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1 Motivation.

Work through the quiz problems from [McMahon(2005)]. I have treated these
problems as only a guideline. Instead the questions have been used as a base
to develop some comfort in the subject, exploring the math and physics past
the scope of the quiz itself.

2 Problem 1. Separation of variables.

This problem was to show that separation of variables leads to an exponential
energy/phase term. Let’s try this, but do it instead for three dimensions and
explore a bit.

We try a test solution of the form

ψ = X(x)Y(y)Z(z)T(t)

and substitute into

(
− h̄2

2m
∇2 + V

)
ψ = ih̄∂tψ

differentiating and dividing by ψ we have

− h̄2

2m

(
X′′

X
+

Y′′

Y
+

Z′′

Z

)
+ V = ih̄

T′

T

We set the right hand side equal to a constant E to be determined by bound-
ary value conditions. According to the dimensionals of V this E constant can
be seen to neccessarily be an energy of some sort. In terms of this energy, we
have for the function T

ih̄
T′

T
= E

With a solution of

T(t) = e−iEt/h̄
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Now, the left hand side imposes some constraints on E, but these will be
potential dependent. The simplest case, for the wave function of a free particle,
is where V = 0.

In that case we have
X′′

X
+

Y′′

Y
+

Z′′

Z
= −2mE

h̄2

The sum of each of the terms involved all identically equal a constant,
which is perhaps reasonable to assume to be negative. If we do so and im-
pose the usual sort of separation of variables constrait, requiring each of the
X′′/X, Y′′/Y, and Z′′/Z terms to separately equal some negative constant (to
be fixed by boundary conditions), we can write

X′′

X
= −k1

2

Y′′

Y
= −k2

2

Z′′

Z
= −k3

2

So we have for the complete equation a solution proportional to

ψ = XYZT = exp(i(k · x − Et/h̄))

With the additonal boundary value constraint of

k2 =
2mE

h̄2

2.1 Time independent equation.

Given that we can express the time variation of the wave function as an expo-
nential, we can use this to calculate the time independent equation. Let

ψ(x, t) = ψ(x)e−iEt/h̄

Subst back into the equation gives

(
− h̄2

2m
∇2 + V

)
ψ(x)e−iEt/h̄ = Eψ(x)e−iEt/h̄

Or

(
− h̄2

2m
∇2 + V

)
ψ(x) = Eψ(x)
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2.2 Constant potential.

Let’s consider a slightly more general potential with V constant in some spatial
interval.

By inspection it appears that we should perhaps have

ψ = exp(i(k · x − (E −V)t/h̄))

Let’s check if this is right. We want(
− h̄2

2m
∇2 + V − ih̄∂t

)
ψ = 0

which means that we have

0 =

(
h̄2

2m
k2 + V − ih̄

−i(E −V)
h̄

)
ψ

=

(
h̄2

2m
k2 + V − (E −V)

)
ψ

=

(
h̄2

2m
k2 − (E − 2V)

)
ψ

so our wave number energy constraint is

k2 =
2m(E − 2V)

h̄2

This looks a bit strange, but can be fixed up writing E′ = E − 2V. Then our
test solution takes the form

ψ = exp(i(k · x − (E′ + V)t/h̄))

k2 =
2m(E′ + V)

h̄2

If you guess wrong, the math forces you to fix the mistake! A final check to
see if this is kosher
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0 =

(
h̄2

2m
k2 + V − ih̄

−i(E + V)
h̄

)
ψ

=

(
h̄2

2m
k2 + V − (E + V)

)
ψ

=

(
h̄2

2m
k2 − E

)
ψ

Okay, we’re cool now, and things even make sense. A reasonable inter-
pretation is probably introduction of a constant potential raises the minimum
ground state energy.

Based on just the math, we don’t know that E is neccessarily positive, so in
addition to the trigonometric solution above is it also reasonable to allow for
possible hyperbolic solutions? If so then the following should also be allowed

ψ = exp(k · x − i(E + V)t/h̄)

k2 =
2mE

h̄2

We need some physics to augment the math in order to determine what
form of solution is actually valid. Some of that physics likely comes in the
form of the boundary conditions and perhaps other constraints such as nor-
malization.

2.3 General solution.

Using superposition we should be able to form a wave packet in integral form
by allowing for any set of k vectors. Suppose we assemble a test solution by
summing over possible wave numbers

ψ =
∫

A(k) exp(k · x − i(E + V)t/h̄)dk1dk2dk3

For generality, allowing both trigonometric and hyperbolic solutions we
can allow the coordinates of k to be real, imaginary, or zero.

Does this work? Let’s take derivatives and see what constraints we require
if it does.
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0 =

(
− h̄2

2m
∇2 + V − ih̄∂t

)
ψ

=
∫

A(k)

(
− h̄2

2m

3

∑
j=1

k j
2 − E

)
exp(k · x − i(E + V)t/h̄)dk1dk2dk3

Abusing notation somewhat for this complex ”vector” k by writing k2 =
∑ k j

2, we have as a general solution for this constant potential wave equation

ψ(x, t) =
∫

A(k) exp

(
k · x − i

(
− h̄2k2

2m
+ V

)
t
h̄

)
dk1dk2dk3

So, for trig solutions (plane waves) we have k purely imaginary, our en-
ergy integration constant E = −h̄2k2/2m takes a positive value, whereas for
hyperbolic solutions, it is negative.

I don’t know if it is physically reasonable to allow for hyperbolic solutions.
If not, then we should just factor out an explicit i, and write

ψ(x, t) =
∫

A(k) exp

(
i

(
k · x −

(
h̄2k2

2m
+ V

)
t
h̄

))
dk1dk2dk3

3 Problem 2. Probabilities for a polynomial wave-
function.

The wave function to work with is

ψ = C
1 + ix
1 + ix2

With probability density

ψψ∗ = C2 1 + x2

1 + x4
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3.1 normalize it.

We can do the normalization with a complex integral over an upper half plane
semicircular contour. On the arc we the integral can be parameterized with

z = Reiθ

dz = Rieiθdθ

∫
ψψ∗dz = C2

∫ 1 + R2e2iθ

1 + R4e4iθ Rieiθdθ

This is of order R3/R4 so will vanish at infinity.
For the remaining part of the integral we integrate on [−∞, ∞], but duck up

and back around the poles
√

i, and i
√

i in counterclockwise circles.
Now, the only problem is to remember how to do the integral around the

poles. Suppose we have

I =
∮ f (z)

z − z0
dz

for a function that is regular at z0, and integrate in an infinitesimal loop
around z0. That contour is parameterized by

dz = rieiθdθ

z − z0 = reiθ

So this little contour integral has the value

I =
∮

f (z)idθ

if the contour is made small enough that f (z) doesn’t vary, then that func-
tion takes the value f (z0), and we have for a clockwise contour the value

I =
∮ f (z)

z − z0
dz = 2πi f (z0)

Now for this probability density we can do a partial fractions split around
the poles {±

√
i,±i

√
i} of the form

1 + x2

1 + x4 =
A

x −
√

i
+

B
x +

√
i
+

C
x − i

√
i
+

D
x + i

√
i
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but we don’t really need do to this algebra. Instead for pole p since it is first
order we can write

ψ(x)ψ∗(x) = C2
(

1 + x2

1 + x4 (x − p)
)

1
x − p

The left hand factor here is then regular at the pole, and we can use L’Hopitals
rule to evaluate what value this takes at the pole.

For our first quadrant pole we have(
1 + x2

1 + x4 (x −
√

i)
)∣∣∣∣

x=
√

i
=

1 + i
4i
√

i

= −i
√

2/4

and for the second quadrant pole we have(
1 + x2

1 + x4 (x −
√

i)
)∣∣∣∣

x=i
√

i
=

1 + (i
√

i)2

4(i
√

i)3

=
1− i
4
√

i

=
√

2
(1− i)2

8
= −i

√
2/4

Combining all the contours we have for the integral now

0 = 0 + I + 2(−2πi)(−i
√

2/4)C2

= 0 + I − π
√

2C2

Therefore for the unit probability we have as desired

C =
1√

π
√

2

3.2 definite integral of probablility.

Next part of the problem was to evaluate the probability of finding the particle
in a specific region ( [0, 1] specifically).

Here we need a definite integral, so none of the contour integration tricks
will help. At least I remember how to do that now.
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Let’s actually do the partial fractions split

x2 + 1
x4 + 1

=
x2 + 1
x4 − i2

=
1
2

(
1

x2 − i
+

1
x2 + i

)
=

1
4
√

i

(
1

x −
√

i
− 1

x +
√

i

)
+

1
4
√
−i

(
1

x −
√
−i

− 1
x +

√
−i

)
Antidifferentiation gives

1
4
√

i
ln

(
x −

√
i

x +
√

i

)
+

1
4
√
−i

ln

(
x −

√
−i

x +
√
−i

)

It should be possible to simplify this, or use it to verify the contour integral,
or directly evaluate the integral for the [0, 1] range of the problem, but this
particular form is proving somewhat intractable (or I’ve made mistakes). A
lazier way is to invoke webmathematica, which gives

∫ 1 + x2

1 + x4 dx =
− tan−1(1−

√
2x) + tan−1(1 +

√
2x)√

2

∫
C2 1 + x2

1 + x4 dx =
1

2π
(− tan−1(1−

√
2x) + tan−1(1 +

√
2x))

However calculating this for x = 0 gives zero and for x = 1 gives 0.25,
whereas the text gives ≈ 0.52. The text can’t be correct since the density is
symmetric, which would imply that the probabilty to find it in [−1, 1] is 1.04 >
1.

4 Inverse first order wave function.

This problem was to normalize

ψ =
1
x

eiωt x ∈ [1, 2]

and to calculate the probability to find the particle in [1.5, 2].
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4.1 normalization.

∫
|φ|2dx =

∫ 1
x2 dx

=
1
1
− 1

2

=
1
2

So our normalized wave function is

ψ =
√

2
x

eiωt

4.2 probablility in a range.

By inspection this probability is

P(a, b) = 2
(

1
a
− 1

b

)
So for [1.5, 2] we have

P = 2
(

2
3
− 1

2

)
=

1
3

4.3 Probability current.

This wave function provides a super simple example to try a current calcula-
tion with.

J =
h̄

2mi
(ψ∗ψx − ψψ∗

x)

The time factor will cancel out, leaving

J =
h̄

2mi
(ψψx − ψψx)

= 0

Okay, that’s a too simple probability calculation exersize! Not interesting.
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4.4 expectation values.

4.4.1 position

Okay, those were pretty easy integration exersizes. How about using these to
verify the Hiesenberg uncertaintly principle. That should be easy enough with
this simple wavefunction.

< x > =
∫ 2

1
x

2
x2 dx = 2(ln(2)− ln(1)) = 2 ln(2)

< x2 > =
∫ 2

1
x2 2

x2 dx = 2− 1 = 1

Using the formula for standard deviation on page 50 we have

∆x =
√

< x2 > − < x >2

=
√

1− (2 ln(2))2

which is a complex number?
Let’s go back to the statistical definition of standard deviation from school

and see if this makes sense.

σ2 = E(x − x̄)2

=
1
N ∑(xi − x̄)2

=
1
N ∑

(
xi

2 − 2xi x̄ + x̄2
)

=
1
N ∑ xi

2 − 2x̄2 +
N
N

x̄2

=
1
N ∑ xi

2 − x̄2

In the QM notation this is

(∆x)2 =< x2 > −< x >2

which is strictly positive. Okay, so I must have a mistake above somewhere.
Let’s look at the expectation value of x. Does 2 ln(2) = 1.386 make sense?

How about a discrete average that approximates it

2
3

(
1

1
12 + 1.5

1
1.52 + 2

1
22

)
=

13
9

= 1.444
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Okay, this makes sense, and it doesn’t make sense in the discrete approxi-
mation that < x2 > could be lower, so that integration must be wrong. Take
I I

< x2 > =
∫ 2

1
x2 2

x2 dx = 2x|21 = 4− 2 = 2

Okay, that’s better ... dumb mistake. Our std deviation is therefore

∆x =
√

2− 4(ln(2))2 ≈ 2.80

4.4.2 momentum

Now, how about the momentum variance?

< p > = −ih̄
∫ 2

1
2

1
x

(
1
x

)′
dx

= 2ih̄
∫ 2

1

1
x3 dx

= ih̄
(
−1

4
+

1
1

)
dx

=
3
4

ih̄

< p2 > = −h̄2
∫ 2

1
2

1
x

(
1
x

)′′
dx

= −h̄2
∫ 2

1
2

1
x

(
− 1

x2

)′
dx

= −4h̄2
∫ 2

1

1
x4 dx

= −4
3

h̄2
(
−1

8
+ 1
)

= −7
6

h̄2

< p2 > −< p >2

h̄2 =
1
2

(
−7

3
+

9
8

)
= −29

48
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This gives

∆x∆p = ih̄

√
29
24

(1− 2(ln(2))2) ≈ (0.217)ih̄

We expect

∆x∆p > h̄/2

and ended up with an imaginary value where the h̄ factor is less than 0.5.
Something’s fishy here, and I don’t think it’s my algebra this time.

How about ∣∣< p2 >
∣∣− |< p >|2

h̄2 =
1
2

(
7
3
− 9

8

)
=

29
48

Not any different, except that the factor of i vanishes. Now the wikipedia
uncertainly article presents this way differently. How to reconsile the ideas
here?

5 Problem 4.

Unnormalized wavefunction is

ψ =
1

x2 + 9

5.1 Second order pole contour integral.

Now, in the problem, the normalization is given and only the position expec-
tation and variance is asked for. This normalization factor is interesting to
calculate however, since to do the contour integral for this one we have to deal
with a double pole, and I’d also forgotten how to do those.

Suppose, again, that we have a regular function f (z) in the neighbourhood
of z0. We want to calculate the double pole integral at that point.

I =
∮ f (z)

(z − z0)2 dz

Integration by parts looks like the way to go.
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I =
∮ f (z)

(z − z0)2 dz

=
∮

f (z)
(

−1
z − z0

)′
dz

=
∮ ((

− f (z)
z − z0

)′
+

f (z)′

z − z0

)
dz

Now, for a circular contour around z0, we have z = z0 + Reiθ = z0 +
Rei(θ+2π), so

− f (z)
z − z0

∣∣∣∣z0+Rei(φ+2π)

z0+Reiφ
= − f (z0 + Reiφ − f (z0 + Rei(φ+2π)

e

−iφ

= 0

So the integral of the first term is zero, and we know how to deal with
second provided the derivative is regular at the point of interest.

∮ f (z)
(z − z0)2 dz =

∮ f (z)′

z − z0
dz

= 2πi f (z)′
∣∣
z=z0

5.2 normalize.

Now, we are set to normalize the wave function. We have a pole at ±3i

I =
∫
|ψ|2

=
∫ ∞

z=−∞
dz

1
(z − 3i)2

1
(z + 3i)2

Picking a semicircular arc we have

I +−2πi
(

1
(z + 3i)2

)′∣∣∣∣∣
z=3i

= 0
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The integral is therefore

I = 2πi(−2)
1

(6i)3

= π
1

54

and the normalized wave function is

ψ =

√
54
π

1
x2 + 9

as given in the problem.

5.3 expectation and variance values.

The expectation value for the position operator is just

< x >=
54
π

∫ x
(x2 + 9)2 dx = 0

Since it is an odd function. For the square we have

< x2 > =
54
π

∫ x2

(x2 + 9)2 dx

=
54
π

2πi
(

x2

(x + 3i)2

)′∣∣∣∣∣
3i

= · · · some algebra
= 9

Now, how about the momentum? This one is odd too, and therefore zero

< p >= −ih̄
54
π

∫ 1
(x2 + 9)

−2x
(x2 + 9)2 dx = 0
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Last we have the squared momentum operator expectation

< p2 > = −h̄2 54
π

∫ 1
(x2 + 9)

(
−2x

(x2 + 9)2

)′
dx

= −h̄2 54
π

∫ 1
(x2 + 9)

(
−2

(x2 + 9)2 − 2x
−2(2)(x2 + 9)(2x)

(x2 + 9)4

)
dx

= −h̄2 54
π

∫ −2
(x2 + 9)3

(
1− 8x2 1

x2 + 9

)
dx

= −h̄2 54
π

∫ −2
(x2 + 9)4

(
9− 7x2

)
dx

= 2h̄2 54
π

∫ 1
(x − 3i)4

1
(x + 3i)4

(
9− 7x2

)
dx

Damn. Now we need a fourth order pole (third derivative) residue. This
is getting messy. Backing up one step to put things in a nice form for cheating
with mathematica we have

< p2 > = h̄2 108
π

∫ 1
(x2 + 9)4

(
9− 7x2

)
dx

and the cheat gives us

∫ 1
(x2 + 9)4

(
9− 7x2

)
dx =

−3x(−729 + 24x2 + x4) + (9 + x2)3 tan−1(x/3)
1944(9 + x2)3

The first term will drop out for the infinite range, leaving

2 tan−1(∞/3)
1

1944
= π

1
1944

So, if all went well we have

< p2 > = h̄2 108
π

π
1

1944

= h̄2 1
18

This provides another numerical verification of the Heisenberg uncertainty
relation

∆p∆x = h̄
1

3
√

2
3 ≈ 0.7h̄ > h̄/2
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6 Problem 5.

Find position and momentum expectation values for

ψ = A(x5 − ax3)

... however, the problem doesn’t define the range for the wave function. For
a symmetric finite interval it is simple enough to show that these are zero, but
the solution in the back of the text just wanted ”ill posed” for an infinite range.

7 Problem 6. Is X operator Hermitian.

< x >∗=
(∫

ψ∗xψdx
)∗

=< x >

answer is therefore yes (with < ix > being Skew-Hermitian).
Momentum operator follows the same way with integration by parts, but

I’ve written that up recently in [Joot()] so won’t repeat it here.

8 Problem 7. A current calculation.

ψ = (Aeiph̄x + Be−iph̄x)e−ip2t/2mh̄

The probability density is just

|ψ|2 = (Aeiph̄x + Be−iph̄x)(A∗e−iph̄x + B∗eiph̄x)

But this doesn’t have to be expanded for the continuity calculation, since
we only want the time derivative which is zero since this isn’t a function of
time

∂|ψ|2

∂t
= 0.

Now the current density is

J =
h̄

2mi
(ψ∗∂xψ − ψ∂xψ∗)

the spatial derivatives leave the time phase term untouched so the conjuga-
tion takes those out, leaving
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J =
h̄

2mi
iph̄

(
(A∗e−iph̄x + B∗eiph̄x)(Aeiph̄x − Be−iph̄x)− (Aeiph̄x + Be−iph̄x)(−A∗e−iph̄x + B∗eiph̄x)

)
=

h̄
2mi

iph̄
(

2|A|2 − 2|B|2
)

So we have ∇ · J = 0 since this is a constant, and therefore

∂ρ

∂t
+∇ · J = 0 + 0 = 0

9 Problem 8.

A square well problem in [0, a] with

ψ = i
√

3
2

√
2
a

sin
(πx

a

)
e−iE1t/h̄ +

1
2

√
2
a

sin
(

3πx
a

)
e−iE3t/h̄

Using separation of variables for the wave equation in this case we have

− h̄2

2m
X′′

X
= ih̄

T′

T
= E

We have

T = e−iEt/h̄

and

X = A sin

(√
2mEx

h̄

)
= A sin

(
kπx

a

)
To normalizing X we need squared sine

sin2(u) =
1
−4

(e2iu + e−2iu − 2) =
1
−2

cos(2u) +
1
2

So we can integrate to find the normalization factor∫ a

0
X2 = A2 a

2
= 1
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for

Tk = e−iEkt/h̄

Xk =
√

2
a

sin
(

kπx
a

)
Ek =

1
2m

(
kπx

a

)2

9.1 Is it normalized?

Yes, 3/4 + 1/4 = 1.

9.2 What are the values of the energy?

The work for this is above:

E1 =
1

2m

(πx
a

)2

E3 =
1

2m

(
3πx

a

)2

9.3 expectation of position

We can write the wave function in terms of basis functions for convience

φm =
√

2
a

sin
(

kxπ

a

)
ψ = i

√
3

2
φ1e−iE1t/h̄ +

1
2

φ3e−iE3t/h̄

or more generally

ψ = ∑
m

cm(t)φm

In terms of this Fourier series our position expectation is
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< x > = ∑
m,n

∫
c∗m(φm)∗xcnφn

= ∑
m,n

c∗mcn

∫
xφ∗mφn

= ∑
m,n

c∗mcn
2a
π2

∫ a

0
(aπx/a) sin(mπx/a) sin(nπx/a)a(πdx/a)

= ∑
m,n

c∗mcn
2a
π2

∫ π

0
u sin(mu) sin(nu)du

For the integral for m 6= n we have

∫
u sin(mu) sin(nu)du =

1
2

(
cos((m − n)x)

(m − n)2 − cos((m + n)x)
(m + n)2

)
+

1
2

(
x sin((m − n)x)

m − n
− x sin((m + n)x)

m + n

)

The sine terms will drop out at zero and π, and the cosine terms will sub-
tract out since they are the same at the boundaries.

< x > = ∑
n
|cn|2

2a
π2

∫ π

0
u sin2(nu)du

Now, for the integral we have∫
u sin2(nu)du =

u2

4
− cos(2nu)

8n2 − u sin(2nu)
4n

again the sine terms are zero, the cosines subtract away and we have only
the first term making a contribution at the upper bound. This gives

< x > = ∑
n
|cn|2

2a
π2

π2

4

=
a
2 ∑

n
|cn|2

=
a
2

This is kind of cool. A likely interpretation is that for any wave function
whatsoever for this particle in the box we have equal probability of finding the
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particle at any particular point. Because of this it makes sense that the aver-
age value for the location of the particle is exactly the average of the positions
available in the box.

9.4 expectation of momentum

For the momentum expectation we want

< p > = ∑
m,n

c∗ncm − ih̄
2
a

∫ a

0
sin(nπx/a)(mπ/a) cos(mπx/a)dx(π/a)(a/π)

= ∑
m,n

c∗ncm − ih̄
2m
a

∫ π

0
sin(nu) cos(mu)du

Since the integral above is zero for all m, n, we have for any wave function
for the particle in a box

< p >= 0

This trivially shows that the statement of the problem that

dm < x >

dt
=< p >

is in fact true, but this doesn’t say much since both sides are zero.
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