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1 Motivation.

In [Joot()] an exploration of spatially periodic solutions to the electrodynamic
vacuum equation was performed using a multivector formulation of a 3D Fourier
series. Here a summary of the results obtained will be presented in a more
coherent fashion, followed by an attempt to build on them. In particular a
complete description of the field energy and momentum is desired.

A conclusion from the first analysis was that the orientation of both the
electric and magnetic field components must be perpendicular to the angular
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velocity and wave number vectors within the entire spatial volume. This was a
requirement for the field solutions to retain a bivector grade (STA/Dirac basis).

Here a specific orientation of the Fourier volume so that two of the axis lie
in the direction of the initial time electric and magnetic fields will be used. This
is expected to simplify the treatment.

Also note that having obtained some results in a first attempt hindsight
now allows a few choices of variables that will be seen to be appropriate. The
natural motivation for any such choices can be found in the initial treatment.

1.1 Notation.

Conventions, definitions, and notation used here will largely follow [Joot()].
Also of possible aid in that document is a a table of symbols and their defini-
tions.

2 A consise review of results.

2.1 Fourier series and coefficients.

A notation for a 3D Fourier series for a spatially periodic function and its
Fourier coefficients was developed

f (x) = ∑
k

f̂ke−ik·x (1)

f̂k =
1
V

∫
f (x)eik·xd3x (2)

In the vector context k is

k = 2π ∑
m

σm km

λm
(3)

Where λm are the dimensions of the volume of integration, V = λ1λ2λ3
is the volume, and in an index context k = {k1, k2, k3} is a triplet of integers,
positive, negative or zero.

2.2 Vacuum solution and constraints.

We want to find (STA) bivector solutions F to the vacuum Maxwell equation

∇F = γ0(∂0 + ∇)F = 0 (4)

We start by assuming a Fourier series solution of the form
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F(x, t) = ∑
k

F̂k(t)e−ik·x (5)

For a solution term by term identity is required

∂

∂t
F̂k(t)e−ik·x = −cσm F̂k(t)

∂

∂xm exp

(
−i2π

k jxj

λj

)
= ickF̂k(t)e−ik·x

With ω = ck, we have a simple first order single variable differential equa-
tion

F̂′k(t) = iωF̂k(t)

with solution

F̂k(t) = eiωt F̂k (6)

Here, the constant was written as F̂k given prior knowledge that this is will
be the fourier coefficient of the initial time field. Our assumed solution is now

F(x, t) = ∑
k

eiωt F̂ke−ik·x (7)

Observe that for t = 0, we have

F(x, 0) = ∑
k

F̂ke−ik·x

which is confirmation of the Fourier coefficient role of F̂k

F̂k =
1
V

∫
F(x′, 0)eik·x′d3x′ (8)

F(x, t) =
1
V ∑

k

∫
eiωtF(x′, 0)eik·(x′−x)d3x′ (9)

It is straightforward to show that F(x, 0), and pseudoscalar exponentials
commute. Specifically we have
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Feik·x = eik·xF (10)

This follows from the (STA) bivector nature of F.
Another commutivity relation of note is between our time phase exponen-

tial and the pseudoscalar exponentials. This one is also straightforward to
show and won’t be done again here

eiωteik·x = eik·xeiωt (11)

Lastly, and most importantly of the commutitivity relations, it was also
found that the initial field F(x, 0) must have both electric and magnetic field
components perpendicular to all ω ∝ k at all points x in the integration vol-
ume. This was because the vacuum Maxwell equation 4 by itself does not
impose any grade requirement on the solution in isolation. An additional re-
quirement that the solution have bivector only values imposes this inherent
planar nature in a charge free region, at least for solutions with spatial period-
icity. Some revisiting of previous Fourier transform solutions attempts at the
vacuum equation is required since similar constraints are expected there too.

The planar constraint can be expressed in terms of dot products of the field
components, but an alternate way of expressing the same thing was seen to be
a statement of conjugate commutivity between this dual spatial vector expo-
nential and the complete field

eiωtF = Fe−iωt (12)

The set of fourier coefficients considered in the sum must be restricted to
those values that equation 12 holds. An effective way to achieve this is to pick
a specific orientation of the coordinate system so the angular velocity bivector
is quantized in the same plane as the field. This means that the angular velocity
takes on integer multiples k of this value

iωk = 2πick
σ

λ
(13)

Here σ is a unit vector describing the perpendicular to the plane of the
field, or equivalently via a duality relationship iσ is a unit bivector with the
same orientation as the field.

2.3 Conjugate operations.

In order to tackle expansion of energy and momentum in terms of Fourier co-
efficients, some conjugation operations will be required.

Such a conjugation is found when computing electric and magnetic field
components and also in the T(γ0) ∝ Fγ0F energy momentum four vector. In
both cases it involves products with γ0.
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2.4 Electric and magnetic fields.

From the total field one can obtain the electric and magnetic fields via coordi-
nates as in

E = σm(F · σm)
H = σm((−iF) · σm)

However, due to the conjugation effect of γ0 (a particular observer’s time
basis vector) on F, we can compute the electric and magnetic field components
without resorting to coordinates

E =
1
2
(F − γ0Fγ0) (14)

H =
1
2i

(F + γ0Fγ0) (15)

Such a split is expected to show up when examining the energy and mo-
mentum of our Fourier expressed field in detail.

2.5 Conjugate effects on the exponentials.

Now, since γ0 anticommutes with i we have a conguation operation on perco-
lation of γ0 through the products of an exponential

γ0eik·x = e−ik·xγ0 (16)

However, since γ0 also anticommutes with any spatial basis vector σk =
γkγ0, we have for a dual spatial vector exponential

γ0eiωt = eiωtγ0 (17)

We should now be armed to consider the energy momentum questions that
were the desired goal of the initial treatment.

3 Plane wave Energy and Momentum in terms of
Fourier coefficients.

3.1 Energy momentum four vector.

To obtain the energy component U of the energy momentum four vector (given
here in cgs units)
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T(γ0) =
1

8π
Fγ0 F̃ =

−1
8π

(Fγ0F) (18)

we want a calculation of the field energy for the plane wave solutions of
Maxwell’s equation

U = T(γ0) · γ0

= − 1
16π

(Fγ0Fγ0 + γ0Fγ0F)

Given the observed commutativity relationships, at least some parts of this
calculation can be performed by direct multiplication of equation 9 summed
over two sets of wave number vector indexes as in.

F(x, t) =
1
V ∑

k

∫
eiωkt+ik·(a−x)F(a, 0)d3a

=
1
V ∑

m

∫
eiωmt+im·(b−x)F(b, 0)d3b

However, this gets messy fast. Looking for an alternate approach requires
some mechanism for encoding the effect of the γ0 sandwich on the Fourier
coefficients of the field bivector. It has been observed that this operation has
a conjugate effect. The form of the stress energy four vector suggests that a
natural congugate definition will be

F† = γ0 F̃γ0 (19)

where F̃ is the multivector reverse operation.
This notation for conjugation is in fact what , for Quantum Mechanics, [Do-

ran and Lasenby(2003)] calls the Hermitian adjoint.
In this form our stress energy vector is

T(γ0) =
1

8π
FF†γ0 (20)

While the trailing γ0 term here may look a bit out of place, the energy den-
sity and the Poynting vector end up with a very complementary structure

U =
1

16π

(
FF† + (FF† )̃

)
(21)

P =
1

16πc

(
FF† − (FF† )̃

)
(22)
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Having this conguage operation defined it can also be applied to the space-
time split of the electric and the magnetic fields. That can also now be written
in a form that calls out the inherent complex nature of the fields

E =
1
2
(F + F†) (23)

H =
1
2i

(F − F†) (24)

3.2 Aside. Applications for the conguate in non-QM contexts.

Despite the existance of the QM notation, it doesn’t appear used in the text or
ptIII notes outside of that context. For example, in addition to the stress energy
tensor and the spacetime split of the fields, an additional non-QM example
where the conjugate operation could be used, is in the ptIII hout8 where Rotors
that satisify

v · γ0 =
〈
γ0Rγ0R̃

〉
=
〈

R†R
〉

> 0 (25)

are called proper orthochronous. There are likely other places involving a
time centric projections where this conjugation operator would have a natural
fit.

3.3 Energy density. Take II.

For the Fourier coefficient energy calculation we now take 7 as the starting
point.

We will need the conguate of the field

F† = γ0

(
∑
k

eiωt F̂ke−ik·x
)˜

γ0

= γ0 ∑
k

(e−ik·x )̃(−F̂k)(eiωt )̃γ0

= −γ0 ∑
k

e−ik·x F̂ke−iωtγ0

= −∑
k

eik·xγ0 F̂kγ0e−iωt

This is

F† = ∑
k

eik·x(F̂k)†e−iωt (26)
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So for the energy we have

FF† + F†F = ∑
m,k

eiωmt F̂mei(k−m)·x(F̂k)†e−iωkt + eik·x(F̂k)†ei(ωm−ωk)t F̂me−im·x

= ∑
m,k

eiωmt F̂m(F̂k)†ei(k−m)·x−iωkt + eik·x(F̂k)† F̂me−i(ωm−ωk)t−im·x

= ∑
m,k

F̂m(F̂k)†ei(k−m)·x−i(ωk−ωm)t + (F̂k)† F̂mei(ωk−ωm)t+i(k−m)·x

= ∑
k

F̂k(F̂k)† + (F̂k)† F̂k

+ ∑
m 6=k

F̂m(F̂k)†ei(k−m)·x−i(ωk−ωm)t + (F̂k)† F̂mei(ωk−ωm)t+i(k−m)·x

In the first sum all the time dependence and all the spatial dependence
that isn’t embedded in the Fourier coefficients themselves has been eliminated.
What is left is something that looks like it’s a real quantity (to be verified)
Assuming (also to be verified) that F̂k commutes with its conjugate we have
something that looks like a discrete version of what [Haykin(1994)] calls the
Rayleigh energy theorem

∫ ∞

−∞
f (x) f ∗(x)dx =

∫ ∞

−∞
f̂ (k) f̂ ∗(k)dk

Here f̂ (k) is the Fourier transform of f (x).
Before going on it is expected that the k 6= m terms all cancel. Having re-

stricted the orientations of the allowed angular velocity bivectors to scalar mul-
tiples of the plane formed by the (wedge of) the electric and magnetic fields,
we have only a single set of indexes to sum over (ie: k = 2πσk/λ). In partic-
ular we can sum over k < m, and k > m cases separately and add these with
expectation of cancelation. Let’s see if this works out.

Write ω = 2πσ/λ, ωk = kω, and k = ω/c then we have for these terms

∑
m 6=k

ei(k−m)ω·x/c
(

F̂m(F̂k)†e−i(k−m)ωt + (F̂k)† F̂mei(k−m)ωt
)

3.3.1 Hermitian conjugate identities.

To get comfortable with the required manipulations, let’s find the Hermitian
conjugate equivalents to some of the familiar complex number relationships.

Not all of these will be the same as in “normal” complex numbers. For
instance, while for complex numbers, the identities
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z + z̄ = 2<(z)
1
i
(z − z̄) = 2=(z)

are both real numbers, we’ve seen for the electric and magnetic fields that
we don’t get scalars from the Hermitian conjugates, instead get a spatial vec-
tor where we’d get a real number in complex arithmetic. Similarily we get a
(bi)vector in the dual space for the field minus its conjugate.

Some properties:

• Hermitian conjugate of a product

(ab)† = γ0(ab)̃γ0

= γ0(b)̃(a)̃γ0

=
(
γ0(b)̃γ0

) (
γ0(a)̃γ0

)

This is our familiar conjugate of a product is the inverted order product
of conjugates.

(ab)† = b†a† (27)

• conjugate of a pure pseudoscalar exponential

(
eiα
)†

= γ0 (cos(α) + i sin(α))˜γ0

= cos(α)− iγ0 sin(α)γ0

But that is just (
eiα
)†

= e−iα (28)

Again in sync with complex analysis. Good.

• conjugate of a dual spatial vector exponential(
eik
)†

= γ0 (cos(k) + i sin(k))˜γ0

= γ0 (cos(k)− sin(k)i) γ0

= cos(k)− i sin(k)
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So, we have

(
eik
)†

= e−ik (29)

Again, consistent with complex numbers for this type of multivector ob-
ject.

• dual spatial vector exponential product with a conjugate.

F†eik = γ0 F̃γ0eik

= γ0 F̃eikγ0

= γ0e−ik F̃γ0

= eikγ0 F̃γ0

So we have conjugate commutation for both the field and its conjugate

F†eik = e−ikF† (30)

Feik = e−ikF (31)

• pseudoscalar exponential product with a conjugate.

For scalar α

F†eiα = γ0 F̃γ0eiα

= γ0 F̃e−iαγ0

= γ0e−iα F̃γ0

= eiαγ0 F̃γ0

In opposition to the dual spatial vector exponential, the plain old pseu-
doscalar exponentials commute with both the field and its conjugate.

F†eiα = eiαF† (32)

Feiα = eiαF (33)
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• Pauli vector conjugate.

(σk)† = γ0γ0γkγ0 = σk (34)

Jives with the fact that these in matrix form are called Hermitian.

• pseudoscalar conjugate.

i† = γ0iγ0 = −i (35)

• Field Fourier coefficient conjugate.

(F̂k)† =
1
V

∫
e−ik·xF†(x, 0)d3x = F̂†−k (36)

The conjugate of the k Fourier coefficient is the −k Fourier coefficient of
the conjugate field.

Observe that the first three of these properties would have allowed for cal-
culation of 26 by inspection.

3.4 Products of Fourier coefficient with another conjugate co-
efficient.

To progress a relationship between the conjugate products of fourier coeffi-
cients may be required.

4 FIXME: finish this.

I am getting tired of trying to show (using Latex as a tool and also on paper)
that the k 6= m terms vanish and am going to take a break, and move on for
a bit. Come back to this later, but start with a electric field and magnetic field
expansion of the (F̂k)† F̂k + F̂k(F̂k)† term to verify that this ends up being a
scalar as desired and expected (this is perhaps an easier first step than showing
the cross terms are zero).
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