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1 Motivation.

In [Joot()] a first order Fourier solution of the Vacuum Maxwell equation was
performed. Here a comparative potential solution is obtained.

1.1 Notation.

The 3D Fourier series notation developed for this treatment can be found in
the original notes [Joot()]. Also included there is a table of notation, much of
which is also used here.

2 Second order treatment with potentials.

2.1 With the Lorentz gauge.

Now, it appears that Bohm’s use of potentials allows a nice comparison with
the harmonic oscillator. Let’s also try a Fourier solution of the potential equa-
tions. Again, use STA instead of the traditional vector equations, writing A =
(φ + a)γ0, and employing the Lorentz gauge ∇ · A = 0 we have for F = ∇∧ A
in cgs units

FIXME: Add a, and ψ to notatational table below with definitions in terms
of E , and H (or the other way around).
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∇2 A = 4π J

Again with a spacetime split of the gradient

∇ = γ0(∂0 + ∇) = (∂0 −∇)γ0

our four Laplacian can be written

(∂0 −∇)γ0γ0(∂0 + ∇) = (∂0 −∇)(∂0 + ∇)

= ∂00 −∇2

Our vacuum field equation for the potential is thus

∂tt A = c2∇2 A (1)

Now, as before assume a Fourier solution and see what follows. That is

A(x, t) = ∑
k

Âk(t)e−ik·x (2)

Applied to each component this gives us

Â′′
ke−ik·x = c2 Âk(t) ∑

m

∂2

(∂xm)2 e−2πi ∑j kjxj/λj

= c2 Âk(t) ∑
m

(−2πikm/λm)2e−ik·x

= −c2k2 Âke−ik·x

So we are left with another big ass set of simplest equations to solve

Â′′
k = −c2k2 Âk

Note that again the origin point k = (0, 0, 0) is a special case. Also of note
this time is that Âk has vector and trivector parts, unlike F̂k which being de-
rived from dual and non-dual components of a bivector was still a bivector.

It appears that solutions can be found with either left or right handed vector
valued integration constants

Âk(t) = exp(±ickt)Ck

= Dk exp(±ickt)
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Since these are equal at t = 0, it appears to imply that these commute with
the complex exponentials as was the case for the bivector field.

For the k = 0 special case we have solutions

Âk(t) = D0t + C0

It doesn’t seem unreasonable to require D0 = 0. Otherwise this time de-
pendent DC Fourier component will blow up at large and small values, while
periodic solutions are sought.

Putting things back together we have

A(x, t) = ∑
k

exp(±ickt)Ck exp(−ik · x)

Here again for t = 0, our integration constants are found to be determined
completely by the initial conditions

A(x, 0) = ∑
k

Cke−ik·x (3)

So we can write

Ck =
1
V

∫
A(x′, 0)eik·x′d3x′

In integral form this is

A(x, t) =
∫

∑
k

exp(±ikct)A(x′, 0) exp(ik · (x − x′)) (4)

This, somewhat suprisingly, is strikingly similar to what we had for the
bivector field. That was:

F(x, t) =
∫

G(x − x′, t)F(x′, 0)d3x′ (5)

G(x, t) =
1
V ∑

k
exp (ikct) exp (−ik · x) (6)

We cannot however commute the time phase term to construct a one sided
Green’s function for this potential solution (or perhaps we can but if so shown
or attempted to show that this is possible). We also have a plus or minus varia-
tion in the phase term due to the second order nature of the harmonic oscillator
equations for our Fourier coefficients.
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2.2 Comparing the first and second order solutions

A consequense of working in the Lorentz gauge (∇ · A = 0) is that our field
solution should be a gradient

F = ∇∧ A
= ∇A

FIXME: expand this out using 4 to compare to the first order solution.
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