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1. Goals and approach.

Most introductory Quantum texts present some attempt to motivate Schrödinger’s equation.
The quality, size and approach of each of these ranges widely.

Pauli’s Wave Mechanics ([1]) differs from most of these, utilizing relativistic arguments to
motivate the Schrödinger equation. His little quantum book starts off, not with the Bohr model or
black bodies, but with a lighting fast two page treatment of special relativity.

The Wikipedia Klein-Gordon article ([2]) indicates that this is also the historical approach used
initially by Schrödinger.

This blog entry follows Pauli’s treatment closely. The starting point will not be “see optics”, but
an attempt at a logic progression building on basic results of electromagnetism, Fourier techniques,
and Lorentz invariance.

From special relativity the Lorentz invariant for energy and momentum E2 − c2p2 = (mc2)2

is required. An optional review of how this follows from the definition of Lorentz invariant length
is included below. For any sort of complete coverage of special relativity other sources should be
consulted.

Fourier transforms will be used to find general solutions of the wave equation for components
of the electric or magnetic fields in vacuum

�E ≡ 1
c2
∂2E
∂t2

−∇2E = 0 (1)

�B ≡ 1
c2
∂2B
∂t2

−∇2B = 0 (2)

Fixing notation, the symmetric transform pair convention will be used

F(f(x)) = f̂(k) =
1

(
√

2π)3

∫
f(x) exp (−ik · x) d3x (3)

F−1(f(k)) = f(x) =
1

(
√

2π)3

∫
f̂(k) exp (ik · x) d3k (4)

As with Fourier solutions of the heat equation ([3]), the wave equation when expressed in the
wave number domain will be a much simpler equation to solve.

A relation between the invariant length of the energy momentum four vector for light and the
electrodynamic wave equation solution will be observed. Using this observation, as well as the
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quantization by frequency from the photoelectric effect, and the DeBroglie hypothesis will allow
for formation of a natural relativistic matter wave equation (ie: the Klein-Gordon equation).

Finally, a Taylor expansion of wave function solutions to the Klein-Gordon equation around the
rest angular frequency will be made. The end result will be finding the traditional introductory
form of the Schrödinger’s equation hiding in this relativistic matter wave equation.

2. Relativity prerequisites.

In these notes the space time trajectory of a particle will be represented as the pair of locally
observable quantities or a column vector equivalent

X = (ct,x) (5)

In analogy to the distance invariance with respect to rotation in Euclidean space, the invariant
(squared) length of a four vector with respect to Lorentz transformation is

X2 ≡ c2t2 − x2 ≡ c2t2 − x · x (6)

One can verify without any trouble that such a generalized length is unchanged by rotation


ct′

x′

y′

z′

 =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ



ct
x
y
z

 (7)

And also unchanged by Lorentz boost
ct′

x′

y′

z′

 =


coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 (8)

Although the Lorentz length of a four vector does not change under rotation or boost (or
composition of the two), that does not mean that this length is a constant. Consider the worldline
of a particle at rest at the origin of the observer frame

X = (ct, 0) (9)

The Lorentz length in this frame is c2t2. In general the Lorentz length will be a function of all
the coordinates.

Those vectors that have constant length are particularly useful, and can be constructed from
scalar multiples of unit vectors. In particular for the time evolution of a particle’s worldline from
an observer frame one has

dX

dt
=
(
c,
dx
dt

)
(10)
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Writing v = dx/dt, the Lorentz length and corresponding unit vector V ≡ dX
dt /

√(
dX
dt

)2
are

then, respectively,

(
dX

dt

)2

= c2 − v2 (11)

V =
1√

1− v2/c2
(1,v/c) (12)

Finally, a scaling bymc of this dimensionless “proper” velocity V yields a vector with dimensions
of momentum, the relativistic energy momentum vector (a definition). This vector and its Lorentz
length are

P ≡ mcV =
1√

1− v2/c2

(
mc2/c,mv

)
= (E/c,p) (13)

E2/c2 − p2 = m2c2 (14)

When the particle is observed at rest (p = 0), the Lorentz length (14) provides the familiar
E = mc2 relation. Observe that for the Lorentz length of this energy momentum pairing to come
out so nicely constant, the relativistic definitions of energy and momentum are required

E ≡ mc2√
1− v2/c2

= mc2 +
1
2
mv2 + · · · (15)

p ≡ mv√
1− v2/c2

= mv +
1
2
mv3/c2 + · · · (16)

Only in the small velocity limits are the Newtonian kinetic energy mv2/2 and momentum mv
the only significant portions of the Taylor series.

3. Light quantization and DeBroglie hypothesis

The notion that light is quantized coming in discrete frequency dependent packets of energy
and momentum, a photon, is now a familiar one. In symbols

E = hν = ~ω (17)

With zero mass for a photon, the invariance relation (14) implies that the magnitude of the
photon momentum is not independent of ω and in fact must be

|p| = ~ω
c

(18)
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It is customary to write

p = ~k (19)

so that the energy momentum four vector for a photon is

P = ~(ω/c,k) (20)

DeBroglie’s extension ([4]) of the quantum relation for photon energy was to write for non-
massless particles

hν =
mc2√

1− v2/c2
(21)

This, together with (14), provides a quantized invariant relation for energy momentum

~2

(
ω2

c2
− k2

)
= m2c2 (22)

Once the solution of the wave equation for light (i.e. electromagnetic fields) has been exam-
ined, this invariant can be used directly to construct a relativistic wave equation for matter (the
Klein-Gordon equation), which is the next step along this path to the traditional non-relativistic
Schrödinger equation.

4. Solution of the relativistic wave equation.

The next order of business is the solution of the wave equations for the six equations (1), and
(2). Writing ψ for one of the components of E or B one is left with a scalar homogeneous equation
to solve

(
1
c2
∂2

∂t2
−∇2

)
ψ(t,x) = 0 (23)

Let’s begin the attack, applying the transform (3) to both terms of the wave equation

1
(
√

2π)3

∫
1
c2
∂2ψ(t,x)
∂t2

exp (−ik · x) d3x =
3∑

m=1

1
(
√

2π)3

∫
∂2ψ(t,x)
∂xm

2
exp (−ik · x) d3x (24)

Now send the Rigor police on vacation, demanding of ψ that it and its derivatives vanish at the
boundaries of the integration region, and that sufficient continuity exists that the time derivatives
can be pulled out of the LHS integral. With this demand of good behavior made, pull the time
differentiation out of the integral on the LHS and integrate by parts twice on the RHS for

1
c2
∂2ψ̂(t,k)
∂t2

= (−i)2k2ψ̂(t,k) (25)
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With the exception that integration constant may be a function of k due to the time partials,
this is the harmonic oscillator equation with solution

ψ̂±(t,k) = D±(k) exp(±ic|k|t) (26)

Evaluation at t = 0 eliminates the exponential, so by (4) the integration constants D±(k) may
be expressed in terms of the initial time Fourier transforms of the wave function.

D±(k) = ψ̂±(0,k) =
1

(
√

2π)3

∫
ψ±(0,x) exp (−ik · x) d3x (27)

Writing the inverse Fourier transformation (4) now completely specifies the time evolution of
these wave function solutions given the initial time field

ψ±(t,x) =
1

(2π)3

∫
ψ±(0,x′) exp

(
−ik · (x′ − x)± ic|k|t

)
d3x′d3k (28)

Many interesting things can be done with this result and most will be ignored here. Instead
put the evaluational integration into a black box, avoiding any explicit statement of the initial
conditions (the Rigor police are still on vacation and they can’t catch this blatant disregard for
integration order). Dropping explicit ± subscripts for the k dependent function of the integral the
wave function is now

A(k) =
1

(2π)3

∫
ψ(0,x′) exp

(
−ik · x′) d3x′ (29)

ψ(t,x) =
∫
A(k) exp (ik · x± ic|k|t) d3k (30)

Inspection shows that c|k| has the appearance of angular velocity, and a slightly more conven-
tional looking form can be achieved by making this explicit

ω = c|k| (31)

ψ(t,x) =
∫
A(k)ei(k·x±ωt)d3k (32)

This (constrained) superposition of fundamental harmonics represents a general solution to the
wave equation for the components of the electromagnetic field.

Forgetting temporarily the lightlike constraint (31) on angular frequency observe the effect of
applying the wave equation operator to (32)

�ψ(t,x) = −
∫
A(k)

(
ω2

c2
− k2

)
ei(k·x±ωt)d3k (33)
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It is clear that functions of the form f(k · x± c|k|t) explicitly encode the null vector properties
required for light-like worldline trajectories. If this strict proportionality between angular frequency
and wave number is relaxed then it is reasonable to assume that such a wave function could then
describe phenomena (for massive particles) within the light cone.

In particular observe the effect in (33) if the DeBroglie invariant (22) is applied to (32)

�ψ(t,x) = −m
2c2

~2
ψ (34)

This modified wave equation (the Klein-Gordon equation) still describes electric and magnetic
fields since photons are massless, but it additionally is not unreasonable seeming as a wave equation
for particles with mass.

5. Taylor expansion of the Klein-Gordon equation around the rest angular frequency.

To transition from the covariant Klein-Gordon equation to one with an explicit spacetime split,
consider an angular momentum approximation similar to that used for Kinetic energy in (15). From
the DeBroglie invariant (22) rearrange for the angular frequency

ω =
mc2

~

√
1 +

~2k2

m2c2
(35)

If (~2k2)/(m2c2) < 1 is small enough a Taylor expansion is possible

ω =
mc2

~
+

~k2

2m
+ · · · (36)

With the zeroth order term factored out the wave function integral (32) becomes

ψ(t,x) = e±imc2t/~
∫
A(k) exp

(
i

(
k · x±

(
~k2

2m
+ · · ·

)))
d3k (37)

It is natural to bundle the integral into a helper variable

ψ(t,x) = e±imc2t/~ψ′(t,x) (38)

Note that there is not actually any requirement to drop the quadratic and higher order terms
here. If doing so, one could call this a small momentum approximation. A more accurate description
is probably a Taylor expansion around the rest frequency mc2/~.

Application of the wave equation operator to the product (38) is now possible. Let’s do this in
pieces, starting with the time derivatives

1
c2
∂2

∂t2

(
e±imc2t/~ψ′

)
=

1
c2
∂

∂t

((
± imc

2

~
ψ′ +

∂ψ′

∂t

)
e±imc2t/~

)
(39)
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Second partials give

1
c2
∂2

∂t2
e±imc2t/~ψ′ =

1
c2

(
−
(
mc2

~

)2

ψ′ ± 2imc2

~
∂ψ′

∂t
+
∂2ψ′

∂t2

)
e±imc2t/~ (40)

And finally for the entire wave equation

0 =
(

� +
m2c2

~2

)
ψ =

1
c2

((
±2i

mc2

~
∂ψ′

∂t
+
∂2ψ′

∂t2

)
−∇2ψ′

)
exp

(
i
mc2

~
t

)
(41)

A final rearrangement produces something quite close to the Schrödinger equation as it is
probably first seen in the (less general) non-Hamiltonian form

− ~2

2m
∇2ψ′ = ∓i~∂ψ

′

∂t
− ~2

2mc2
∂2ψ′

∂t2
(42)

There are two notable differences, one is the sign and the other is the second order time partial.
Comparisons in size for coefficients of this wave equation have to be made relative to the other
coefficients since ~ is already a small quantity, however, if m is the mass of an electron this second
time partial coefficient is of the order ~/(mec

2) ≈ 10−21 (seconds). This is small enough that
omitting it is justifiable.

Once that term is dropped two equations are left, one of which is the three dimensional potential
free Schrödinger’s equation.

− ~2

2m
∇2ψ′ = ∓i~∂ψ

′

∂t
(43)

The alternation in sign is suggestive of conjugate behavior, but it is helpful to know to expect
this in the first place!

This presentation attempts to show that the Schrödinger equation (43) has some deeply rooted
relativistic origins. When the spatial and time derivatives in the Schrödinger equation aren’t even of
the same order it isn’t obvious that quantum mechanics and relativity have any sort of association
with each other. This is reflected in treatments of Quantum mechanics, where many introductory
QM texts will not mention relativity at all, except perhaps to note that the Schrödinger equation
is not valid at speeds where v/c is significant. Finding a statement like “There is no inherent
connection between special relativity and quantum mechanics” ([5]), shows that this apparent
disconnect goes both ways.

There are obvious deficiencies in this treatment. In particular the quantization of light was
glossed over, and if it had been pursued, would be grossly wrong. Part of the problem is that
solutions of Maxwell’s equations in vacuum are not entirely equivalent to six independent wave
equations for the components of the fields. Additional constraints are also imposed by Maxwell
equations, introducing a coupling between the field components. For example in a linearly polarized
plane wave one has B = k̂ × E, and the triplet of E, B, and k̂ (the propagation direction) form
a set of mutually perpendicular vectors ([6]). An expectation calculation based on a quantized
light equation that neglects this coupling cannot possibly recover Maxwells equations. One could
perhaps start with the simpler four vector potential Maxwell wave equations ∂µ∂

µAν = 0 under
the Lorentz gauge ∂µA

µ = 0. That would reduce the problem to dealing with only four coupled
equations intead of six, and the coupling is considerably simpler. Perhaps if this were pursued more
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carefully one would end up with QFT. Thats an interesting potential digression, but not the goal
here and now.

As mentioned previously the goal was really to highlight some of the relativistic connections of
quantum mechanics. A secondary goal was personal, having never seen any single completely sat-
isfying attempt to motivate the Schrödinger equation, it seemed reasonable to attempt enunciation
of this myself. Given my current point in time understanding of mathematics and physics, Pauli’s
SR based motivation was found to be one of the most logical, had no steps that were particularly
surprising, but suffered from too much brevity. This made it a good starting point, and perhaps
the result is slightly more accessible.

Somebody who knows Quantum Mechanics well (or Quantum field theory) would likely consider
these notes completely backwards. One can logically go from Quantum to classical, but going the
other way around is impossible. That is quite likely true, however to somebody like this author,
just starting to learn QM, pointing this out is not particularly helpful seeming.

6. Some other approaches for motivating the Schrödinger’s equation to compare with.

Many other methods of motivating the Schrödinger equation are considerably simpler and
shorter that this one, however this may however come at the expense of a corresponding excess of
magic steps.

French and Taylor ([7]), arrives at the specialization of Schrödinger’s equation for a particle in
a one dimensional potential

− ~2

2m
∂2ψ

∂x2
+ V ψ = i~

∂ψ

∂t
(44)

in only seven pages with no mathematics or physics unfamiliar to second year engineering
undergrads (this is a remarkable success IMO). It is worth noting that they include a disclaimer
upfront “we ... simply try to make the form of the equation plausible”. The plausibility arguments
found in this text are not uncommon, and can be found for example (without the surrounding
discussion of the text) in the “Short heuristic derivation” of the Wikipedia’s Schrödinger’s equation
article ([8]).

Calling these derivations is justifiably debatable and is perhaps the origin of statements like
“Schrödinger’s equation cannot be derived” ([9]).

Considerable care is required to construct logically consistent arguments that motivate the
quantum wave equation in a fashion that is not simply playing the equation in reverse. Bohm’s
Quantum Theory ([10]) contains such a carefully crafted treatment. The cost of this presentation
is that it takes nine chapters and two hundred pages to get to the starting point of many other
introductory Quantum texts.

Heisenberg apparently was able to build his matrix mechanics using observational data (spectral
measurements) as a starting point. That would be a desirable motivational attempt, but there also
appears to be agreement that his construction was something that nobody else in the right mind
would have thought of. Susskind even says in one of his lectures of this “I don’t know what he was
smoking”!

Susskind’s method of teaching QM goes straight to the point, and he uses nothing but Dirac’s
axiomatic formulation. There’s a lot of abstraction in that approach and it is perhaps not the most
palatable technique available to a new learner.
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Perhaps agreeing with a it cannot be derived opinion, the text of Liboff ([11]) appears to take
a “let’s calculate approach”. There is little attempt to motivate the equation, instead presenting
the equation rather abstractly as an operatorizing of the Hamiltonian. This requires the magic
identification p ∼ −i~∇, something harder to make plausible in a classical context. Instead one is
left to learn its characteristics by using it. This engineering approach has some merits but must
also contribute to much of the mystery and confusion surrounding the subject. The most classic
example of this is Feynman’s famous quote “I think I can safely say that nobody understands
quantum mechanics”.

References

[1] W. Pauli. Wave Mechanics. Courier Dover Publications, 2000.

[2] Wikipedia. Klein-gordon equation — wikipedia, the free encyclopedia [online]. 2009. [Online;
accessed 5-May-2009]. Available from: http://en.wikipedia.org/w/index.php?title=
Klein%E2%80%93Gordon equation&oldid=288115284.

[3] Prof. Brad Osgood. The Fourier Transform and its Applications. [online]. Available from:
http://www.stanford.edu/class/ee261/book/all.pdf.

[4] A. F. Kracklauer. Louis de Broglie (Thesis): On the theory of Quanta [online]. Avail-
able from: http://www.ensmp.fr/aflb/LDB-oeuvres/De Broglie Kracklauer.pdf [cited 19
June 2009].

[5] H. Goldstein. Classical mechanics. Cambridge: Addison-Wesley Press, Inc, 1st edition, 1951.

[6] JD Jackson. Classical Electrodynamics Wiley. 2nd edition, 1975.

[7] A.P. French and E.F. Taylor. An Introduction to Quantum Physics. CRC Press, 1998.

[8] Wikipedia. Schrdinger equation (short heuristic derivation) — wikipedia, the free encyclopedia
[online]. 2009. [Online; accessed 29-June-2009]. Available from: http://en.wikipedia.org/
w/index.php?title=Schr%C3%B6dinger equation&oldid=299325461.

[9] Carl R. (Rod) Nave. Free particle approach to the Schrodinger equation [online]. Avail-
able from: http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/Schr2.html [cited 19
June 2009].

[10] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

[11] R. Liboff. Introductory quantum mechanics. 2003.

9

http://en.wikipedia.org/w/index.php?title=Klein%E2%80%93Gordon_equation&oldid=288115284
http://en.wikipedia.org/w/index.php?title=Klein%E2%80%93Gordon_equation&oldid=288115284
http://www.stanford.edu/class/ee261/book/all.pdf
http://www.ensmp.fr/aflb/LDB-oeuvres/De_Broglie_Kracklauer.pdf
http://en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation&oldid=299325461
http://en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation&oldid=299325461
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/Schr2.html

