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1. Spatial bivector representation of the angular momentum operator.

Reading ([1]) on the angular momentum operator, the form of the operator is suggested by
analogy where components of x × p with the position representation p ∼ −ih̄∇ used to expand
the coordinate representation of the operator.

The result is the following coordinate representation of the operator
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L1 = −ih̄(x2∂3 − x3∂2)
L2 = −ih̄(x3∂1 − x1∂3)
L3 = −ih̄(x1∂2 − x2∂1)

It is interesting to put these in vector form, and then employ the freedom to use for i = σ1σ2σ3
the spatial pseudoscalar.

L = −σ1(σ1σ2σ3)h̄(x2∂3 − x3∂2)− σ2(σ2σ3σ1)h̄(x3∂1 − x1∂3)− σ3(σ3σ1σ2)h̄(x1∂2 − x2∂1)
= −σ2σ3h̄(x2∂3 − x3∂2)− σ3σ1h̄(x3∂1 − x1∂3)− σ1σ2h̄(x1∂2 − x2∂1)
= −h̄(σ1x1 + σ2x2 + σ3x3) ∧ (σ1∂1 + σ2∂2 + σ3∂3)

The choice to use the pseudoscalar for this imaginary seems a logical one and the end result is
a pure bivector representation of angular momentum operator

L = −h̄x ∧∇ (1)

The choice to represent angular momentum as a bivector x ∧ p is also natural in classical me-
chanics (encoding the orientation of the plane and the magnitude of the momentum in the bivec-
tor), although its dual form the axial vector x × p is more common, at least in introductory me-
chanics. Observe that there is no longer any explicit imaginary in (1), since the bivector itself has
an implicit complex structure.

2. Factoring the gradient and Laplacian.

The form of (1) suggests a more direct way to extract the angular momentum operator from the
Hamiltonian (i.e. from the Laplacian). Bohm uses the spherical polar representation of the Lapla-
cian as the starting point. Instead let’s project the gradient itself in a specific constant direction a,
much as we can do to find the polar form angular velocity and acceleration components.

Write

∇ =
1
a

a∇

=
1
a
(a ·∇ + a ∧∇)
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Or

∇ = ∇a
1
a

= (∇ · a + ∇ ∧ a)
1
a

= (a ·∇− a ∧∇)
1
a

The Laplacian is therefore

∇2 =
〈
∇2

〉
=

〈
(a ·∇− a ∧∇)

1
a

1
a
(a ·∇ + a ∧∇)

〉
=

1
a2 〈(a ·∇− a ∧∇)(a ·∇ + a ∧∇)〉

=
1
a2 ((a ·∇)2 − (a ∧∇)2)

So we have for the Laplacian a representation in terms of projection and rejection components

∇2 = (â ·∇)2 − 1
a2 (a ∧∇)2

= (â ·∇)2 − (â ∧∇)2

The vector a was arbitrary, and just needed to be constant with respect to the factorization
operations. Setting a = x, the radial position from the origin one may guess that we have

∇2 =
∂2

∂r2 −
1
x2 (x ∧∇)2 (2)

however, with the switch to a non-constant position vector x, this cannot possibly be right.

3. The Coriolis term

The radial factorization of the gradient relied on the direction vector a being constant. If we
evaluate (2), then there should be a non-zero remainder compared to the Laplacian. Evaluation by
coordinate expansion is one way to verify this, and should produce the difference. Let’s do this in
two parts, starting with the scalar part of (x ∧∇)2. Summation will be implied by mixed indexes,
and for generality a general basis and associated reciprocal frame will be used.

3



〈
(x ∧∇)2〉 f = ((xµγµ) ∧ (γν∂ν)) · ((xαγα) ∧ (γβ∂β)) f

= (γµ ∧ γν) · (γα ∧ γβ)xµ∂ν(xα∂β) f

= (δµ
βδν

α − δµ
αδν

β)xµ∂ν(xα∂β) f

= xµ∂ν((xν∂µ)− xµ∂ν) f
= xµ(∂νxν)∂µ f − xµ(∂νxµ)∂ν f
+ xµxν∂ν∂µ f − xµxµ∂ν∂ν f

= (n− 1)x · ∇ f + xµxν∂ν∂µ f − x2∇2 f

For the dot product we have〈
(x · ∇)2〉 f = xµ∂µ(xν∂ν) f

= xµ(∂µxν)∂ν f + xµxν∂µ∂ν f
= xµ∂µ f + xµxν∂ν∂µ f
= x · ∇ f + xµxν∂ν∂µ f

So, forming the difference we have

(x · ∇)2 f −
〈
(x ∧∇)2〉 f = −(n− 2)x · ∇ f + x2∇2 f

Or

∇2 =
1
x2 (x · ∇)2 − 1

x2

〈
(x ∧∇)2〉 + (n− 2)

1
x
· ∇ (3)

4. On the bivector and quadvector components of the squared angular momentum operator.

The requirement for a scalar selection on all the (x ∧ ∇)2 terms is a bit ugly, but omitting
it would be incorrect for two reasons. One reason is that this is a bivector operator and not a
bivector (where the squaring operates on itself). The other is that we derived a result for arbitrary
dimension, and the product of two bivectors in a general space has grade 2 and grade 4 terms in
addition to the scalar terms. Without taking only the scalar parts, lets expand this product a bit
more carefully, starting with

(x ∧∇)2 = (γµ ∧ γν)(γα ∧ γβ)xµ∂νxα∂β

Just expanding the multivector factor for now, we have
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2(γµ ∧ γν)(γα ∧ γβ) = γµγν(γα ∧ γβ)− γνγµ(γα ∧ γβ)

= γµ

(
δν

αγβ − δν
βγα + γν ∧ γα ∧ γβ

)
− γν

(
δµ

αγβ − δµ
βγα + γµ ∧ γα ∧ γβ

)
= δν

αδµ
β − δν

βδµ
α − δµ

αδν
β + δµ

βδν
α

+ γµ ∧ γν ∧ γα ∧ γβ − γν ∧ γµ ∧ γα ∧ γβ

+ γµ · (γν ∧ γα ∧ γβ)− γν · (γµ ∧ γα ∧ γβ)

Our split into grades for this operator is then, the scalar

〈
(x ∧∇)2〉 = (x ∧∇) · (x ∧∇)

=
(

δν
αδµ

β − δν
βδµ

α
)

xµ∂νxα∂β

the pseudoscalar (or grade 4 term in higher than 4D spaces).

〈
(x ∧∇)2〉

4 = (x ∧∇) ∧ (x ∧∇)

=
(

γµ ∧ γν ∧ γα ∧ γβ
)

xµ∂νxα∂β

If we work in dimensions less than or equal to three, we’ll have no grade four term since this
wedge product is zero (irrespective of the operator action), so in 3D we have only a bivector term
in excess of the scalar part of this operator.

The bivector term deserves some reduction, but is messy to do so. This has been done sepa-
rately in ([2])

We can now write for the squared operator

(x ∧∇)2 = (n− 2)(x ∧∇) + (x ∧∇) ∧ (x ∧∇) + (x ∧∇) · (x ∧∇) (4)

and then eliminate the scalar selection from the (3)

∇2 =
1
x2 (x · ∇)2 + (n− 2)

1
x
· ∇ − 1

x2

(
(x ∧∇)2 − (n− 2)(x ∧∇)− (x ∧∇) ∧ (x ∧∇)

)
(5)

In 3D this is

∇2 =
1
x2 (x ·∇)2 +

1
x
·∇− 1

x2 (x ∧∇− 1) (x ∧∇) (6)

Wow, that was an ugly mess of algebra. The worst of it for the bivector grades was initially
incorrect and the correct handling omitted. There is likely a more clever coordinate free way to do
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the same expansion. We will see later that at least a partial verification of (6) can be obtained by
considering of the Quantum eigenvalue problem, examining simultaneous eigenvalues of x ∧∇,
and

〈
x ∧∇)2〉. However, lets revisit this after examining the radial terms in more detail, and also

after verifying that at least in the scalar selection form, this factorized Laplacian form has the same
structure as the Laplacian in scalar r, θ, and φ operator form.

5. Correspondence with explicit radial form.

We’ve seen above that we can factor the 3D Laplacian as

∇2ψ =
1
x2 ((x ·∇)2 + x ·∇−

〈
(x ∧∇)2〉)ψ (7)

Contrast this to the explicit r, θ, φ form as given in (Bohm’s [1], 14.2)

∇2ψ =
1
r

∂2

∂r2 (rψ) +
1
r2

(
1

sin θ
∂θ sin θ∂θ +

1
sin2 θ

+ ∂φφ

)
ψ (8)

Let’s expand out the non-angular momentum operator terms explicitly as a partial verification
of this factorization. The radial term in Bohm’s Laplacian formula expands out to

1
r

∂2

∂r2 (rψ) =
1
r

∂r(∂rrψ)

=
1
r

∂r(ψ + r∂rψ)

=
1
r

∂rψ +
1
r
(∂rψ + r∂rrψ)

=
2
r

∂rψ + ∂rrψ

On the other hand, with x = rr̂, what we expect to correspond to the radial term in the vector
factorization is

1
x2 ((x ·∇)2 + x ·∇)ψ =

1
r2 ((rr̂ ·∇)2 + rr̂ ·∇)ψ

=
1
r2 ((r∂r)2 + r∂r)ψ

=
1
r2 (r∂rψ + r2∂rrψ + r∂rψ)

=
2
r

∂rψ + ∂rrψ

Okay, good. It’s a brute force way to verify things, but it works. With x∧∇ = I(x×∇) we can
eliminate the wedge product from the factorization expression (7) and express things completely
in quantities that can be understood without any resort to Geometric Algebra. That is
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∇2ψ =
1
r

∂2

∂r2 (rψ) +
1
r2

〈
(x×∇)2〉ψ (9)

Bohm resorts to analogy and an operatorization of Lc = εabc(xa pb − xb pa), then later a spherical
polar change of coordinates to match exactly the L2 expression with (8). With the GA formalism
we see this a bit more directly, although it is not the least bit obvious that the operator x × ∇
has no radial dependence. Without resorting to a comparison with the explicit r, θ, φ form that
wouldn’t be so easy to see.

6. Raising and Lowering operators in GA form.

Having seen in ([3]) that we have a natural GA form for the l = 1 spherical harmonic eigen-
functions ψm

1 , and that we have the vector angular momentum operator x×∇ showing up directly
in a sort-of-radial factorization of the Laplacian, it is natural to wonder what the GA form of the
raising and lowering operators are. At least for the l = 1 harmonics use of i = Ie3 (unit bivector
for the x − y plane) for the imaginary ended up providing a nice geometric interpretation.

Let’s see what that provides for the raising and lowering operators. First we need to express
Lx and Ly in terms of our bivector angular momentum operator. Let’s switch notations and drop
the −ih̄ factor from (1) writing just

L = x ∧∇ (10)

We can now write this in terms of components with respect to the basis bivectors Iek. That is

L = ∑
k

(
(x ∧∇) · 1

Iek

)
Iek (11)

These scalar product results are expected to match the Lx, Ly, and Lz components at least up
to a sign. Let’s check, picking Lz as representative

(x ∧∇) · 1
Ie3

= (σm ∧ σk) · −σ1σ2σ3σ3xm∂k

= (σm ∧ σk) · −σ1σ2xm∂k

= −(x2∂1 − x1∂2)

With the −ih̄ factors dropped this is Lz = L3 = x1∂2 − x2∂1, the projection of L onto the x − y
plane Iek. So, now how about the raising and lowering operators

Lx ± iLy = Lx ± Ie3Ly

= L · 1
Ie1

± Ie3L · 1
Ie2

= −e1 I
(

Ie1L · 1
Ie1

± Ie2L · 1
Ie2

)
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Or

(Ie1)Lx ± iLy = Ie1L · 1
Ie1

± Ie2L · 1
Ie2

(12)

Compare this to the projective split of L (11). We have projections of the bivector angular
momentum operator onto the bivector directions Ie1 and Ie2 (really the bivectors for the planes
perpendicular to the x̂ and ŷ directions).

We have the Laplacian in explicit vector form and have a clue how to vectorize (really bivector-
ize) the raising and lowering operators. We have also seen how to geometrize the first spherical
harmonics. The next logical step is to try to apply this vector form of the raising and lowering
operators to the vector form of the spherical harmonics.

7. Explicit expansion of the angular momentum operator.

There’s a couple of things to explore before going forward. One is an explicit verification that
x ∧ ∇ has no radial dependence (something not obvious). Another is that we should be able
to compare the x−2(x ∧ ∇)2 (as done for the x · ∇ terms) the explicit r, θ, φ expression for the
Laplacian to verify consistency and correctness.

For the spherical polar rotation we use the rotor

R = ee31θ/2ee12φ/2 (13)

Our position vector and gradient in spherical polar coordinates are

x = rR̃e3R (14)

∇ = r̂∂r + θ̂
1
r

∂θ + φ̂
1

r sin θ
∂φ (15)

with the unit vectors translate from the standard basis as

 r̂
θ̂
φ̂

 = R̃

e3
e1
e2

 R (16)

This last mapping can be used to express the gradient unit vectors in terms of the standard
basis, as we did for the position vector x. That is

∇ = R̃
(

e3R∂r + e1R
1
r

∂θ + e2R
1

r sin θ
∂φ

)
(17)

Okay, we’ve now got all the pieces collected, ready to evaluate x ∧∇
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x ∧∇ = r
〈

R̃e3RR̃
(

e3R∂r + e1R
1
r

∂θ + e2R
1

r sin θ
∂φ

)〉
2

= r
〈

R̃
(

R∂r + e3e1R
1
r

∂θ + e3e2R
1

r sin θ
∂φ

)〉
2

Observe that the e3
2 contribution is only a scalar, so bivector selection of that is zero. In the

remainder we have cancellation of r/r factors, leaving just

x ∧∇ = R̃
(

e3e1R∂θ + e3e2R
1

sin θ
∂φ

)
(18)

Using (16) this is

x ∧∇ = r̂
(

θ̂∂θ + φ̂
1

sin θ
∂φ

)
(19)

As hoped, there is no explicit radial dependence here, taking care of the first of the desired
verifications.

Next we want to square this operator. It should be noted that in the original derivation where
we “factored” the gradient operator with respect to the reference vector x our Laplacian really
followed by considering (x ∧ ∇)2 ≡

〈
(x ∧∇)2〉. That’s worth noting since a regular bivector

would square to a negative constant, whereas the operator factors of the vectors in this expression
do not intrinsically commute.

An additional complication for evaluating the square of x ∧∇ using the result of (19) is that
θ̂ and r̂ are functions of θ and φ, so we’d have to operate on those too. Without that operator
subtlety we get the wrong answer

−
〈
(x ∧∇)2〉 =

〈
R̃

(
e1R∂θ +

e2R
sin θ

∂φ

)
R̃

(
e1R∂θ +

e2R
sin θ

∂φ

)〉
6= ∂θθ +

1
sin2 θ

∂φφ

Equality above would only be if the unit vectors were fixed. By comparison we also see that
this is missing a cot θ∂θ term. That must come from the variation of the unit vectors with position
in the second application of x ∧∇.

8. Derivatives of the unit vectors

To properly evaluate the angular momentum square we’ll need to examine the ∂θ and ∂φ vari-
ation of the unit vectors r̂, θ̂, and φ̂. Some part of this question can be evaluated without reference
to the specific vector or even which derivative is being evaluated. Writing e for one of e1, e2, or
ek, and σ = R̃eR for the mapping of this vector under rotation, and ∂ for the desired θ or φ partial
derivative, we have
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∂(R̃eR) = (∂R̃)eR + R̃e(∂R) (20)

Since R̃R = 1, we have

0 = ∂(R̃R)
= (∂R̃)R + R̃(∂R)

So substitution of (∂R̃) = −R̃(∂R)R̃, back into (20) supplies

∂(R̃eR) = −R̃(∂R)R̃eR + R̃e(∂R)
= −R̃(∂R)(R̃eR) + (R̃eR)R̃(∂R)
= −R̃(∂R)σ + σR̃(∂R)

Writing the bivector term as

Ω = R̃(∂R) (21)

The change in the rotated vector is seen to be entirely described by the commutator of that
vectors image under rotation with Ω. That is

∂σ = [σ, Ω] (22)

Our spherical polar rotor was given by

R = ee31θ/2ee12φ/2 (23)

Lets calculate the Ω bivector for each of the θ and φ partials. For θ we have

Ωθ = R̃∂θ R

=
1
2

e−e12φ/2e−e31θ/2e31ee31θ/2ee12φ/2

=
1
2

e−e12φ/2e31ee12φ/2

=
1
2

e3e−e12φ/2e1ee12φ/2

=
1
2

e31ee12φ
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Explicitly, this is the bivector Ωθ = (e31 cos θ + e32 sin θ)/2, a wedge product of a vectors in ẑ
direction with one in the perpendicular x − y plane (curiously a vector in the x − y plane rotated
by polar angle θ, not the equatorial angle φ).

FIXME: picture. Draw this plane cutting through the sphere.
For the φ partial variation of any of our unit vectors our bivector rotation generator is

Ωφ = R̃∂φR

=
1
2

e−e12φ/2e−e31θ/2ee31θ/2e12ee12φ/2

=
1
2

e12

This one has no variation at all with angle whatsoever. If this is all correct so far perhaps that
is not surprising given the fact that we expect an extra cot θ in the angular momentum operator
square, so a lack of φ dependence in the rotation generator likely means that any additional φ
dependence will cancel out. Next step is to take these rotation generator bivectors, apply them via
commutator products to the r̂, θ̂, and φ̂ vectors, and see what we get.

9. Applying the vector derivative commutator (or not).

Let’s express the θ̂ and φ̂ unit vectors explicitly in terms of the standard basis. Starting with θ̂
we have

θ̂ = R̃e1R

= e−e12φ/2e−e31θ/2e1ee31θ/2ee12φ/2

= e−e12φ/2e1ee31θee12φ/2

= e−e12φ/2(e1 cos θ − e3 sin θ)ee12φ/2

= e1 cos θee12φ − e3 sin θ

Explicitly in vector form, eliminating the exponential, this is θ̂ = e1 cos θ cos φ + e2 cos θ sin φ−
e3 sin θ, but it is more convenient to keep the exponential as is.

For φ̂ we have

φ̂ = R̃e2R

= e−e12φ/2e−e31θ/2e2ee31θ/2ee12φ/2

= e−e12φ/2e2ee12φ/2

= e2ee12φ

Again, explicitly this is φ̂ = e2 cos φ − e1 sin φ, but we’ll use the exponential form above. Last
we want r̂
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r̂ = R̃e3R

= e−e12φ/2e−e31θ/2e3ee31θ/2ee12φ/2

= e−e12φ/2e3ee31θee12φ/2

= e−e12φ/2(e3 cos θ + e1 sin θ)ee12φ/2

= e3 cos θ + e1 sin θee12φ

Summarizing we have

θ̂ = e1 cos θee12φ − e3 sin θ (24)

φ̂ = e2ee12φ (25)

r̂ = e3 cos θ + e1 sin θee12φ (26)

Or without exponentials

θ̂ = e1 cos θ cos φ + e2 cos θ sin φ− e3 sin θ (27)
φ̂ = e2 cos φ− e1 sin φ (28)
r̂ = e3 cos θ + e1 sin θ cos φ + e2 sin θ sin φ (29)

Now, having worked out the cool commutator result, it appears that it will actually be harder
to use it, then to just calculate the derivatives directly (at least for the φ̂ derivatives). For those we
have

∂θφ̂ = ∂θe2ee12φ

= 0

and

∂φφ̂ = ∂φe2ee12φ

= e2e12ee12φ

= −e12φ̂

This multiplication takes φ̂ a vector in the x, y plane and rotates it 90 degrees, leaving an
inwards facing radial unit vector in the x,y plane.

Now, having worked out the commutator method, lets at least verify that it works.
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∂θφ̂ =
[
φ̂, Ωθ

]
= φ̂Ωθ −Ωθφ̂

=
1
2
(φ̂e31ee12φ − e31ee12φφ̂)

=
1
2
(e2e3e1e−e12φee12φ − e3e1e2e−e12φee12φ)

=
1
2
(−e3e2e1 − e3e1e2)

= 0

Much harder this way compared to taking the derivative directly, but we at least get the right
answer. For the φ derivative using the commutator we have

∂φφ̂ =
[
φ̂, Ωφ

]
= φ̂Ωφ −Ωφφ̂

=
1
2
(φ̂e12 − e12φ̂)

=
1
2
(e2ee12φe12 − e12e2ee12φ)

=
1
2
(−e12e2ee12φ − e12e2ee12φ)

= −e12φ̂

Good, also consistent with direct calculation. How about our θ̂ derivatives? Lets just calculate
these directly without bothering at all with the commutator. This is

∂φθ̂ = e1 cos θe12ee12φ

= e2 cos θee12φ

= cos θφ̂

and

∂θ θ̂ = −e1 sin θee12φ − e3 cos θ

= −e12 sin θφ̂− e3 cos θ

Finally, last we have the derivatives of r̂. Those are

∂φ r̂ = e2 sin θee12φ

= sin θφ̂
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and

∂θ r̂ = −e3 sin θ + e1 cos θee12φ

= −e3 sin θ + e12 cos θφ̂

Summarizing, all the derivatives we need to evaluate the square of the angular momentum
operator are

∂θφ̂ = 0 (30)
∂φφ̂ = −e12φ̂ (31)

∂θ θ̂ = −e12 sin θφ̂− e3 cos θ (32)

∂φθ̂ = cos θφ̂ (33)
∂θ r̂ = −e3 sin θ + e12 cos θφ̂ (34)
∂φ r̂ = sin θφ̂ (35)

Bugger. We actually want the derivatives of the bivectors r̂θ̂ and r̂φ̂ so we aren’t ready to
evaluate the squared angular momentum. There’s three choices, one is to use these results and
apply the chain rule, or start over and directly take the derivatives of these bivectors, or use the
commutator result (which didn’t actually assume vectors and we can apply it to bivectors too if
we really wanted to).

An attempt to use the chain rule get messy, but it looks like the bivectors reduce nicely, mak-
ing it pointless to even think about the commutator method. Introducing some notational conve-
niences, first write i = e12. We’ll have to be a bit careful with this since it commutes with e3, but
anticommutes with e1 or e2 (and therefore φ̂). As usual we also write I = e1e2e3 for the Euclidean
pseudoscalar (which commutes with all vectors and bivectors).

r̂θ̂ = (e3 cos θ + i sin θφ̂)(cos θiφ̂− e3 sin θ)

= e3 cos2 θiφ̂− i sin2 θφ̂e3 + (iφ̂iφ̂− e3e3) cos θ sin θ

= ie3(cos2 θ + sin2 θ)φ̂ + (−φ̂i2φ̂− 1) cos θ sin θ

This gives us just

r̂θ̂ = Iφ̂ (36)

and calculation of the bivector partials will follow exclusively from the φ̂ partials tabulated
above.

Our other bivector doesn’t reduce quite as cleanly. We have

r̂φ̂ = (e3 cos θ + i sin θφ̂)φ̂

So for this one we have
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r̂φ̂ = e3φ̂ cos θ + i sin θ (37)

Tabulating all the bivector derivatives (details omitted) we have

∂θ(r̂θ̂) = 0 (38)

∂φ(r̂θ̂) = e3φ̂ (39)

∂θ(r̂φ̂) = −e3φ̂ sin θ + i cos θ = ieIφ̂θ (40)
∂φ(r̂φ̂) = −Iφ̂ cos θ (41)

Okay, we should now be armed to do the squaring of the angular momentum.

10. Squaring the angular momentum operator.

It is expected that we have the equivalence of the squared bivector form of angular momen-
tum with the classical scalar form in terms of spherical angles φ, and θ. Specifically, if no math
errors have been made playing around with this GA representation, we should have the following
identity for the scalar part of the squared angular momentum operator

−
〈
(x ∧∇)2〉 =

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2 (42)

To finally attempt to verify this we write the angular momentum operator in polar form, using
i = e1e2 as

x ∧∇ = r̂
(

θ̂∂θ + φ̂
1

sin θ
∂φ

)
(43)

Expressing the unit vectors in terms of φ̂ and after some rearranging we have

x ∧∇ = Iφ̂

(
∂θ + ieIφ̂θ 1

sin θ
∂φ

)
(44)

Using this lets now compute the partials. First for the θ partials we have

∂θ(x ∧∇) = Iφ̂

(
∂θθ + iIφ̂eIφ̂θ 1

sin θ
∂φ + ieIφ̂θ cos θ

sin2 θ
∂φ + ieIφ̂θ 1

sin θ
∂θφ

)
= Iφ̂

(
∂θθ + i(Iφ̂eIφ̂θ sin θ + eIφ̂θ cos θ)

1
sin2 θ

∂φ + ieIφ̂θ 1
sin θ

∂θφ

)
= Iφ̂

(
∂θθ + ie2Iφ̂θ 1

sin2 θ
∂φ + ieIφ̂θ 1

sin θ
∂θφ

)
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Premultiplying by Iφ̂ and taking scalar parts we have the first part of the application of (44)
on itself,

〈
Iφ̂∂θ(x ∧∇)

〉
= −∂θθ (45)

For the φ partials it looks like the simplest option is using the computed bivector φ partials
∂φ(r̂θ̂) = e3φ̂, ∂φ(r̂φ̂) = −Iφ̂ cos θ. Doing so we have

∂φ(x ∧∇) = ∂φ

(
r̂θ̂∂θ + r̂φ̂

1
sin θ

∂φ

)
= e3φ̂∂θ + +r̂θ̂∂φθ − Iφ̂ cot θ∂φ + r̂φ̂

1
sin θ

∂φφ

So the remaining terms of the squared angular momentum operator follow by premultiplying
by r̂φ̂/ sin θ, and taking scalar parts. This is

〈
r̂φ̂

1
sin θ

∂φ(x ∧∇)
〉

=
1

sin θ

〈
−r̂e3∂θ +−φ̂θ̂∂φθ − r̂I cot θ∂φ

〉
− 1

sin2 θ
∂φφ

The second and third terms in the scalar selection have only bivector parts, but since r̂ =
e3 cos θ + e1 sin θee12φ has component in the e3 direction, we have

〈
r̂φ̂

1
sin θ

∂φ(x ∧∇)
〉

= − cot θ∂θ −
1

sin2 θ
∂φφ (46)

Adding results from (45), and (46) we have

−
〈
(x ∧∇)2〉 = ∂θθ + cot θ∂θ +

1
sin2 θ

∂φφ (47)

A final verification of (42) now only requires a simple calculus expansion

1
sin θ

∂

∂θ
sin θ

∂

∂θ
ψ =

1
sin θ

∂

∂θ
sin θ∂θψ

=
1

sin θ
(cos θ∂θψ + sin θ∂θθψ)

= cot θ∂θψ + ∂θθψ

Voila. This exercise demonstrating that what was known to have to be true, is in fact explicitly
true, is now done. There’s no new or interesting results in this in and of itself, but we get some
additional confidence in the new methods being experimented with.
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11. 3D Quantum Hamiltonian

Going back to the quantum Hamiltonian we do still have the angular momentum operator as
one of the distinct factors of the Laplacian. As operators we have something akin to the projec-
tion of the gradient onto the radial direction, as well as terms that project the gradient onto the
tangential plane to the sphere at the radial point

− h̄2

2m
∇2 + V = − h̄2

2m

(
1
x2 (x ·∇)2 − 1

x2

〈
(x ∧∇)2〉 +

1
x
·∇

)
+ V (48)

Using the result of (6) and the radial formulation for the rest, we can write this

0 =
(

∇2 − 2m
h̄2 (V − E)

)
ψ

=
1
r

∂

∂r
r

∂ψ

∂r
− 1

r2 (x ∧∇− 1) (x ∧∇)ψ− 2m
h̄2 (V − E)ψ

If V = V(r), then a radial split by separation of variables is possible. Writing ψ = R(r)Y, we
get

r
R

∂

∂r
r

∂R
∂r

− 2mr2

h̄2 (V(r)− E) =
1
Y

(x ∧∇− 1) (x ∧∇)Y = constant (49)

For the constant, lets use c, and split this into a pair of equations

r
∂

∂r
r

∂R
∂r

− 2mr2R
h̄2 (V(r)− E) = cR (50)

(x ∧∇− 1) (x ∧∇)Y = cY (51)

In this last we can examine simultaneous eigenvalues of x ∧∇, and
〈
(x ∧∇)2〉. Suppose that

Yλ is an eigenfunction of x ∧∇ with eigenvalue λ. We then have

〈
(x ∧∇)2〉Yλ = (x ∧∇− 1) (x ∧∇)Yλ

= (x ∧∇− 1) λYλ

= λ (λ− 1) Yλ

We see immediately that Yλ is then also an eigenfunction of
〈
(x ∧∇)2〉, with eigenvalue

λ (λ− 1) (52)
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Bohm gives results for simultaneous eigenfunctions of Lx, Ly, or Lz with L2, in which case the
eigenvalues match. He also shows that eigenfunctions of raising and lowering operators, Lx ± iLy
are also simultaneous eigenfunctions of L2, but having m(m ± 1) eigenvalues. This is something
slightly different since we aren’t considering any specific components, but we still see that eigen-
functions of the bivector angular momentum operator x ∧∇ are simultaneous eigenfunctions of
the scalar squared angular momentum operator 〈x ∧∇〉 (Q: is that identical to the scalar operator
L2).

Moving on, the next order of business is figuring out how to solve the multivector eigenvalue
problem

(x ∧∇)Yλ = λYλ (53)

12. Angular momentum polar form, factoring out the raising and lowering operators, and si-
multaneous eigenvalues.

After a bit more manipulation we find that the angular momentum operator polar form repre-
sentation, again using i = e1e2, is

x ∧∇ = Iφ̂(∂θ + i cot θ∂φ + e23eiφ∂φ) (54)

Observe how similar the exponential free terms within the braces are to the raising operator as
given in Bohm’s equation (14.40)

Lx + iLy = eiφ(∂θ + i cot θ∂φ) (55)

Lz =
1
i

∂φ (56)

In fact since e23eiφ = e−iφe23, the match can be made even closer

x ∧∇ = Iφ̂e−iφ(eiφ(∂θ + i cot θ∂φ)︸ ︷︷ ︸
=Lx+iLy

+e13
1
i

∂φ︸︷︷︸
=Lz

) (57)

This is a surprising factorization, but noting that φ̂ = e2eiφ we have

x ∧∇ = e31

(
eiφ(∂θ + i cot θ∂φ) + e13

1
i

∂φ

)
(58)

It appears that the factoring out from the left of a unit bivector (in this case e31) from the
bivector angular momentum operator, leaves as one of the remainders the raising operator.

Similarly, noting that e13 anticommutes with i = e12, we have the right factorization

x ∧∇ =
(

e−iφ(∂θ − i cot θ∂φ)− e13
1
i

∂φ

)
e31 (59)
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Now in the remainder, we see the polar form representation of the lowering operator Lx −
iLy = e−iφ(∂θ − i cot θ∂φ).

I wasn’t expecting the raising and lowering operators “to fall out” as they did by simply ex-
pressing the complete bivector operator in polar form. This is actually fortuitous since it shows
why this peculiar combination is of interest.

If we find a zero solution to the raising or lowering operator, that is also a solution of the
eigenproblem (∂φ − λ)ψ = 0, then this is necessarily also an eigensolution of x ∧∇. A secondary
implication is that this is then also an eigensolution of

〈
(x ∧∇)2〉ψ = λ′ψ. This was the starting

point in Bohm’s quest for the spherical harmonics, but why he started there wasn’t clear to me.
Saying this without the words, let’s look for eigenfunctions for the non-raising portion of (58).

That is

e31e13
1
i

∂φ f = λ f (60)

Since e31e13 = 1 we want solutions of

∂φ f = iλ f (61)

Solutions are

f = κ(θ)eiλφ (62)

A demand that this is a zero eigenfunction for the raising operator, means we are looking for
solutions of

e31eiφ(∂θ + i cot θ∂φ)κ(θ)eiλφ = 0 (63)

It is sufficient to find zero eigenfunctions of

(∂θ + i cot θ∂φ)κ(θ)eiλφ = 0 (64)

Evaluation of the φ partials and rearrangement leaves us with an equation in θ only

∂κ

∂θ
= λ cot θκ (65)

This has solutions κ = A(φ)(sin θ)λ, where because of the partial derivatives in (65) we are
free to make the integration constant a function of φ. Since this is the functional dependence that
is a zero of the raising operator, including this at the θ dependence of (62) means that we have a
simultaneous zero of the raising operator, and an eigenfunction of eigenvalue λ for the remainder
of the angular momentum operator.

f (θ, φ) = (sin θ)λeiλφ (66)
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This is very similar seeming to the process of adding homogeneous solutions to specific ones,
since we augment the specific eigenvalued solutions for one part of the operator by ones that
produce zeros for the rest.

As a check lets apply the angular momentum operator to this as a test and see if the results
match our expectations.

(x ∧∇)(sin θ)λeiλφ = r̂
(

θ̂∂θ + φ̂
1

sin θ
∂φ

)
(sin θ)λeiλφ

= r̂
(

θ̂λ(sin θ)λ−1 cos θ + φ̂
1

sin θ
(sin θ)λ(iλ)

)
eiλφ

= λr̂
(
θ̂ cos θ + φ̂i

)
eiλφ(sin θ)λ−1

From (37) we have

r̂φ̂i = e3φ̂i cos θ − sin θ

= e32ieiφ cos θ − sin θ

= e13eiφ cos θ − sin θ

and from (36) we have

r̂θ̂ = Iφ̂

= e31eiφ

Putting these together shows that (sin θ)λeiλφ is an eigenfunction of x ∧∇,

(x ∧∇)(sin θ)λeiλφ = −λ(sin θ)λeiλφ (67)

This negation surprised me at first, but I don’t see any errors here in the arithmetic. Observe
that this provides a verification of messy algebra that led to (6). That was

〈
(x ∧∇)2〉 ?= (x ∧∇− 1) (x ∧∇) (68)

Using this and (67) the operator effect of
〈
(x ∧∇)2〉 for the eigenvalue we have is

〈
(x ∧∇)2〉(sin θ)λeiλφ = (x ∧∇− 1) (x ∧∇)(sin θ)λeiλφ

= ((−λ)2 − (−λ))(sin θ)λeiλφ

So the eigenvalue is λ(λ + 1), consistent with results obtained with coordinate and scalar polar
form tools.
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13. Summary.

Having covered a fairly wide range in the preceding Geometric Algebra exploration of the
angular momentum operator, it seems worthwhile to attempt to summarize what was learned.

The exploration started with a simple observation that the use of the spatial pseudoscalar for
the imaginary of the angular momentum operator in its coordinate form

L1 = −ih̄(x2∂3 − x3∂2) (69)
L2 = −ih̄(x3∂1 − x1∂3) (70)
L3 = −ih̄(x1∂2 − x2∂1) (71)

allowed for expressing the angular momentum operator in its entirety as a bivector valued
operator

L = −h̄x ∧∇ (72)

The bivector representation has an intrinsic complex behavior, eliminating the requirement for
an explicitly imaginary i as is the case in the coordinate representation.

It was then assumed that the Laplacian can be expressed directly in terms of x ∧∇. This isn’t
an unreasonable thought since we can factor the gradient with components projected onto and
perpendicular to a constant reference vector â as

∇ = â(â ·∇) + â(â ∧∇) (73)

and this squares to a Laplacian expressed in terms of these constant reference directions

∇2 = (â ·∇)2 − (â ·∇)2 (74)

a quantity that has an angular momentum like operator with respect to a constant direction. It
was then assumed that we could find an operator representation of the form

∇2 =
1
x2

(
(x ·∇)2 −

〈
(x ·∇)2〉 + f (x, ∇)

)
(75)

Where f (x, ∇) was to be determined, and was found by subtraction. Thinking ahead to rel-
ativistic applications this result was obtained for the n-dimensional Laplacian and was found to
be

∇2 =
1
x2

(
(n− 2 + x · ∇)(x · ∇)−

〈
(x ∧∇)2〉)

(76)

For the 3D case specifically this is

∇2 =
1
x2

(
(1 + x ·∇)(x ·∇)−

〈
(x ∧∇)2〉)

(77)
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While the scalar selection above is good for some purposes, it interferes with observations
about simultaneous eigenfunctions for the angular momentum operator and the scalar part of its
square as seen in the Laplacian. With some difficulty and tedium, by subtracting the bivector
and quadvector grades from the squared angular momentum operator (x ∧∇)2 it was eventually
found that (76) can be written as

∇2 =
1
x2 ((n− 2 + x · ∇)(x · ∇) + (n− 2− x ∧∇)(x ∧∇) + (x ∧∇) ∧ (x ∧∇)) (78)

In the 3D case the quadvector vanishes and (77) with the scalar selection removed is reduced
to

∇2 =
1
x2 ((1 + x ·∇)(x ·∇) + (1− x ∧∇)(x ∧∇)) (79)

In 3D we also have the option of using the duality relation between the cross and the wedge
a ∧ b = i(a× b) to express the Laplacian

∇2 =
1
x2 ((1 + x ·∇)(x ·∇) + (1− i(x×∇))i(x×∇)) (80)

Since it is customary to express angular momentum as L = −ih̄(x ×∇), we see here that the
imaginary in this context should perhaps necessarily be viewed as the spatial pseudoscalar. It was
that guess that led down this path, and we come full circle back to this considering how to factor
the Laplacian in vector quantities. Curiously this factorization is in no way specific to Quantum
Theory.

A few verifications of the Laplacian in (80) were made. First it was shown that the directional
derivative terms containing x ·∇, are equivalent to the radial terms of the Laplacian in spherical
polar coordinates. That is

1
x2 (1 + x ·∇)(x ·∇)ψ =

1
r

∂2

∂r2 (rψ) (81)

Employing the quaternion operator for the spherical polar rotation

R = ee31θ/2ee12φ/2 (82)
x = rR̃e3R (83)

it was also shown that there was explicitly no radial dependence in the angular momentum
operator which takes the form

x ∧∇ = R̃
(

e3e1R∂θ + e3e2R
1

sin θ
∂φ

)
(84)

= r̂
(

θ̂∂θ + φ̂
1

sin θ
∂φ

)
(85)
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Because there is a θ, and φ dependence in the unit vectors r̂, θ̂, and φ̂, squaring the angular
momentum operator in this form means that the unit vectors are also operated on. Those vectors
were given by the triplet

 r̂
θ̂
φ̂

 = R̃

e3
e1
e2

 R (86)

Using I = e1e2e3 for the spatial pseudoscalar, and i = e1e2 (a possibly confusing switch of no-
tation) for the bivector of the x-y plane we can write the spherical polar unit vectors in exponential
form as

φ̂
r̂
θ̂

 =

 e2eiφ

e3eIφ̂θ

iφ̂eIφ̂θ

 (87)

These or related expansions were used to verify (with some difficulty) that the scalar squared
bivector operator is identical to the expected scalar spherical polar coordinates parts of the Lapla-
cian

−
〈
(x ∧∇)2〉 =

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2 (88)

Additionally, by left or right dividing a unit bivector from the angular momentum operator,
we are able to find that the raising and lowering operators are left as one of the factors

x ∧∇ = e31

(
eiφ(∂θ + i cot θ∂φ) + e13

1
i

∂φ

)
(89)

x ∧∇ =
(

e−iφ(∂θ − i cot θ∂φ)− e13
1
i

∂φ

)
e31 (90)

Both of these use i = e1e2, the bivector for the plane, and not the spatial pseudoscalar. We are
then able to see that in the context of the raising and lowering operator for the radial equation the
interpretation of the imaginary should be one of a plane.

Using the raising operator factorization, it was calculated that (sin θ)λeiλφ was an eigenfunc-
tion of the bivector operator x ∧∇ with eigenvalue −λ. This results in the simultaneous eigen-
value of λ(λ + 1) for this eigenfunction with the scalar squared angular momentum operator.

There are a few things here that have not been explored to their logical conclusion.
The bivector Fourier projections Iek(x∧∇) · (−Iek) do not obey the commutation relations of

the scalar angular momentum components, so an attempt to directly use these to construct raising
and lowering operators does not produce anything useful. The raising and lowering operators in
a form that could be used to find eigensolutions were found by factoring out e13 from the bivector
operator. Making this particular factorization was a fluke and only because it was desirable to
express the bivector operator entirely in spherical polar form. It is curious that this results in
raising and lowering operators for the x,y plane, and understanding this further would be nice.
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In the eigen solutions for the bivector operator, no quantization condition was imposed. I don’t
understand the argument that Bohm used to do so in the traditional treatment, and revisiting this
once that is done is in order.

I am also unsure exactly how Bohm knows that the inner product for the eigenfunctions should
be a surface integral. This choice works, but what drives it. Can that be related to anything here?
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