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1. Motivation

The planar multiple pendulum problem proved somewhat tractable in the Hamiltonian for-
mulation. Generalizing this to allow for three dimensional motion is a logical next step. Here
this is attempted, using a Geometric Algebra scalar plus bivector parametrization of the spherical
position of each dangling mass relative to the position of what it is attached to, as in

z = le3ejθ (1)

The exponential is essentially a unit quaternion, rotating the vector le3 from the polar axis to
its θ, φ angle dependent position. Two sided rotation operators are avoided here by requiring of
the unit bivector j = e3 ∧m, where m is a vector in the plane of rotation passing through the great
circle from e3 through z. Note that we are free to pick m = e1ee1e2φ, the unit vector in the x, y plane
at angle φ from the x-axis. When that is done j = e3m since these are perpendicular. Setting up the
Lagrangian in terms of the bivector j instead of the scalar angle φ will be attempted, since this is

1



expected to have some elegance and will be a fun way to try the problem. This should also provide
a concrete example of a multivector Lagrangian in a context much simpler than electromagnetic
fields or quantum mechanics.

Note finally that a number of simplifying assumptions will be made. These include use of
point masses, zero friction at the pivots and rigid nonspringy massless connecting rods between
the masses.

2. Kinetic energy for the single pendulum case.

Let’s compute derivatives of the unit vector

ẑ = e3ejθ = e−jθe3 (2)

This can be done with both the left and right factorization of e3, and are respectively

˙̂z = e3

(
jθ̇ejθ +

dj
dt

sin θ

)
(3)

= e3
[
jejθ sin θ

] d
dt

[
θ
j

]
(4)

˙̂z =
(
−jθ̇e−jθ − dj

dt
sin θ

)
e3 (5)

=
(

d
dt
[
θ −j

]) [−je−jθ

sin θ

]
e3 (6)

These derivatives have been grouped into a matrix factors that allow a natural seeming conju-
gate operation to be defined. That is for a matrix of multivector elements aij

A =
[
aij
]

(7)

define a conjugate matrix, as the transpose of the reversed elements

A† ≡
[
ãji
]

(8)

With this definition, plus two helpers

Θ ≡
[

θ
j

]
(9)

R =
[
jejθ sin θ

]
(10)

Our velocity becomes
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˙̂z2 = Θ̇
†R†RΘ̇ (11)

(12)

Explicitly, expanding the inner matrix product we can write

Q ≡ R†R (13)

=
[

1 −je−jθ sin θ

jejθ sin θ sin2 θ

]
(14)

˙̂z2 = Θ̇
†QΘ̇ (15)

(16)

This is a slightly unholy mix of geometric and matrix algebra, but it works to compactly ex-
press the velocity dependence. Observe that this inner matrix Q = Q†, so it is Hermitian with this
definition of conjugation.

Our Lagrangian for the one particle pendulum, measuring potential energy from the horizon-
tal, is then

L = Θ̇
† 1

2
ml2QΘ̇−mgl cos θ (17)

We also have a mechanism that should generalize fairly easily to the two or many pendulum
cases too.

Before continuing, it should be noted that there were assumptions made in this energy expres-
sion derivation that are not reflected in the Lagrangian above. One of these was the unit bivector
assumption for j, as well as a e3 containment assumption for the plane this represents (e3 ∧ j = 0).
So for completeness we should probably add to the Lagrangian above some Lagrange multiplier
enforced constraints

λ(j2 + 1) + α · (e3 ∧ j) (18)

Here α has got to be a trivector multiplier for the Lagrangian to be a scalar. Can we get away
with omitting these constraints?

3. Two and multi particle case.

Having constructed a way that can express the velocity of a single spherical pendulum in a
tidy way, we can move on to consider the multiple pendulum case as shown in figure (1)

There are two bivectors depicted, j1 and j2 representing oriented planes passing through great
circles from a local polar axis (in direction e3). Let the positions of the respective masses be z1
and z2, where each mass is connected by a rigid massless rod of length l1 and l2 respectively. The
masses are rotated by angles θ1 and θ2 in the planes j1 and j2 from an initial direction of e3. We can
express the position of the second mass as
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Figure 1: Double spherical pendulum.

z2 = z1 + e3ej2θ2 (19)

We can use the same factorization as previously used for the single mass case and write for
our collection of angular velocities

Θ ≡


θ1
j1
θ2
j2

 (20)

Using this the total Kinetic energy is

K = Θ̇
† 1

2
QΘ̇ (21)

R1 =
[
l1 j1ej1θ1 l1 sin θ1 0 0

]
(22)

R2 =
[
l1 j1ej1θ1 l1 sin θ1 l2 j2ej2θ2 l2 sin θ2

]
(23)

Q = m1R1
†R1 + m2R2

†R2 (24)

Notation has been switched slightly from the single mass case, and the ml2 factor is now in-
corporated directly into Q for convenience.

An expansion of Q is essentially one of block matrix multiplication (where we already have to
be careful with order of operations as we do for the geometric product elements themselves). We
have something like
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R1 =
[
A1 0

]
(25)

R1
† =

[
A1

†

0

]
(26)

R2 =
[
A1 A2

]
(27)

R2
† =

[
A1

†

A2
†

]
(28)

We have for the products

R1
†R1 =

[
A1

† A1 0
0 0

]
(29)

R2
†R2 =

[
A1

† A1 A1
† A2

A2
† A1 A2

† A2

]
(30)

So our quadratic form matrix is

Q =
[
(m1 + m2)A1

† A1 m2A1
† A2

m2A2
† A1 m2A2

† A2

]
(31)

In general for the multiple particle case this is

Q =
[(

∑N
k=max(r,c) mk

)
Ar

† Ac

]
rc

(32)

Ak = lk
[
jkejkθk sin θk

]
(33)

Expanded explicitly this is

Q =
[(

∑N
k=max(r,c) mk

)
lrlc

[
−jre−jrθr jcejcθc −jre−jrθr sin θc

jcejcθc sin θr sin θr sin θc

]]
rc

(34)

Observe that the order of products in this expansion is specifically ordered, since the jc and jr
bivectors do not necessarily commute.

The potential in the multiple particle case is also fairly straightforward to compute. Consider
the two particle case to illustrate the pattern. Using the lowest point as the potential reference we
have

φ′ = g ∑ mihi = m1r1(1 + cos θ1) + m2 (r1(1 + cos θ1) + r2(1 + cos θ2)) (35)

Alternately, dropping all the constant terms (using the horizon as the potential reference) we
have for the general case

φ = g ∑
i

(
N

∑
k=i

mk

)
ri cos θi (36)
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Lets collect all the bits and pieces now for the multiple pendulum Lagrangian now, repeating
for coherency, and introducing a tiny bit more notation (mass sums and block angular velocity
matrices) for convenience

L = K− φ + ∑
k

λk(jk2 + 1) (37)

Θi =
[

θi
ji

]
(38)

Θ =
[
Θr
]

r (39)

µi =
N

∑
k=i

mk (40)

Q =
[

µmax(r,c)lrlc

[
−jre−jrθr jcejcθc −jre−jrθr sin θc

jcejcθc sin θr sin θr sin θc

]]
rc

(41)

K =
1
2

Θ̇
†QΘ̇ (42)

φ = g
N

∑
i=1

µiri cos θi (43)

4. Building up to the Multivector Euler-Lagrange equations.

Rather than diving right into any abstract math, lets consider a few specific examples of mul-
tivector Lagrangians to develop some comfort with non-scalar Lagrangian functions. The gen-
eralized “coordinates” in the Lagrangian for the spherical pendulum problem being considered
include include bivectors, and we don’t know how to evaluate the Euler Lagrange equations for
anything but scalar generalized coordinates.

The goal is to develop Euler-Lagrange equations that can handle a Lagrangian for these more
general functions, but until we figure out how to do that, we can at least tackle the problem using
variation of the action around a stationary solution.

4.1. A first example to build intuition.

To help understand what we have to do, lets consider the very simplest bivector parametrized
Lagrangian, that of a spherical pendulum constrained (perhaps by a track or a surface) of moving
only in a ring. This is shown pictorially in figure (2)

The potential energy is fixed on this surface, so our Lagrangian is purely kinetic

L = −1
2

ml2 sin2 θ0 j′2 (44)

We’d like to directly vary the action for the Lagrangian around a stationary solution

S =
∫
Ldt (45)

Introducing a bivector variation j = j̄ + ε, and writing I = ml2 sin2 θ0 we have
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Figure 2: Circularly constrained spherical pendulum.

S̄ + δS = −1
2

I
∫

( j̄′ + ε′)2dt

= −1
2

I
∫

( j̄′)2dt− 1
2

I
∫ (

j̄′ε′ + ε′ j̄′
)

dt− 1
2

I
∫

(ε′)2dt

The first term is just S̄. Setting the variation δS = 0 (neglecting the quadratic ε′ term) and
integrating by parts we have

0 = δS

=
∫

dt
(

d
dt

(
1
2

I j̄′
)

ε + ε
d
dt

(
1
2

I j̄′
))

=
∫ ( d

dt
I j̄′
)
· εdt

With ε arbitrary it appears that the solutions of the variation problem are given by

d
dt
(

I j′
)

= 0 (46)

Has anything been lost by requiring that this is zero identically when all we had originally was
the dot product of this with the variation bivector was zero? If this zero describes the solution set,
then we should be able to integrate this, yielding a constant. However, following this to its logical
conclusion leads to inconsistency. Integrating 46, producing a bivector constant κ we have
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I j′ = κ (47)

The original constraint on j was the bivector spanning the plane from the polar axis to the
azimuthal unit vector in the x, y plane at angle a φ. The φ dependence wasn’t specified, and left
encoded in the bivector representation. Without words that was

j = e3e1ee12φ (48)

Inserting back into 47 this gives

d
dt

ee12φ =
e1e3κ

I
(49)

One more integration is trivially possible yielding

ee12φ(t) = ee12φ0 +
e1e3κt

I
(50)

There are two possibilities for the grades of κ, one is κ ∝ e3e1, so that the time dependence is
a scalar, and the other is κ ∝ e3e2 so that we have an x, y plane bivector component. Allowing for
both, and separating into real and imaginary parts we have

cos φ− cos φ0 =
1
I

κrt (51)

sin φ− sin φ0 =
1
I

κit (52)

This isn’t anything close to the solution that is expected if we were to start with the scalar
Lagrangian for the same problem. That Lagrangian is

L =
1
2

Iφ̇2 (53)

and the Euler Lagrange equations give us, for a scalar constant µ

Iφ̇ = µ (54)

So the solution for φ is just

φ− φ0 =
µt
I

(55)

In the absence of friction this makes sense. Our angle increases monotonically, and we have
circular motion with constant angular velocity. Compare this to the messier 51 derived from the
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bivector “solution” to the variational problem. There is definitely something wrong with the vari-
ational approach (or conclusion) when the variable is a bivector.

Does it help to include the constraints explicitly? The bivector parametrized Lagrangian with
the unit bivector multiplier constraint for this system is

L = −1
2

I(j′)2 + λ(j2 + 1) (56)

Doing the variation we get a set of two equations

−I j′′ = 2λj (57)

j2 = −1 (58)

Once again re-inserting j = e31ee12φ one gets

eiφ = A sin(
√

I/2λt) + B cos(
√

I/2λt) (59)

Setting λ = 1, A = i, B = 1, we have

φ ∝ t (60)

This is now consistent with the scalar Lagrangian treatment. In both cases we have the angle
linearly proportional to time, and have a single parameter to adjust the angular velocity (used µ in
the scalar treatment above and have λ this time (although it was set to one here for convenience).
The conclusion has to be that the requirement to include the multipliers for the constraints is ab-
solutely necessary to get the right physics out of this bivector parametrized Lagrangian. The good
news is that we can get the right physics out of a non-scalar treatment. What is a bit disturbing is
that it was fairly difficult in the end to get from the results of the variation to a solution, and that
this will not likely get any easier with a more complex system.

4.2. A second example.

The scalar expansion 82 of the kinetic term in our spherical polar Lagrangian shows a couple
of other specific multivector functions we can consider the variation of.

We have considered an specific example of a Lagrangian function L = f (j′ · j′) without (yet)
utilizing or deriving a multivector form of the Euler-Lagrange equations. Let’s consider a few
more specific simple examples motivated by the expansion of the kinetic energy in 82. Lets start
with

L = θ′a · j′ (61)

where a is a bivector constant, θ a scalar, and j a bivector variable for the system. Expanding
this around stationary points j = j̄ + ε, and θ = θ̄ + φ we have to first order
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∫
δLdt ≈

∫ (
φ′a · j̄′ + θ̄′a · ε′

)
dt

=
∫ (

φ
d
dt

(−a · j̄′) +
d
dt

(−θ̄′a) · ε
)

dt

In this simple system where both scalar variable θ and bivector variable j are cyclic “coordi-
nates”, we have solutions to the variational problem given by the pair of equations

−a · j′ = constant (62)
−θ′a = constant (63)

As to what, if anything, this particular Lagrangian (a fragment picked out of a real Kinetic
energy function) represents physically that doesn’t matter so much, since the point of this example
was to build up to treating the more general case where we are representing something physical.

4.3. A third example.

If we throw a small additional wrench into the problem above and allow a to be one of the
variables our system is dependent on.

L(θ, θ′, a, a′, j, j′) = θ′a · j′ (64)

It is less obvious how to do a first order Taylor expansion of this Lagrangian required for the
variation around the stationary solution. If all the coordinates in the Lagrangian were scalars as
in

L(θ, θ′, a, a′, j, j′) = θ′aj′ (65)

(dropping dot products now that these are all scalar variables), then the variation requires
nothing abnormal. Suppose our stationary point has coordinates θ̄, ā, j̄, with variations α, β, γ that
vanish at the extremes of the integral as usual.

With scalar variables our path is clear, and we just form

δS =
∫

δL

=
∫ (

α
∂L
∂θ

+ α′
∂L
∂θ′

+ β
∂L
∂a

+ β′
∂L
∂a′

+ γ
∂L
∂j

+ γ′
∂L
∂j′

)

Here is it implied that all the partials are evaluated at the stationary points θ̄, ā, j̄. Doing the
integration by parts we have
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δS =
∫ (

α

(
∂L
∂θ
− d

dt
∂L
∂θ′

)
+ β

(
∂L
∂a
− d

dt
∂L
∂a′

)
+ γ

(
∂L
∂j
− d

dt
∂L
∂j′

))
Setting δS = 0 this produces the Euler-Lagrange equations for the system. For our specific

Lagrangian this procedure gives

∫
δL =

∫
α′ ā j̄′ + θ̄′β j̄′ + θ̄′ āγ′

=
∫

α
d
dt
(
−ā j̄′

)
+ θ̄′β j̄′ +

d
dt
(
−θ̄′ ā

)
γ

Each time we do the first order expansion we are varying just one of the coordinates. It seems
likely that the correct answer for the multivariable case will be

∫
δL =

∫
α

d
dt
(
−ā · j̄′

)
+ β · (θ̄′ j̄′) +

d
dt
(
−θ̄′ ā

)
· γ

Thus the variational problem produces solutions (the coupled equations we still have to solve)
of

−a · j′ = constant (66)
θ′ j′ = 0 (67)
−θ′a = constant (68)

5. Multivector Euler-Lagrange equations.

5.1. Derivation.

Having considered a few specific Lagrangians dependent on multivector generalized “coordi-
nates”, some basic comfort that it is at least possible has been gained. Let’s now move on to the
general case. It is sufficient to consider Lagrangian functions that only depend on blades, since
we can write any more general multivector as a sum of such blades

Write

L = L(Xk, X′k) (69)

where Xk ∈
∧mk is a blade of grade mk. We can do a regular old chain rule expansion of this

Lagrangian if coordinates are (temporarily) introduced for each of the blades Xk. For example, if
X is a bivector in R3, we can write

X = e12a12 + e13a13 + e23a23

11



and then we can do a first order Taylor series expansion of L(X̄ + ε) in terms of these coordi-
nates. With ε = e12ε12 + e13ε13 + e23ε23, for this specific single variable Lagrangian we have

δL = L(X̄ + ε)−L(X̄)

≈ ε12 ∂L
∂a12

∣∣∣∣
X̄

+ ε23 ∂L
∂a23

∣∣∣∣
X̄

+ ε13 ∂L
∂a13

∣∣∣∣
X̄

If we write the coordinate expansion of our blades Xk as

Xk = ∑
bk

xk
bk σbk

where bk is some set of indexes like {12, 23, 13} from the R3 bivector example, then our chain
rule expansion of the Lagrangian to first order about a stationary point becomes

δL = ∑
bk

εk
bk

∂L
∂xk

bk

∣∣∣∣
X̄k ,X̄′k

+ ∑
bk

(εk
bk)′

∂L
∂(xk

bk)′

∣∣∣∣
X̄k ,X̄′k

(70)

Trying to write this beastie down with abstract indexing variables is a bit ugly. There’s some-
thing to be said for not trying to be general since writing this for the single variable bivector ex-
ample was much clearer. However, having written down the ugly beastie, it can now be cleaned
up nicely by introducing position and velocity gradient operators for each of the grades

∇Xk ≡ σbk
∂

∂xk
bk

(71)

∇X′k
≡ σbk

∂

∂(xk
bk)′

(72)

Utilizing this (assumed) orthonormal basis pair σbk · σbj = δk
j we have

δS =
∫

δL

=
∫

∑
k

εk · ∇XkL|X̄k ,X̄′k
+ εk

′ · ∇X′k
L
∣∣∣

X̄k ,X̄′k

=
∫

∑
k

εk ·
(
∇XkL|X̄k ,X̄′k

− d
dt
∇X′k
L
∣∣∣

X̄k ,X̄′k

)

Setting δS = 0 we have a set of equations for each of the blade variables, and the Euler-
Lagrange equations take the form

∇XkL =
d
dt
∇X′k
L (73)
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5.2. Work some examples.

For the pendulum problem we are really only interested in applying 73 for scalar and bivector
variables. Let’s revisit some of the example Lagrangians, functions of bivectors, already consid-
ered and see how we can evaluate the position and velocity gradients. This generalized Euler-
Lagrange formulation doesn’t do much good if we can’t work with it.

Let’s take the bivector gradient of a couple bivector functions (all the ones considered previ-
ously leading up to the multivector Euler-Lagrange equations).

f (B) = A · B
g(B) = B2

It is actually sufficient (in a less than 4D space) to consider only the first,

∇B f = ∇B〈AB〉

= ∑
a<b

σab ∂

∂bab

〈
Aba′b′σa′b′

〉
= ∑

a<b
σab〈Aσab〉

= ∑
a<b

σab A · σab

= A

For g we then have

∇Bg = ∇BBB
= ∇B〈BB〉
= 2B

This is now enough to evaluate our bivector parameterized Lagrangian from the first example,
56, reproducing the result obtained by direct variation (as in Feynman’s lectures)

d
dt
∇j′L = ∇jL

−I j′′ =
= 2λj

By inspection we can see that this works for the remaining two motivational examples too.

6. Evaluating the pendulum Euler-Lagrange equations (scalar, bivector parameterized KE).

We now have the tools to evaluate the Euler-Lagrange equations for the pendulum problem
37. Since all the dθa/dt and dja/dt dependence is in the kinetic energy we can start with that. For
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K =
1
2

Θ̇
†QΘ̇ (74)

We want each of ∂K
∂θ̇a

and ∇j′a K. Of these the θ̇ derivative is easier, so lets start with that

∂K
∂θa

=
1
2

(
∂Θ̇

∂θ̇a

†)
QΘ̇ +

1
2

Θ̇
†Q
(

∂Θ̇

∂θ̇a

)

Each of these are scalars and thus equal their Hermitian conjuagate. This leaves us with just
one term doubled

∂K
∂θa

= Θ̇
†Q
(

∂Θ̇

∂θ̇a

)

A final evaluation of the derivatives, in block matrix form over rows r, gives us

∂K
∂θa

= Θ̇
†Q
[

δar

[
1
0

]]
r

(75)

For the bivector velocity gradients, we can do the same,

∇j′a K =
1
2

(→
∇j′a Θ̇

†
)

QΘ̇ +
1
2

Θ̇
†Q
(

Θ̇
←
∇j′a

)

Only the j′a parts of Θ̇ contribute to the velocity gradients, so we need to know how to evaluate
a bivector gradient (as opposed to the square which was done earlier). Expanding in coordinates

∇j j =
1
2 ∑

ab
σab ∂

∂jab
1
2 ∑

a′b′
σa′b′ ja′b′

=
1
2 ∑

ab
σabσab

= 3

(three here because we are in R3, and our bivectors have three independent coordinates).

∇j′a K =
3
2
[
δac
[
0 −1

]]
cQΘ̇ +

3
2

Θ̇
†Q
[

δar

[
0
1

]]
r

These terms are both one-by-one bivector matrixes, and negate with Hermitian conjugation,
so we can again double up and eliminate one of the two terms, producing
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∇j′a K = 3Θ̇
†Q
[

δar

[
0
1

]]
r

(76)

Completing the Euler-Lagrange equation evaluation we have for the θa coordinates

d
dt

(
Θ̇

†Q
[

δar

[
1
0

]]
r

)
=

1
2

Θ̇
† ∂Q

∂θa
Θ̇− ∂φ

∂θa
(77)

plus one equation for each of the bivectors ja

3
d
dt

(
Θ̇

†Q
[

δar

[
0
1

]]
r

)
=

1
2 ∑

e< f
e f eeΘ̇

† ∂Q
∂jae f Θ̇ + 2λa ja (78)

Because the bivector e f ee does not (nessessarily) commute with bivectors j′a that are part of Θ̇

there doesn’t look like there’s much hope of assembling the left hand ja gradients into a nice non-
coordinate form. Additionally, looking back at this approach, and the troubles with producing
meaningful equations of motion even in the constrained single pendulum case, it appears that a
bivector parameterization of the kinetic energy is genally not a good approach. This is an unfor-
tunate conclusion after going through all the effort to develop intuition that led to the multivector
Euler-Lagrange formulation for this problem.

Oh well.
The Hermitian formulation used here should still provide a nice compact way of expressing

the kinetic energy, even if we work with plain old scalar spherical polar angles θ, and φ. Will try
this another day, since adding that to these notes will only make them that much more intractable.

7. Appendix calculation. A verification that the Kinetic matrix product is a real scalar.

In the kinetic term of the rather scary looking Lagrangian of 37 we have what should be a real
scalar, but it is not obvious that this is the case. As a validation that nothing very bad went wrong,
it seems worthwhile to do a check that this is in fact the case, expanding this out explicitly in gory
detail.

One way to try this expansion is utilizing a block matrix summing over the diagonal and
paired skew terms separately. That is

K =
1
2

N

∑
k=1

µklk
2Θ̇

†
k

[
1 −jke−jkθk sin θk

jkejkθk sin θk sin2 θk

]
Θ̇k

+
1
2 ∑

a<b
µblalb

(
Θ̇

†
a

[
−jae−jaθa jbejbθb −jae−jaθa sin θb

jbejbθb sin θa sin θa sin θb

]
Θ̇b + Θ̇

†
b

[
−jbe−jbθb jaejaθa −jbe−jbθb sin θa

jaejaθa sin θb sin θb sin θa

]
Θ̇a

)
Examining the diagonal matrix products and expanding one of these (dropping the k suffix for

tidiness), we have

Θ̇
†
[

1 −je−jθ sin θ

jejθ sin θ sin2 θ

]
Θ̇ = θ̇2 − sin2 θ

(
dj
dt

)2

− θ̇ sin θ cos θ

(
j
dj
dt

+
dj
dt

j
)

(79)
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Since we are working in 3D this symmetric sum is twice the dot product of the bivector j with
its derivative, which means that it is a scalar. We expect this to be zero though, and can observe
that this is the case since j was by definition a unit bivector

j
dj
dt

+
dj
dt

j =
dj2

dt
=

d(−1)
dt

= 0 (80)

(thus j and its derivative represent orthogonal oriented planes rather like r̂ and its derivative
are orthogonal on a circle or sphere). The implication is that the diagonal subset of the kinetic
energy expansion contains just

1
2

N

∑
k=1

µklk
2

((
dθk

dt

)2

− sin2 θk

(
djk
dt

)2
)

(81)

If we are going to have any complex interaction terms then they will have to come from the off
diagonal products. Expanding the first of these

Θ̇
†
a

[
−jae−jaθa jbejbθb −jae−jaθa sin θb

jbejbθb sin θa sin θa sin θb

]
Θ̇b

=
[
θ′a −j′a

] [−jae−jaθa jbejbθb −jae−jaθa sin θb
jbejbθb sin θa sin θa sin θb

] [
θ′b
j′b

]
=
[
θ′a −j′a

] [−jae−jaθa jbejbθb θ′b − jae−jaθa sin θb j′b
jbejbθb sin θaθ′b + sin θa sin θb j′b

]
= −jae−jaθa jbejbθb θ′aθ′b − jae−jaθa sin θbθ′a j′b − j′a jbejbθb sin θaθ′b − sin θa sin θb j′a j′b

Adding to this the a↔ b exchanged product and rearranging yields

−θ′aθ′b(jae−jaθa jbejbθb + jbe−jbθb jaejaθa)− sin θa sin θb(j′a j′b + j′b j′a)

− sin θbθ′a(jae−jaθa j′b + j′b jaejaθa)− sin θaθ′b(jbe−jbθb j′a + j′a jbejbθb)

Each of these multivector sums within the brackets is of the form A + Ã, a multivector plus its
reverse. There can therefore be no bivector or trivector terms since they negate on reversal, and the
resulting sum can have only scalar and vector grades. Of these the second term, j′a j′b + j′b j′a = 2j′a · j′b
so it is unarguably a scalar as expected, but additional arguments are required to show this of the
other three terms. Of these remaining three, the last two have the same form. Examining the first
of these two

jbe−jbθb j′a + j′a jbejbθb = (jb cos θb + sin θb)j′a + j′a(jb cos θb − sin θb)
= cos θb(jb j′a + j′a jb)
= 2 cos θb(jb · j′a)

The first term actually expands in a similarly straightforward way. The vector terms all cancel,
and one is left with just
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jae−jaθa jbejbθb + jbe−jbθb jaejaθa = 2 cos θa cos θb ja · jb − 2 sin θa sin θb

Writing Sθk = sin θk and Cθk = cos θk (for compactness to fit things all in since the expanded
result is messy), all of this KE terms can be assembled into the following explicit scalar expansion

K = 1
2 ∑N

k=1 µklk
2 ((θ′k)

2 − (Sθk j′k)
2)

−∑a<b µblalb
(
θ′aθ′b(Cθa Cθb(ja · jb)− Sθa Sθb) + Sθa Sθb(j′a · j′b) + Sθb Cθb θ′a(jb · j′a) + Sθa Cθa θ′b(ja · j′b)

)
(82)

Noting that all the bivector, bivector dot products are scalars really completes the desired ver-
ification. We can however, be more explicit using ja = e31ee12φa , which gives after a bit of manipu-
lation

ja · jb = − cos(φa − φb) (83)

(j′a)
2 = −(φ′a)

2 (84)
ja · j′b = φ′b sin(φa − φb) (85)
j′a · j′b = −φ′aφ′b cos(φa − φb) (86)

These can then be inserted back into 82 in a straightforward fashion, but it is not any more
illuminating to do so.
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