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1 Motivation.
Reconcile four vector transformed velocity coordinates with non-covariant form. Specif-
ically, equations (10) and (191) in [Pauli(1981)] look considerably different on the sur-
face, but must have the same content.

Equations (10) were also derived in a bit more detail than in Pauli’s book in [Joot()]
and are

ux =
ux
′ + v

1 + vux′/c2 (1)

uy =
uy
′

γ(1 + vux′/c2)
(2)

uz =
uz
′

γ(1 + vux′/c2)
(3)

γ−1 =
√

1 − v2/c2 (4)

whereas equations (191) are given as
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u1′ = γ(u1 + i(v/c)u4) (5)

u2′ = u2 (6)

u3′ = u3 (7)

u4′ = γ(u4 − i(v/c)u1) (8)

2 Derive the transformed velocity equations.
Pauli uses a (+, +, +,−) metric, with ct = x4 = −x4. For much of his SR treatment
he also uses the Minkowski representation x4 = x4 = ict. In the first representation
we have

−c2 =
dxµ

dτ
dxµ
dτ

=
dxk

dτ
dxk

dτ
+

dx4

dτ
dx4

dτ

=
(

dt
dτ

)2
 3∑

k=1

(
dxk

dt

)2

−

(
dx4

dt

)2
=

(
dt
dτ

)2 (
u2 − c2

)

Shuffling and taking roots produces a γ factor by virtue of the invariant

dt
dτ

=
1√

1 − u2/c2

This is enough to write the proper velocity in terms of a space time split

Ẋ =
(

dxµ

dτ

)
=

1√
1 − u2/c2

(u, c)

As a four vector this can be Lorentz boosted. For an x-axis boost we have

2




u1

u2

u3

u4


′

=


γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ



u1

u2

u3

u4


γ =

1√
1 − β2

Expanding this we have

u1′ = γ(u1 − βu4) (9)

u2′ = u2 (10)

u3′ = u3 (11)

u4′ = γ(u4 − βu1) (12)

In the imaginary representation the Lorentz transform takes the form


u1

u2

u3

u4


′

=


γ 0 0 iγβ
0 1 0 0
0 0 1 0
−iγβ 0 0 γ



u1

u2

u3

u4


Let’s verify that this produces the same result by expansion

u1′ = γ(u1 + iβu4)

u2′ = u2

u3′ = u3

u4′ = γ(u4 − βiu1)

with u4 → iu4 to switch to a real representation this is

u1′ = γ(u1 − βu4)

u2′ = u2

u3′ = u3

u4′ = γ(u4 − βu1)

Good. This matches equations 9. Now, we want to put these in an explicit space
time representation to compare against 1. Since those are in real form, work with
the real representation instead of the imaginary Minkowski representation for such a
comparison.
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2.1 WRONG: Non-covariant representation of the transformed
velocity.

Expanding out the proper time derivatives (assuming that dx′/dt′ = v is a correct
interpretation of the math), we have

1√
1 − v2/c2

dx′1

dt′
=

1√
1 − v2/c2

1√
1 − u2/c2

(
dx1

dt
− βc

)
1√

1 − v2/c2

dx′2

dt′
=

1√
1 − u2/c2

dx2

dt

1√
1 − v2/c2

dx′3

dt′
=

1√
1 − u2/c2

dx3

dt

1√
1 − v2/c2

dx′4

dt′
=

1√
1 − v2/c2

1√
1 − u2/c2

(
c − β

dx1

dt

)
Hmm. That doesn’t appear to match.

3 Try again from scratch.

3.1 Boost a stationary particle.
Instead of starting with a proper velocity with a spatial component, let’s cut the com-
plexity and consider the simplest case, a particle at rest. The worldline (in two dimen-
sions) for a particle in its rest frame is

X = (0, ct)

The proper velocity for this particle is

u =
dX
dτ

=
(
0, c

dt
dτ

)
But since this is a particle in its rest frame dt/dτ = 1, this proper velocity is

u = (0, c)

Observe that the norm of this vector (still using the time negative metric signature)
is

u · u = 02 − c2 = −c2

4



Now, what happens when we apply a Lorentz boost to this?

u′ =
[
γ −γβ
−γβ γ

] [
0
c

]

This is

u′ = γ
[
−β
1

]
c (13)

What’s the norm of this vector. It should be unchanged, so let’s verify.

u′ · u′ = γ2
(
(−β)2 − 12

)
c2

= −γ2
(
1 − β2

)
c2

= −c2

Good, still have the expected −c2 value. For this boosted vector, what is dt′/dτ′?
Note that in general for the components of u′ we have

dx′µ

dτ′
=

dx′µ

dt′
dt′

dτ′

and in particular we have u′4 = cdt′/dτ

u′4 =
dx′4

dt′
dt′

dτ′

= c
dt′

dτ′

Comparing to 13 we have

u′4 = γc

= c
dt′

dτ′

and therefore can write

dt′

dτ′
= γ
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Similarly the spatial velocity of the particle in the boosted frame is

u′1 =
dx′1

dt′
dt′

dτ′

= u′x
dt′

dτ′

= −γv

So we have

u′x = −v

This seems to make sense. We move the frame along the positive x-axis, so a
particle at rest at the origin of the stationary frame has a velocity v in the opposite
direction from the viewpoint of something at rest in the moving frame.

3.2 Apply a second boost transformation.
Okay, treating the almost too simple case in detail was helpful to see where to go next.
Now that we have a view of a particle at rest from a moving frame, let’s apply another
boost so we have a second frame moving with relative velocity β′ with respect to the
moving frame. Our transformation is

L′ =
[
γ′ −γ′β′

−γ′β′ γ′

]
this second transformation takes the original proper velocity to

u′′ = γγ′
[

1 −β′

−β′ 1

] [
−β
1

]
c

This is

u′′ = γγ′
[
−(β+ β′)
1 + ββ′

]
c (14)

Let’s verify that we still have our invariant norm.

u′′ · u′′ = γ2γ′2
(
(β+ β′)2 − (1 + ββ′)2

)
c2

= γ2γ′2
(
β2 + β′2 + 2ββ′ − 1 − 2ββ′ − β2β′2

)
c2

= γ2γ′2
(
β2(1 − β′2) − (1 − β′2)

)
c2

= −γ2γ′2(1 − β′2)(1 − β2)c2

= −c2
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Now, we have u′′4 = cdt′′/dτ′′ as before, so from equation 14 the new compound
γ factor can be picked off

dt′′

dτ′′
= γγ′(1 + ββ′)

Using this and chain rule again we have the spatial velocity in the second moving
frame for the particle at rest in the original frame. This is

u′′x =
dx′′
dt′′

dt′′
dτ′′

=
−γγ′(β+ β′)c
γγ′(1 + ββ′)

=
−(β+ β′)c

1 + ββ′

=
−(v + v′)

1 + vv′/c2

Okay, good. From consideration of proper velocities and their transformations we
have something that is of the form of Pauli’s equation 10 (here equation 1), which is
the standard form for colinear relativistic velocity addition.

There is a difference though, namely that Pauli’s equation 10 expresses the reverse
transformation. Shuffling equation 1 to solve for u′x, we have

ux(1 + vux
′) = ux

′ + v

which gives

u′x =
ux + (−v)

1 + (−v)ux

An algebraic inversion of the equation has exactly the same form, but with the
velocity negated in sign.

Now with ux = −v′ we have an identification between this twice boosted frame
observing the particle at rest in the original frame.

3.3 Perpendicular directions.
Now, the only thing left to understand is the spatial representation of the boosted ve-
locity for the perpendicular to the boost direction components.
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To do so, let’s treat a more general case for the proper velocity of a particle as seen
in some observers “rest frame”. Given the particle worldline

X = (xµ)

The proper velocity is

dX
dτ

=
(

xk

dt
, c

)
dt
dτ

Writing

ux =
x1

dt

uy =
x2

dt

uz =
x3

dt

γ0 =
dt
dτ

Application of a boost produces

u′ =


γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ



ux
uy
uz
c

 γ0

=


γ0γ(ux − βc)
γ0uy
γ0uz

γ0γ(−βux + c)


In particular we have

dx′

dτ′
= γ0γ(1 − βux/c)

So can write
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u′x =
γ0γ(ux − βc)
γ0γ(1 − βux/c)

u′y =
γ0uy

γ0γ(1 − βux/c)

u′z =
γ0uz

γ0γ(1 − βux/c)

Reversing signs in β to invert and canceling common factors this is

ux =
u′x + v

1 + vu′x/c2

uy =
u′y

γ(1 + vu′x/c2)

uz =
u′z

γ(1 + vu′x/c2)

A final substitution of γ−1 =
√

1 − v2/c2 and we have equation 1 as desired. Pauli
says this step is easy, and that’s true enough once the simpler cases are first understood.
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