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1 Motivation.

In [Joot()] a first order Fourier solution of the Vacuum Maxwell equation was
performed. Here a comparative potential solution is obtained.

1.1 Notation.

The 3D Fourier series notation developed for this treatment can be found in
the original notes [Joot()]. Also included there is a table of notation, much of
which is also used here.

2 Second order treatment with potentials.

2.1 With the Lorentz gauge.

Now, it appears that Bohm’s use of potentials allows a nice comparison with
the harmonic oscillator. Let’s also try a Fourier solution of the potential equa-
tions. Again, use STA instead of the traditional vector equations, writing A =
(¢ + a)70, and employing the Lorentz gauge V- A = 0 we have for F = VA A
in cgs units

FIXME: Add a, and ¥ to notatational table below with definitions in terms
of £, and H (or the other way around).



V2A =4n]

Again with a spacetime split of the gradient

V =1+ V) = (8~ V)
our four Laplacian can be written
(80— V)707° (80 + V) = (9 — V) (30 + V)
= dgo — V*
Our vacuum field equation for the potential is thus
oA = *V?2A 1)

Now, as before assume a Fourier solution and see what follows. That is

A(x t) = Y Ag(t)e > 2)
k

Applied to each component this gives us

. R 2 o
Ajle™™* = 2 A (1) Y (aim)ze_zmzikf"]m/
m
= PAx(t) Y (—27tikp / A ) e

m

— 7C2k2Ake—zk~x

So we are left with another big ass set of simplest equations to solve

Aiz = —Czszk

Note that again the origin point k = (0,0,0) is a special case. Also of note
this time is that Ay has vector and trivector parts, unlike £y which being de-
rived from dual and non-dual components of a bivector was still a bivector.

It appears that solutions can be found with either left or right handed vector
valued integration constants

Ay (t) = exp(+ickt)Cy
= Dy exp(=ickt)



Since these are equal at t = 0, it appears to imply that these commute with
the complex exponentials as was the case for the bivector field.
For the k = 0 special case we have solutions

Ak(t) = Dot + Cp

It doesn’t seem unreasonable to require Dy = 0. Otherwise this time de-
pendent DC Fourier component will blow up at large and small values, while
periodic solutions are sought.

Putting things back together we have

A(x,t) =) exp(=ickt)Cy exp(—ik - X)
k

Here again for t = 0, our integration constants are found to be determined
completely by the initial conditions

A(x,0) = ZCke*"k"‘ ©)
K

So we can write

Cr = % / A(X',0)e X By

In integral form this is

A(x, t) = /;exp(:tikct)A(x’,O)exp(ik~ (x—x)) (4)

This, somewhat suprisingly, is strikingly similar to what we had for the
bivector field. That was:

F(x t) = / G(x — X, )F(x, 0)d’x’ 5)
G(x, t) = % Y _exp (iket) exp (—ik - x) (6)
k

We cannot however commute the time phase term to construct a one sided
Green’s function for this potential solution (or perhaps we can but if so shown
or attempted to show that this is possible). We also have a plus or minus varia-
tion in the phase term due to the second order nature of the harmonic oscillator
equations for our Fourier coefficients.



2.2 Comparing the first and second order solutions

A consequense of working in the Lorentz gauge (V - A = 0) is that our field
solution should be a gradient

F=VAA
=VA

FIXME: expand this out using[4|to compare to the first order solution.
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