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1 Motivation

In [Montesinos and Flores(2006)] a Poincare transformation is used to develop
the symmetric stress energy tensor directly, in contrast to the non-symmetric
canonical stress energy tensor that results from spacetime translation.

Attempt to decode one part of this article, the use of a Poincare transforma-
tion.

2 Incremental transformation in GA form.

Equation (11) in the article, is labeled an infinitesimal Poincare transformation

x′µ = x′µ + εµ
νxν + εµ (1)

It is stated that an antisymmetrization condition εµν = −ενµ. This is some-
what confusing since the infinitesimal transformation is given by a mixed up-
per and lower index tensor. Due to the antisymmetry perhaps this all a coordi-
nate statement of the following vector to vector linear transformation
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x′ = x + ε + A · x (2)

This transformation is less restricted than a plain old spacetime transforma-
tion, as it also contains a projective term, where x is projected onto the space-
time (or spatial) plane A (a bivector), plus a rotation in that plane.

Writing as usual

x = γµxµ

So that components are recovered by taking dot products, as in

xµ = x · γµ

For the bivector term, write

A = c ∧ d = cαdβ(γα ∧ γβ)

For

(A · x) · γµ = cαdβxσ((γα ∧ γβ) · γσ) · γµ

= cαdβxσ(δα
µδβ

σ − δβ
µδα

σ)

= (cµdσ − cσdµ)xσ

This allows for an identification εµσ = cµdσ − cσdµ which is antisymmetric
as required. With that identification we can write (1) via the equivalent vector
relation (2) if we write

εµ
σxσ = (cµdσ − cσdµ)xσ

Where εµ
σ is defined implicitly in terms of components of the bivector A =

c ∧ d.
Is this what a Poincare transformation is? The Poincare Transformation

article suggests not. This article suggests that the Poincare transformation is
a spacetime translation plus a Lorentz transformation (composition of boosts
and rotations). That Lorentz transformation will not be antisymmetric how-
ever, so how can these be reconciled? The key is probably the fact that this was
an infinitesimal Poincare transformation so lets consider a Taylor expansion of
the Lorentz boost or rotation rotor, considering instead a transformation of the
following form

x′ = x + ε + RxR̃ (3)

RR̃ = 1 (4)
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In particular, let’s look at the Lorentz transformation in terms of the expo-
nential form

R = eIθ/2

Here θ is either the angle of rotation (when the bivector is a unit spatial
plane such as I = γk ∧ γm), or a rapidity angle (when the bivector is a unit
spacetime plane such as I = γk ∧ γ0).

Ignoring the translation in (3) for now, to calculate the first order term in
Taylor series we need

dx′

dθ
=

dR
dθ

xR̃ + Rx
dR̃
dθ

=
dR
dθ

R̃RxR̃ + RxR̃R
dR̃
dθ

=
1
2
(Ωx′ + x′Ω̃)

where

1
2

Ω =
dR
dθ

R̃

Now, what is the grade of the product Ω? We have both dR/dθ and R in
{∧0 ⊕∧2} so the product can only have even grades Ω ∈ {∧0 ⊕∧2 ⊕∧4}, but
the unitary constraint on R restricts this

Since RR̃ = 1 the derivative of this is zero

dR
dθ

R̃ + R
dR̃
dθ

= 0

Or

dR
dθ

R̃ = −
(

dR
dθ

R̃
)̃

Antisymmetry rules out grade zero and four terms, leaving only the possi-
bility of grade 2. That leaves

dx′

dθ
=

1
2
(Ωx′ − x′Ω) = Ω · x′

And the first order Taylor expansion around θ = 0 is

x′(dθ) ≈ x′(θ = 0) + (Ωdθ) · x′

= x + (Ωdθ) · x′
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This has close to the postulated form in (2), but differs in one notable way.
The dot product with the antisymmetric form A = 1

2
dR
dθ R̃dθ is a dot product

with x′ and not x! One can however invert the identity writing x in terms of x′

(to first order)

x = x′ − (Ωdθ) · x′

Replaying this argument in fast forward for the inverse transformation should
give us a relation for x′ in terms of x and the incremental Lorentz transform

x′ = RxR̃
=⇒

x = R̃x′R

dx
dθ

=
dR̃
dθ

RR̃x′R + R̃x′RR̃
dR
dθ

=
(

2
dR̃
dθ

R
)
· x

So we have our incremental transformation given by

x′ = x−
(

2
dR̃
dθ

Rdθ

)
· x (5)

3 Consider a specific infinitesimal spatial rotation.

The signs and primes involved in arriving at (5) were a bit confusing. To firm
things up a bit considering a specific example is called for.

For a rotation in the x, y plane, we have

R = eγ1γ2θ/2 (6)

x′ = RxR̃ (7)

Here also it is easy to get the signs wrong, and it is worth pointing out the
sign convention picked here for the Dirac basis is γ0

2 = −γk
2 = 1. To verify

that R does the desired job, we have

4



Rγ1R̃ = γ1R̃2

= γ1eγ2γ1θ

= γ1(cos θ + γ2γ1 sin θ)
= γ1(cos θ − γ1γ2 sin θ)
= γ1 cos θ + γ2 sin θ

and

Rγ2R̃ = γ2R̃2

= γ2eγ2γ1θ

= γ2(cos θ + γ2γ1 sin θ)
= γ2 cos θ − γ1 sin θ

For γ3 or γ0, the quaternion R commutes, so we have

Rγ3R̃ = RR̃γ3 = γ3

Rγ0R̃ = RR̃γ0 = γ0

(leaving the perpendicular basis directions unchanged).
Summarizing the action on the basis vectors in matrix form this is

γ0
γ1
γ2
γ3

 →


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




γ0
γ1
γ2
γ3


Observe that the basis vectors transform with the transposed matrix to the

coordinates, and we have

γ0x0 + γ1x1 + γ2x2 + γ3x3 → γ0x0 + x1(γ1 cos θ + γ2 sin θ) + x2(γ2 cos θ − γ1 sin θ) + γ3x3

Dotting x′µ = x′ · γµ we have

x0 → x0

x1 → x1 cos θ − x2 sin θ

x2 → x1 sin θ + x2 cos θ

x3 → x3
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In matrix form this is the expected and familiar rotation matrix in coordi-
nate form 

x0

x1

x2

x3

 →


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1




x0

x1

x2

x3


Moving on to the initial verification we have

2
dR̃
dθ

= 2
d
dθ

eγ2γ1θ/2

= γ1γ2eγ2γ1θ/2

So we have

2
dR̃
dθ

R = γ2γ1eγ2γ1θ/2eγ1γ2θ/2

= γ2γ1

The antisymmetric form εµν in this case therefore appears to be nothing
more than the unit bivector for the plane of rotation! We should now be able to
verify the incremental transformation result from (5), which is in this specific
case now calculated to be

x′ = x + dθ(γ1γ2) · x (8)

As a final check let’s look at the action of rotation part of the transformation
(8) on the coordinates xµ. Only the x1 and x2 coordinates need be considered
since there is no projection of γ0 or γ3 components onto the plane γ1γ2.

dθ(γ1γ2) · (x1γ1 + x2γ2) = dθ
〈

γ1γ2(x1γ1 + x2γ2)
〉

1

= dθ(γ2x1 − γ1x2)

Now compare to the incremental transformation on the coordinates in ma-
trix form. That is
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δR = dθ
d
dθ


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


∣∣∣∣∣∣∣∣
θ=0

= dθ


0 0 0 0
0 − sin θ − cos θ 0
0 cos θ − sin θ 0
0 0 0 0


∣∣∣∣∣∣∣∣
θ=0

= dθ


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



So acting on the coordinate vector

δR = dθ


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0




x0

x1

x2

x3



= dθ


0
−x2

x1

0



This is exactly what we got above with the bivector dot product. Good.

4 Consider a specific infinitesimal boost.

For a boost along the x axis we have

R = eγ0γ1α/2 (9)

x′ = RxR̃ (10)

Verifying, we have

x0γ0 → x0(cosh α + γ0γ1 sinh α)γ0

= x0(γ0 cosh α− γ1 sinh α)
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x1γ1 → x1(cosh α + γ0γ1 sinh α)γ1

= x1(γ1 cosh α− γ0 sinh α)

Dot products recover the familiar boost matrix
x0

x1

x2

x3


′

=


cosh α − sinh α 0 0
− sinh α cosh α 0 0

0 0 1 0
0 0 0 1




x0

x1

x2

x3


Now, how about the incremental transformation given by (5). A quick cal-

culation shows that we have

x′ = x + dα(γ0γ1) · x (11)

Just like the (8) case for a rotation in the xy plane, the antisymmetric form
is again the unit bivector of the rotation plane (this time the unit bivector in the
spacetime plane of the boost.)

This completes the examination of two specific incremental Lorentz trans-
formations. It is clear that the result will be the same for an arbitrarily oriented
bivector, and the original guess (2) of a geometric equivalent of tensor relation
(1) was correct, provided that A is a unit bivector scaled by the magnitude of
the incremental transformation.

The specific case not treated however are those transformations where the
orientation of the bivector is allowed to change. Parameterizing that by angle
is not such an obvious procedure.

5 In tensor form.

For an arbitrary bivector A = a ∧ b, we can calculate εσ
α. That is

εσαxα = dθ
((aµγµ ∧ bνγν) · (xαγα)) · γσ∣∣((aµγµ) ∧ (bνγν)) · ((aαγα) ∧ (bβγβ))

∣∣1/2

=
aσbα − aαbσ∣∣aµbν(aνbµ − aµbν)

∣∣1/2 xα

So we have
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εσ
α = dθ

aσbα − aαbσ∣∣aµbν(aνbµ − aµbν)
∣∣1/2

The denominator can be subsumed into dθ, so the important factor is just
the numerator, which encodes an incremental boost or rotational in some ar-
bitrary spacetime or spatial plane (respectively). The associated antisymmetry
can be viewed as a consequence of the bivector nature of the rotor derivative
rotor product.
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