# Lorentz Gauge Fourier Vacuum potential solutions. 

Peeter Joot

Feb 07, 2009. Last Revision: Date : 2009/02/0715 : 20 : 07

## Contents

1 Motivation. 1
1.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Second order treatment with potentials. 1
2.1 With the Lorentz gauge. . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Comparing the first and second order solutions . . . . . . . . . 4

## 1 Motivation.

In $[\overline{\operatorname{Joot}()]}$ a first order Fourier solution of the Vacuum Maxwell equation was performed. Here a comparative potential solution is obtained.

### 1.1 Notation.

The 3D Fourier series notation developed for this treatment can be found in the original notes $\mid \overline{\operatorname{Joot}() \mid}$. Also included there is a table of notation, much of which is also used here.

## 2 Second order treatment with potentials.

### 2.1 With the Lorentz gauge.

Now, it appears that Bohm's use of potentials allows a nice comparison with the harmonic oscillator. Let's also try a Fourier solution of the potential equations. Again, use STA instead of the traditional vector equations, writing $A=$ $(\phi+\mathbf{a}) \gamma_{0}$, and employing the Lorentz gauge $\nabla \cdot A=0$ we have for $F=\nabla \wedge A$ in cgs units

FIXME: Add a, and $\psi$ to notatational table below with definitions in terms of $\mathcal{E}$, and $\mathcal{H}$ (or the other way around).

$$
\nabla^{2} A=4 \pi J
$$

Again with a spacetime split of the gradient

$$
\nabla=\gamma^{0}\left(\partial_{0}+\boldsymbol{\nabla}\right)=\left(\partial_{0}-\boldsymbol{\nabla}\right) \gamma_{0}
$$

our four Laplacian can be written

$$
\begin{aligned}
\left(\partial_{0}-\nabla\right) \gamma_{0} \gamma^{0}\left(\partial_{0}+\nabla\right) & =\left(\partial_{0}-\nabla\right)\left(\partial_{0}+\nabla\right) \\
& =\partial_{00}-\nabla^{2}
\end{aligned}
$$

Our vacuum field equation for the potential is thus

$$
\begin{equation*}
\partial_{t t} A=c^{2} \nabla^{2} A \tag{1}
\end{equation*}
$$

Now, as before assume a Fourier solution and see what follows. That is

$$
\begin{equation*}
A(\mathbf{x}, t)=\sum_{\mathbf{k}} \hat{A}_{\mathbf{k}}(t) e^{-i \mathbf{k} \cdot \mathbf{x}} \tag{2}
\end{equation*}
$$

Applied to each component this gives us

$$
\begin{aligned}
\hat{A}_{\mathbf{k}}^{\prime \prime} e^{-i \mathbf{k} \cdot x} & =c^{2} \hat{A}_{\mathbf{k}}(t) \sum_{m} \frac{\partial^{2}}{\left(\partial x^{m}\right)^{2}} e^{-2 \pi i \sum_{j} k_{j} x^{j} / \lambda_{j}} \\
& =c^{2} \hat{A}_{\mathbf{k}}(t) \sum_{m}\left(-2 \pi i k_{m} / \lambda_{m}\right)^{2} e^{-i \mathbf{k} \cdot x} \\
& =-c^{2} \mathbf{k}^{2} \hat{A}_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{x}}
\end{aligned}
$$

So we are left with another big ass set of simplest equations to solve

$$
\hat{A}_{\mathbf{k}}^{\prime \prime}=-c^{2} \mathbf{k}^{2} \hat{A}_{\mathbf{k}}
$$

Note that again the origin point $\mathbf{k}=(0,0,0)$ is a special case. Also of note this time is that $\hat{A}_{\mathbf{k}}$ has vector and trivector parts, unlike $\hat{F}_{\mathbf{k}}$ which being derived from dual and non-dual components of a bivector was still a bivector.

It appears that solutions can be found with either left or right handed vector valued integration constants

$$
\begin{aligned}
\hat{A}_{\mathbf{k}}(t) & =\exp ( \pm i c \mathbf{k} t) C_{\mathbf{k}} \\
& =D_{\mathbf{k}} \exp ( \pm i c \mathbf{k} t)
\end{aligned}
$$

Since these are equal at $t=0$, it appears to imply that these commute with the complex exponentials as was the case for the bivector field.

For the $\mathbf{k}=0$ special case we have solutions

$$
\hat{A}_{\mathbf{k}}(t)=D_{0} t+C_{0}
$$

It doesn't seem unreasonable to require $D_{0}=0$. Otherwise this time dependent DC Fourier component will blow up at large and small values, while periodic solutions are sought.

Putting things back together we have

$$
A(\mathbf{x}, t)=\sum_{\mathbf{k}} \exp ( \pm i c \mathbf{k} t) C_{\mathbf{k}} \exp (-i \mathbf{k} \cdot \mathbf{x})
$$

Here again for $t=0$, our integration constants are found to be determined completely by the initial conditions

$$
\begin{equation*}
A(\mathbf{x}, 0)=\sum_{\mathbf{k}} C_{\mathbf{k}} e^{-i \mathbf{k} \cdot \mathbf{x}} \tag{3}
\end{equation*}
$$

So we can write

$$
C_{\mathbf{k}}=\frac{1}{V} \int A\left(\mathbf{x}^{\prime}, 0\right) e^{i \mathbf{k} \cdot \mathbf{x}^{\prime}} d^{3} x^{\prime}
$$

In integral form this is

$$
\begin{equation*}
A(\mathbf{x}, t)=\int \sum_{\mathbf{k}} \exp ( \pm i \mathbf{k} c t) A\left(\mathbf{x}^{\prime}, 0\right) \exp \left(i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

This, somewhat suprisingly, is strikingly similar to what we had for the bivector field. That was:

$$
\begin{align*}
& F(\mathbf{x}, t)=\int G\left(\mathbf{x}-\mathbf{x}^{\prime}, t\right) F\left(\mathbf{x}^{\prime}, 0\right) d^{3} x^{\prime}  \tag{5}\\
& G(\mathbf{x}, t)=\frac{1}{V} \sum_{\mathbf{k}} \exp (i \mathbf{k} c t) \exp (-i \mathbf{k} \cdot \mathbf{x}) \tag{6}
\end{align*}
$$

We cannot however commute the time phase term to construct a one sided Green's function for this potential solution (or perhaps we can but if so shown or attempted to show that this is possible). We also have a plus or minus variation in the phase term due to the second order nature of the harmonic oscillator equations for our Fourier coefficients.

### 2.2 Comparing the first and second order solutions

A consequense of working in the Lorentz gauge $(\nabla \cdot A=0)$ is that our field solution should be a gradient

$$
\begin{aligned}
F & =\nabla \wedge A \\
& =\nabla A
\end{aligned}
$$

FIXME: expand this out using 4 to compare to the first order solution.

## References

[Joot()] Peeter Joot. Fourier series vacuum maxwell's equations. 'http://sites.google.com/site/peeterjoot/math2009/ fourier_series_maxwell.pdf".

