

Figure 1: Tangent vector along curves of parameterized vector.

For example for the circle we have

Jr  Or
dV]R2 = g N ?ﬁdrd¢1

= (aarr(cosgbl,singbl)) A (E)er(cos%,singbl)) drd¢
= (cos ¢y, sin¢gy) A (— sin ¢y, cos ¢1 )rdrdp;

= (COS2 10109 — sin? (]510'20'1)1’(11’(1(]51
= rdrd¢10107



And for the sphere
or dJr _ or
dV]RB = g A % A ?%drd¢1d¢2
= (cos ¢, sin ¢y cos ¢y, sin ¢y sin¢,)
A (— sin ¢y, cos ¢q cos ¢y, cos Py sin ¢ )
A (0, — sin ¢y sin ¢, sin ¢y cos o ) r2drdrde,

cos ¢ singycos¢y  singqsing,
= |—sin¢g; cos¢ycos¢P, cos P sing, rzdrdgbl dpr010203
0 —sing sing, sin¢q cos ¢

= T2d}’ sin ¢1d¢1d(]§20’10’203

And finally for the hypersphere

cos ¢ sin ¢ cos ¢y sin¢gy sin¢gp cos¢z  sin ¢ sin ¢y sin 3

Vs — | sing; cos¢pcosPy  cosPrsing,cosgsz  cos Py sin ¢ sin P3
R~ 0 —sin¢gpsing, sin¢gcosPycosgz  sin Py cos ¢y sin ¢P3
0 0 —sin¢ singy singz  sin ¢ sin ¢, cos ¢3

r3drd<p1 dpodp301020304

= 3drsin® P1d¢1 sin prdprdd3o 020304

Each of these is consistent with the result in the wiki page.

2.3 Some volume computations.

Let’s apply the above results to compute the corresponding n-volume’s.

e 1-sphere (circle)

R /2
V :4/ rdr/ d
RR2 A A $1
= tR?

e 2-sphere (sphere)

R /2 /2
Vrs = 8/ rzdr/ sinq>1d<p1/ d¢,
0 0 0

_olns w/2\ 7T
f83R ( cos ¢1 )2
_ 4nR®
3



Okay;, so far so good.
e 3-sphere (hypersphere)

/2

"R /2 /2
Virs = 16/ T3d1’/ sin? P1d¢y /O sin ¢od¢y /0 d¢s
JO JO . .

=27R* i sin? ¢yd
= A 1d¢1

= R4 (4)1 — cos ¢ sin4>1|g/2)
2R
2

This is also consistent with the formula supplied in the wiki article.

24 Range determination.

What I've done here though it integrate over only one of the quadrants, and
multiply by 2". This avoided the more tricky issue of what exact range of
angles is required for a complete and non-overlapping cover of the surface.

The wiki article says that the range is [0, 27| for the last angle and [0, 7] for
the others. Reevaluating the integrals above shows that this does work, but
that’s a bit of a cheat, and it isn’t obvious to me past IR® that this should be the
case.

How can this be rationalized?

e circle For the case of the circle what are the end points in each of the
quadrants? These are (with r = 1)

(cos ¢y, sin¢y)g,—0 = (1,0) =
(cos 1, 8in1)g,—r/2 = (0,1) =

(cos Py, siny)py=n = (— 1/0)
(cos ¢y, sing1) g, —37/2 = (0,—1) =

As expected, each of the 71/2 increments traces out the points in succes-
sive quadrants.

e sphere

Again with r = 1, some representitive points on the circle are



M o (cos ¢1, sin ¢y cos ¢y, singysings) | r

0 |0 (1,0,0) o

0 /2 | (1,0,0) o5}

0 T (1,0,0) 0

0 |3m/2|(1,0,0) o
/2|0 (0,1,0) 753
/2 | /2 | (0,0,1) 03
/2 | 7 (0,-1,0) —0y
/2 | 3n/2 | (0,0,—1) —03
T 0 (-1,0,0) -0
T /2 | (—1,0,0) -0
T T (-1,0,0) -0
T 37/2 | (—1,0,0) -0

The most informative of these is for ¢; = 77/2, where we had r = (0, cos ¢, sin ¢),
and our points trace out a path along the unit circle of the y, z plane. At

¢1 = 0 our point r = 07 didn’t move, and at ¢; = 77 we are at the other

end of the sphere, also fixed. A reasonable guess is that at each ¢; we

trace out a different circle in the y, z plane.

We can write, with 053 = 07 A 0 = 0903,

r = COS (107 + sin ¢ (cos Pr07 + sin Pr03)
= oS 107 + sin 107 (cos ¢y + sin ¢0203)

Or, in exponential form

r = oS 107 + sin 107 exp(023¢2) 1)

Put this way the effects of the parameterization is clear. For each fixed ¢4,
the exponential traces out a circle in the y, z plane, starting at the point
r = Ccos 107 + sin ¢p102. ¢y traces out a semi-circle in the x, y plane.

FIXME: picture.

This would have been easy enough to understand if starting from a pic-
ture and constructing the parameterization. Seeing what the geometry
is from the algebra requires a bit more (or different) work. Having done
it, are we now prepared to understand the geometry of the hypersphere
parameterization.

e hypersphere.

The vector form in the spherical case was convient for extracting geomet-
ric properties. Can we do that here too?



r = 079 €OS ¢1 + 07 sin ¢y cos Po + 03 sin g sin ¢y cos ¢3 + 04 sin P1 sin ¢y sin P3
= 07 COS 1 + 02 sin ¢y cos Pp + 03 sin Py sin Py (cos Pz + 034 sin ¢3)
= 07 COS 1 + 07 sin ¢y cos Py + 03 sin Pq sin P exp(034¢3)
= 07 CoS 1 + 07 sin ¢y (cos ¢ + 023 sin ¢y exp(034¢3))

Observe that if ¢3 = 0 we have
r = 0 cos 1 + 02 sin ¢y exp(023¢2)

Which is exactly the parameterization of a half sphere (¢, € [0, 7z]). Con-
trast this to the semi-circle that ¢; traced out in the spherical case.

In the spherical case, the points ¢; = 71/2 were nicely representitive. For
the hypersphere those points are

r = 0y COS P + 03 sin ¢ exp(034¢3)

We saw above that this is the parameterization of a sphere.

Also like the spherical case, we haver = oy at ¢y = 0, and ¢p; = 7
respectively.

The geometrical conclusion is that for each ¢; € [0, 71/2] range the points
r trace out increasingly larger spheres, and after that decreasing sized
spheres until we get to a point again at ¢; = 7.

3 Minkowski metric sphere.

3.1 2D hyperbola.

Our 1-sphere equation was all the points on the curve

2yt =12

The hyperbolic equivalent to this is



Although this is not a closed curve like the circle. To put this in a more
natural physical context, lets write (with ¢ = 1)

r = Yot + 1x

So the equation of the 1-hyperboliod becomes

We can parameterize this with complex angles i¢

r = r(yp cosh ¢ + 71 sinh ¢)

This gives us

12 = r?(cosh? ¢ — sinh? ¢) = r?

as desired. Like the circle, writing y9; = 7o A y1, an exponential form also
works nicely

r = rygexp(Yo1¢)

Here the square is

1 = r*yo exp(7019) 70 exp(Y019)
= r? exp(—7019)(710)* exp(019)

= r2exp(—701¢) exp(o19)

:1’2

Again as desired.

3.2 3D hyperbola.

Unlike the circle, a pure hyperbolic parameterization doesn’t work to construct
a Minkowski square signature. Consider for example

r = cosh ¢yo + 1 sinh ¢ cosh i 4 ¥, sinh ¢ sinh 3



Squaring this we have

12 = cosh? ¢ — sinh? ¢(cosh? ¢ + sinh? 1)

We’d get the desired result if we chop off the & in all the ¢ hyperbolic func-
tions. This shows that an appropriate parameterization is instead

r = cosh ¢yp + 1 sinh ¢ cos ¢ + 2 sinh ¢ sin P

This now squares to 1. To see how to extend this to higher dimensions (of
which we only need one more) we can factor out a ¥

r = yo(cosh ¢ — sinh ¢( o cos P + oy siny ))

spatial vector parameterization of circle

Now to extend this to three dimensions we have just to substuite the spher-
ical parameterization from [I]

r = r7yg(cosh ¢y — sinh ¢ (cos P10 + sin 102 exp(023¢2)))
= r(yp cosh ¢ + sinh ¢o(cos p1y1 + sin P17z exp(y3¢2)))

3.3 Summarizing the hyperbolic vector parameterizations.
Our parameterization in two, three, and four dimensions, respectively, are

ry = r(yp cosh ¢ + sinh ¢ppy1)
r3 = 1(70 cosh ¢ + sinh ¢oy1 exp(y21¢1))
4 = 1 (7o cosh ¢y + sinh ¢ (cos P11 + sin ¢y y2 exp(y32¢2)))

34 Volume elements.
What are our volume elements using this parameterization can be calulated as

above.

3.4.1 For one spatial dimension we have

cosh¢y sinh¢y
sinh¢y cosh ¢y

= rdrd¢yp

dVoyoy = rdrdeo



3.4.2 For two spatial dimensions we have

r3 = r(yp cosh ¢ + 1 sinh ¢ cos 1 + 2 sinh g sin ¢,)

The derivatives are

%L: = 7o cosh ¢y + 71 sinh ¢ cos ¢p1 + 2 sinh ¢g sin ¢;
10 .
P ﬁ = o sinh ¢y + 1 cosh ¢ cos ¢1 + 2 cosh ¢p sin ¢
1 or . . .
P ﬁ = —1 sinh ¢ sin ¢1 + 2 sinh ¢p cos ¢;
Or
8r3 .
W =70 cosh 470 +mM sinh 4)0 exp(’YZl (Pl)
10or .
+ a4, = 105inh g0 -+ cosh go exp(— 1) 71
1 8r3

PETa sinh ¢ y2 exp(721¢1)

Multiplying this out, discarding non-grade three terms we have

(710 sinh? g exp(12191) + Y01 cosh® pg exp(12191)) sinh poy2 exp(12191)
= 701 exp(Y21¢1) sinh ¢g exp(—72191) 72
= o1 sinh 72

This gives us

dV3 = r* sinh ¢odrdpode,

3.4.3 For three spatial dimensions we have

r4 = (v cosh ¢ + sinh ¢g(cos P11 + sin @12 exp(y32¢2)))

So our derivatives are

10



or . .
6774 = g cosh ¢ + sinh ¢p(cos 171 + sinp;y2 exp(yz2¢2))

1 or . .

p BT;:) = o sinh ¢ + cosh ¢ (cos ¢17y1 + sin P12 exp(y32¢2))
1 ory . .

- % = sinh ¢ (— sin ¢17y1 + cos p172 exp(r32¢2))

1 or ) .

=% = sinh ¢ sin ¢173 exp (13292

T E)qbz

In shorthand, writing C and S for the trig and hyperbolic functions as ap-
propriate, we have

Y0Co + SoC171 + SoS172 exp(r32¢2)
Y0S0 + CoC171 + CoS172 exp(732¢2)
—505171 + SoC172 exp(r3202)
S0S173 exp(v32¢2)

Multiplying these out and dropping terms that will not contribute grade
four bits is needed to calculate the volume element. The full product for the
first two derivatives is

Y0C070S0 + 10C0CoC171 + 10CoCoS172 exp(v32¢2)
+ 50C17170S0 + SoC171CoCi171 + SoC171CoS172 exp(y3292)
+ 505172 exp(73202)10S0 + S0S172 €xp(v32¢2) CoC1v1 + S0S172 exp(v3292) CoS172 exp(v3242)

We can discard the scalar terms:

70C07050 + S0C1711CoC171 + SoS172 exp(32¢2) CoS1 exp(—r32¢2) 72
Two of these terms cancel out
S0CoC1S1712 €xp(73292) + S0CoC151721 exp(73242)
and we are left with two bivector contributors to the eventual four-pseudoscalar
Y01C1 + Y0251 exp(73242)

Multiplying out the last two derivatives we have

— 535313 exp(y32¢2) + S3C151723

Almost there. A final multiplication of these sets of products gives

11



— 701C15557 713 €xp (13202) — Y0251 €XP(132002) S551 713 €xp (732602

+ 701C155C151723 + 10251 exp(732¢2) SGC1S1723

= 703C15557 exp(73262) — Y02 €xp(7132¢2) 5557 exp(—Y32¢2) 113 + 10123CF S5S1 — Y03 €xp (3262) SHC157
= 703C15557 exp(r32¢2) + 701235551 (ST + CT) — y03 exp(732¢02) S5C1 57

= 703C153 (S5 — S5) exp(73262) + 101235551

Therefore our final result is
dVy = sinh? ¢y sin P13 drdpod e,

4 Summary.

4.1 Vector parameterizations.

N-Spherical parameterization

I = 01 exp((712<p1) (2)
13 = COS ¢107 + sin 102 exp(023¢2) )
Iy = 07 COS 1 + 07 sin Py (cos P + 023 sin ¢y exp(034¢3) ) 4)

N-Hypersphere parameterization

ry = (v cosh ¢ + sinh ¢ppy1) (5)
r3 = 7(70 cosh ¢ + sinh ¢oy1 exp(721¢1)) (6)
14 = r(7yp cosh ¢ + sinh g (cos P11 + sin @12 exp(y32¢2))) (7)

4.2 Volume elements.

To summarize the mess of algebra we have shown that our hyperbolic volume
elements are given by

AV, = (rdr) d¢o (8)
Vs = (rzdr) (sinh odo ) Ay 9)
avy = (r3dr) (sinh2 cpod(po) (sinrder) dgpn (10)

Compare this to the volume elements for the n-spheres

12



dVy = (rdr) d¢, (11)
dV; = (rzdr) (sin Prdepy ) depo (12)
dVvy = (1’3511’) (Sil’l2 ¢1d¢1) (Sil‘l ¢2d¢2) d¢s (13)

Besides labling variations the only difference in the form is a switch from
trig to hyperbolic functions for the first angle (which has an implied range
difference as well).
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