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1 Motivation.

Having recently attempted a number of Fourier solutions to the Heat, Schrödinger,
Maxwell vacuum, and inhomogeneous Maxwell equation, a reading of [Perry()]
inspired me to have another go. In particular, he writes the Poisson equation
solution explicitly in terms of a Green’s function.

The Green’s function for the Poisson equation

G(x− x′) =
1

4π|x− x′| (1)

isn’t really derived, rather is just pointed out. However, it is a nice closed
form that doesn’t have any integrals. Contrast this to the Fourier transform
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method, where one ends up with a messy threefold integral that isn’t particu-
larily obvious how to integrate.

In the PF thread Fourier transform solution to electrostatics Poisson equa-
tion? I asked if anybody knew how to reduce this integral to the potential
kernel of electrostatics. Before getting any answer from PF I found it in [Byron
and Fuller(1992)], a book recently purchased, but not yet read.

Go through this calculation here myself in full detail to get more comfort
with the ideas. Some of these ideas can probably also be applied to previous
incomplete Fourier solution attempts. In particular, the retarded time potential
solutions likely follow. Can these same ideas be applied to the STA form of
the Maxwell equation, explicitly inverting it, as [Doran and Lasenby(2003)]
indicate is possible (but do not spell out).

2 Poisson equation.

2.1 Setup.

As often illustrated with the Heat equation, we seek a Fourier transform solu-
tion of the electrostatics Poisson equation

∇2φ = −ρ/ε0 (2)

Our 3D Fourier transform pairs are defined as

f̂ (k) =
1

(
√

2π)3

∫∫∫
f (x)e−ik·xd3x

f (x) =
1

(
√

2π)3

∫∫∫
f̂ (k)eik·xd3k

Applying the transform we get

φ(x) =
1
ε0

∫∫∫
ρ(x′)G(x− x′)d3x′ (3)

G(x) =
1

(2π)3

∫∫∫ 1
k2 eik·xd3k (4)

Now it seems to me that this integral G only has to be evaluated around
a small neighbourhood of the origin. For example if one evaluates one of the
integrals ∫ ∞

−∞

1
k1

2 + k2
2 + k3

3 eik1x1 dk1
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using a an upper half plane contour the result is zero unless k2 = k3 = 0.
So one is left with something loosely like

G(x) = lim
ε→0

1
(2π)3

∫ ε

k1=−ε
dk1

∫ ε

k2=−ε
dk2

∫ ε

k3=−ε
dk3

1
k2 eik·x

How to reduce this? Somehow it must be possible to take this Fourier con-
volution kernel and somehow evaluate the integral to produce the electrostat-
ics potential.

2.2 Evaluating the convolution kernel integral.

The answer of how to do so, as pointed out above, was found in [Byron and
Fuller(1992)]. Instead of trying to evaluate this integral which has a pole at the
origin, they cleverly evaluate a variant of it

I =
∫∫∫ 1

k2 + a2 eik·xd3k

which splits and shifts the repeated pole into two first order poles away
from the origin. After a change to spherical polar coordinates, the new integral
can be evaluated, and the Poisson Green’s function in potential form follows
by letting a tend to zero.

Very cool. It seems worthwhile to go through the motions of this myself,
omitting no details I would find valuable.

First we want the volume element in spherical polar form, and our vector.
That is

ρ = k cos φ

dA = (ρdθ)(kdφ)

d3k = dkdA = k2 cos φdθdφdk
k = (ρ cos θ, ρ sin θ, k sin θ)

= k(cos φ cos θ, cos φ sin θ, sin φ)

FIXME: scan picture to show angle conventions picked.
This produces

I =
∫ 2π

θ=0

∫ π/2

φ=−π/2

∫ ∞

k=0

1
k2 + a2 exp (ik(cos φ cos θx1 + cos φ sin θ + x2 + sin φx3)) k2 cos φdθdφdk

Now, this is a lot less tractable than the Byron/Fuller treatment. In particu-
lar they were able to make a t = cos φ substitution, and if I try this I get
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I = −
∫ 2π

θ=0

∫ 1

t=−1

∫ ∞

k=0

1
k2 + a2 exp

(
ik(t cos θx1 + t sin θx2 +

√
1− t2x3)

)
k2dtdθdk

Now, this is still a whole lot different, and in particular it has ik(t sin θx2 +√
1− t2x3) in the exponential. I puzzled over this for a while, but it becomes

clear on writing. Freedom to orient the axis along a preferable direction has
been used, and some basis for which x = xjej+ = xe1 has been used! We are
now left with

I = −
∫ 2π

θ=0

∫ 1

t=−1

∫ ∞

k=0

1
k2 + a2 exp (ikt cos θx) k2dtdθdk

= −
∫ 2π

θ=0

∫ ∞

k=0

2
(k2 + a2) cos θ

sin (kt cos θx) kdθdk

= −
∫ 2π

θ=0

∫ ∞

k=−∞

1
(k2 + a2) cos θ

sin (kt cos θx) kdθdk

Here the fact that our integral kernel is even in k has been used to double
the range and half the kernel.

However, looking at this, one can see that there is trouble. In particular, we
have cos θ in the denominator, with a range that allows zeros. How did the text
avoid this trouble?

2.3 Take II.

After mulling it over for a bit, it appears that aligning x with the x-axis is caus-
ing the trouble. Aligning with the z-axis will work out much better, and leave
only one trig term in the exponential. Essentially we need to use a volume of
rotation about the z-axis, integrating along all sets of constant k · x. This is a
set of integrals over concentric ring volume elements (FIXME: picture).

Our volume element, measuring θ ∈ [0, π] from the z-axis, and φ as our
position on the ring

k · x = kx cos θ

ρ = k sin θ

dA = (ρdφ)(kdθ)

d3k = dkdA = k2 sin θdθdφdk

This gives us
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I =
∫ π

θ=0

∫ 2π

φ=0

∫ ∞

k=0

1
k2 + a2 exp (ikx cos θ) k2 sin θdθdφdk

Now we can integrate immediately over φ, and make a t = cos θ substitu-
tion (dt = − sin θdθ)

I = −2π
∫ −1

t=1

∫ ∞

k=0

1
k2 + a2 exp (ikxt) k2dtdk

= −2π

ix

∫ ∞

k=0

1
k2 + a2

(
e−ikx − eikx

)
kdk

=
2π

ix

∫ ∞

k=0

1
k2 + a2 eikxkdk− 2π

ix

∫ −∞

k=−0

1
k2 + a2 eikx(−k)(−dk)

=
2π

ix

∫ ∞

k=−∞

1
k2 + a2 eikxkdk

=
2π

ix

∫ ∞

k=−∞

1
k− ia

keikx

(k + ia)
dk

Now we have something that’s in form for contour integration. In the up-
per half plane we have a pole at k = ia. Assuming that the integral over the big
semicircular arc vanishes, we can just pick up the residue at that pole contribut-
ing. The assumption that this vanishes is actually non-trivial looking since the
k/(k + ia) term at a big radius R tends to 1. This is probably where Jordan’s
lemma comes in, so some study to understand that looks well justified.

0 = I − 2πi
2π

ix
keikx

(k + ia)

∣∣∣∣∣
k=ia

= I − 2πi
2π

ix
e−ax

2

So we have

I =
2π2

x
e−ax

Now that we have this, the Green’s function of 3 is

G(x) = lim
a→0

1
(2π)3

2π2

x
e−ax

=
1

4π|x|
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Which gives

φ(x) =
1

4πε0

∫
ρ(x′)
|x− x′|dV′

Awesome! All following from the choice to set E = −∇φ, we have a so-
lution for φ following directly from the divergence equation ∇ · E = ρ/ε0 via
Fourier transformation of this equation.

3 Retarded time potentials for the 3D wave equa-
tion.

3.1 Setup.

If we look at the general inhomogeneous Maxwell equation

∇F = J/ε0c (5)

In terms of potential F = ∇ ∧ A and employing in the Lorentz gauge ∇ ·
A = 0, we have

∇2 A =
(

1
c2 ∂tt −∑ ∂jj

)
A = J/ε0c (6)

As scalar equations with A = Aµγµ, J = Jνγν we have four equations all of
the same form.

A Green’s function form for such wave equations was previously calculated
in [Joot()]. That was

(
1
c2

∂2

∂t2 −∑
j

∂2

∂xj2

)
ψ = g (7)

ψ(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x′, t′)G(x− x′, t− t′)d3x′dt′ (8)

G(x, t) = θ(t)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

c
(2π)3|k| sin(|k|ct) exp (ik · x) d3k (9)

Here θ(t) is the unit step function, which meant we only sum the time con-
tributions of the charge density for t − t′ > 0, or t′ < t. That’s the causal
variant of the solution, which was arbitrary mathematically (t > t′ would have
also worked).
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3.2 Reducing the Green’s function integral.

Let’s see if the spherical polar method works to reduce this equation too. In
particular we want to evaluate

I =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
|k| sin(|k|ct) exp (ik · x) d3k

Will we have a requirement to introduce a pole off the origin as above?
Perhaps like ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
|k|+ α

sin(|k|ct) exp (ik · x) d3k

Let’s omit it for now, but make the same spherical polar substitution used
successfully above, writing

I =
∫ π

θ=0

∫ 2π

φ=0

∫ ∞

k=0

1
k

sin (kct) exp (ikx cos θ) k2 sin θdθdφdk

= 2π
∫ π

θ=0

∫ ∞

k=0
sin (kct) exp (ikx cos θ) k sin θdθdk

Let τ = cos θ, −dτ = sin θdθ, for

I = 2π
∫ −1

τ=1

∫ ∞

k=0
sin (kct) exp (ikxτ) k(−dτ)dk

= −2π
∫ ∞

k=0
sin (kct)

2
2ikx

(exp (−ikx)− exp (ikx)) kdk

=
4π

x

∫ ∞

k=0
sin (kct) sin (kx) dk

=
2π

x

∫ ∞

k=0
(cos (k(x− ct))− cos (k(x + ct))) dk

Okay, this is much simpler, but still not in a form that’s immediately ob-
vious how to apply contour integration to, since it has no poles. The integral
kernel here is however an even function, so we can use the trick of doubling
the integral range.

I =
π

x

∫ ∞

k=−∞
(cos (k(x− ct))− cos (k(x + ct))) dk
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Having done this, this integral isn’t really any more well defined. With
the Rigor police on holiday, let’s assume we want the principle value of this
integral

I = lim
R→∞

π

x

∫ R

k=−R
(cos (k(x− ct))− cos (k(x + ct))) dk

= lim
R→∞

π

x

∫ R

k=−R
d
(

sin (k(x− ct))
x− ct

− sin (k(x + ct))
x + ct

)
= lim

R→∞

2π2

x

(
sin (R(x− ct))

π(x− ct)
− sin (R(x + ct))

π(x + ct)

)

This sinc limit has been seen before being functionally identified with the
delta function (the wikipedia article calls these “nascent delta function”), so we
can write

I =
2π2

x
(δ(x− ct)− δ(x + ct))

For our Green’s function we now have

G(x, t) = θ(t)
c

(2π)3
2π2

|x| (δ(x− ct)− δ(x + ct))

= θ(t)
c

4π|x| (δ(x− ct)− δ(x + ct))

And finally, our wave function (switching variables to convolve with the
charge density) instead of the Green’s function

ψ(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, t− t′)θ(t′)

c
4π|x′| δ(

∣∣x′∣∣− ct′)d3x′dt′

−
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, t− t′)θ(t′)

c
4π|x′| δ(

∣∣x′∣∣+ ct′)d3x′dt′

Let’s break these into two parts

ψ(x, t) = ψ−(x, t) + ψ+(x, t) (10)

Where the first part, ψ− is for the −ct′ delta function and one ψ− for the
+ct′. Making a τ = t− t′ change of variables, this first portion is
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ψ−(x, t) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, τ)θ(t− τ)

c
4π|x′| δ(

∣∣x′∣∣− ct + cτ)d3x′dτ

= −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′′, t−

∣∣x′′∣∣/c)
c

4π|x′′|d
3x′′

One more change of variables, x′ = x − x′′, d3x′′ = −d3x, gives the final
desired retarded potential result. The ψ+ result is similar (see below), and
assembling all we have

ψ−(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x′, t−

∣∣x− x′
∣∣/c)

c
4π|x− x′|d

3x′ (11)

ψ+(x, t) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x, t +

∣∣x− x′
∣∣/c)

c
4π|x− x′|d

3x′ (12)

It looks like my initial interpretation of the causal nature of the unit step
in the original functional form wasn’t really right. It is not until the Green’s
function is “integrated” do we get this causal and non-causal split into two
specific solutions. In the first of these solutions is only charge contributions at
the position in space offset by the wave propagation speed effects the potential
(this is the causal case). On the other hand we have a second specific solution to
the wave equation summing the charge contributions at all the future positions,
this time offset by the time it takes a wave to propagate backwards from that
future spacetime

The final mathematical result is consistent with statements seen elsewhere,
such as in [Feynman et al.(1963)Feynman, Leighton, and Sands], although it is
likely that the path taken by others to get this result was less ad-hoc than mine.
It’s been a couple years since seeing this for the first time in Feynman’s text. It
wasn’t clear to me how somebody could possibly come up with those starting
with Maxwell’s equations. Here by essentially applying undergrad Engineer-
ing Fourier methods, we get the result in an admittedly ad-hoc fashion, but at
least the result is not pulled out of a magic hat.
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3.3 Omitted Details. Advanced time solution.

Similar to the above for ψ+ we have

ψ+(x, t) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, t− t′)θ(t′)

c
4π|x′| δ(

∣∣x′∣∣+ ct′)d3x′dt′

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, τ)θ(t− τ)

c
4π|x′| δ(

∣∣x′∣∣+ c(t− τ))d3x′dτ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, τ)θ(t− τ)

c
4π|x′| δ(

∣∣x′∣∣+ ct− cτ)d3x′dτ

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x− x′, t +

∣∣x′∣∣/c)
c

4π|x′|d
3x′

= −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x, t +

∣∣x− x′
∣∣/c)

c
4π|x− x′|d

3x′

Is there an extra factor of −1 here?

4 1D wave equation.

It is somewhat irregular seeming to treat the 3D case before what should be the
simpler 1D case, so let’s try evaluating the Green’s function for the 1D wave
equation too.

We have found that Fourier transforms applied to the forced wave equation(
1
v2 ∂tt − ∂xx

)
ψ = g(x, t) (13)

result in the following integral solution.

ψ(x, t) =
∫ ∞

x′=−∞

∫ ∞

t′=0
g(x− x′, t− t′)G(x′, t′)dx′dt′ (14)

G(x, t) =
∫ ∞

k=−∞

v
2πk

sin(kvt) exp(ikx)dk (15)

As in the 3D case above can this reduced to something that does not involve
such an unpalatable integral. Given the 3D result, it would be reasonable to get
a result involving g(x± vt) terms.

First let’s get rid of the sine term, and express G entirely in exponential
form. That is

G(x, t) =
∫ ∞

k=−∞

v
4πki

(exp(kvt)− exp(−kvt)) exp(ikx)dk

=
∫ ∞

k=−∞

v
4πki

(
ek(x+vt) − ek(x−vt)

)
dk
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Using the unit step function identification from 20, we have

G(x, t) =
v
2

(θ(x + vt)− θ(x− vt)) (16)

If this identification works our solution then becomes

ψ(x, t) =
∫ ∞

x′=−∞

∫ ∞

t′=0
g(x− x′, t− t′)

v
2
(
θ(x′ + vt′)− θ(x′ − vt′)

)
dx′dt′

=
∫ ∞

x′=−∞

∫ ∞

s=0
g(x− x′, t− s/v)

1
2
(
θ(x′ + s)− θ(x′ − s)

)
dx′ds

This is already much simpler than the original, but additional reduction
should be possible by breaking this down into specific intervals. An alterna-
tive, perhaps is to use integration by parts and the delta function as the deriva-
tive of the unit step identification.

Let’s try a pair of variable changes

ψ(x, t) =
∫ ∞

u=−∞

∫ ∞

s=0
g(x− u + s, t− s/v)

1
2

θ(u)duds−
∫ ∞

u=−∞

∫ ∞

s=0
g(x− u− s, t− s/v)

1
2

θ(u)duds

Like the retarded time potential solution to the 3D wave equation, we now
have the wave function solution entirely specified by a weighted sum of the
driving function

ψ(x, t) =
1
2

∫ ∞

u=0

∫ ∞

s=0
(g(x− u + s, t− s/v)− g(x− u− s, t− s/v)) duds (17)

Can this be tidied at all? Let’s do a change of variables here, writing −τ =
t− s/v.

ψ(x, t) =
1
2

∫ ∞

u=0

∫ ∞

τ=−t
(g(x + vt− (u− vτ), τ)− g(x− vt− (u + vτ), τ)) dudτ

=
1
2

∫ ∞

u=0

∫ t

τ=−∞
(g(x + vt− (u + vτ),−τ)− g(x− vt− (u− vτ),−τ)) dudτ

Is that any better? I’m not so sure, and intuition says there’s a way to reduce
this to a single integral summing only over spatial variation.

4.1 Followup to verify.

There has been a lot of guessing and loose mathematics here. However, if
this is a valid solution despite all that, we should be able to apply the wave
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function operator 1
v2 ∂tt + ∂xx as a consistency check and get back g(x, t) by

differentiating under the integral sign.
FIXME: First have to think about how exactly to do this differentiation.

5 Appendix.

5.1 Integral form of unit step function.

The wiki article on the Heavyside unit step function lists an integral form

Iε =
1

2πi
PV

∫ ∞

−∞

eixτ

τ − iε
dτ (18)

θ(x) = lim
ε→0

Iε (19)

How does this make sense? For x > 0 we can evaluate this with an upper
half plane semi-circular contour (FIXME: picture). Along the arc z = Reiφ we
have

|Iε| =
∣∣∣∣∣ 1
2πi

∫ π

φ=0

eiR(cos φ+i sin φ)

Reiφ − iε
Rieiφdφ

∣∣∣∣∣
≈
∣∣∣∣ 1
2π

∫ π

φ=0
eiR cos φe−R sin φdφ

∣∣∣∣
≤ 1

2π

∫ π

φ=0
e−R sin φdφ

≤ 1
2π

∫ π

φ=0
e−Rdφ

=
1
2

e−R

This tends to zero as R → ∞, so evaluating the residue, we have for x > 0

Iε = −(−2πi)
1

2πi
eixτ
∣∣∣
τ=iε

= e−xε

Now for x < 0 an upper half plane contour will diverge, but the lower half
plane can be used. This gives us Iε = 0 in that region. All that remains is the
x = 0 case. There we have
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Iε(0) =
1

2πi
PV

∫ ∞

−∞

1
τ − iε

dτ

=
1

2πi
lim

R→∞
ln
(

R− iε
−R− iε

)
→ 1

2πi
ln (−1)

=
1

2πi
iπ

Summarizing we have

Iε(x) =


e−xε if x > 0
1
2 if x = 0
0 if x < 0

So in the limit this does work as an integral formulation of the unit step.
This will be used to (very loosely) identify

θ(x) ∼ 1
2πi

PV
∫ ∞

−∞

eixτ

τ
dτ (20)
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