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1 Motivation.

Have now made a few excursions related to the concepts of electrodynamic
field energy and momentum.

In [Joot(e)] the energy density rate and poynting divergence relationship
was demonstrated using Maxwell’s equation. That was:

∂

∂t
ε0

2

(
E2 + c2B2

)
+ ∇ · 1

µ0
(E × B) = −E · j (1)
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In terms of the field energy density U, and Poynting vector P, this is

U =
ε0

2

(
E2 + c2B2

)
(2)

P =
1

µ0
(E × B) (3)

∂U
∂t

+ ∇ · P = −E · j (4)

In [Joot(c)] this was related to the energy momentum four vectors

T(a) =
ε0

2
FaF̃ (5)

as defined in [Doran and Lasenby(2003)], but the big picture view of things
was missing.

Later in [Joot(f)] the rate of change of Poynting vector was calculated, with
an additional attempt to relate this to T(γµ).

These relationships, and the operations required to factoring out the diver-
gence were considerably messier.

Finally, in [Joot(b)] the four vector T(γµ) was related to the Lorentz force
and the work done moving a charge against a field. This provides the natural
context for the energy momentum tensor, since it appears that the spacetime
divergence of each of the T(γµ) four vectors appears to be a component of the
four vector Lorentz force (density).

In these notes the divergences will be calculated to confirm the connection
between the Lorentz force and energy momentum tensor directly. This is actu-
ally expected to be simpler than the previous calculations.

It is also potentially of interest, as shown in [Joot(a)], and [Joot(d)] that the
energy density and Poynting vectors, and energy momentum four vector, were
seen to be naturally expressable as Hermitian conjugate operations

F† = γ0 F̃γ0 (6)

T(γ0) =
ε0

2
FF†γ0 (7)

U = T(γ0) · γ0 =
ε0

4

(
FF† + F†F

)
(8)

P/c = T(γ0) ∧ γ0 =
ε0

4

(
FF† − F†F

)
(9)

It is concievable that a generalization of Hermitian conjugation, where the
spatial basis vectors are used instead of γ0, will provide a mapping and driving
structure from the Four vector quantities and the somewhat scrambled seem-
ing set of relationships observed in the split spatial and time domain. That will
also be explored here.
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2 Spacetime divergence of the energy momentum
four vectors.

The spacetime divergence of the field energy momentum four vector T(γ0)
has been calculated previously. Let’s redo this calculation for the other compo-
nents.

∇ · T(γµ) =
ε0

2
〈
∇(Fγµ F̃)

〉
=

ε0

2
〈
(∇F)γµ F̃ + (F̃∇)Fγµ

〉
=

ε0

2
〈
(∇F)γµ F̃ + γµ F̃(∇F)

〉
= ε0

〈
(∇F)γµ F̃

〉
=

1
c
〈

Jγµ F̃
〉

The ability to perform cyclic reordering of terms in a scalar product has
been used above. Application of one more reverse operation (which doesn’t
change a scalar), gives us

∇ · T(γµ) =
1
c
〈

Fγµ J
〉

(10)

Let’s expand the right hand size first.

1
c
〈

Fγµ J
〉

=
1
c
〈
(E + icB)γµ(cργ0 + jγ0)

〉
The µ = 0 term looks the easiest, and for that one we have

1
c
〈(E + icB)(cρ − j)〉 = −j · E

Now, for the other terms, say µ = k, we have

1
c
〈(E + icB)(cρσk − σkj)〉 = Ekρ − 〈iBσkj〉

= Ekρ − JaBb〈σ1σ2σ3σbσkσa〉
= Ekρ − JaBbεakb

= Ekρ + JaBbεkab

= (ρE + j × B) · σk
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Summarizing the two results we have

1
c
〈Fγ0 J〉 = −j · E (11)

1
c
〈Fγk J〉 = (ρE + j × B) · σk (12)

The second of these is easily recognizable as components of the Lorentz
force for an element of charge (density). The first of these is actually the en-
ergy component of the four vector Lorentz force, so expanding that in terms of
spacetime quantities is the next order of business.

3 Four vector Lorentz Force.

The Lorentz force in covariant form is

mẍ = qF · ẋ/c (13)

Two verifications of this are in order. One is that we get the traditional
vector form of the Lorentz force equation from this and the other is that we can
get the traditional tensor form from this equation.

3.1 Lorentz force in tensor form.

Recovering the tensor form is probably the easier of the two operations. We
have

mẍµγµ =
q
2

Fαβ ẋσ(γα ∧ γβ) · γσ

=
q
2

Fαβ ẋσ(γαδβ
σ − γβδα

σ)

=
q
2

Fαβ ẋβγα − q
2

Fαβ ẋαγβ

Dotting with γµ the right hand side is

q
2

Fµβ ẋβ − q
2

Fαµ ẋα = qFµα ẋα

Which recovers the tensor form of the equation

mẍµ = qFµα ẋα (14)
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3.2 Lorentz force components in vector form.

mγ
d
dt

γ

(
c + σk

dxk

dt

)
γ0 =

q
2c

(Fv − vF)

=
qγ

2c
(E + icB)

(
c + σk

dxk

dt

)
γ0

− qγ

2c

(
c + σk

dxk

dt

)
γ0(E + icB)

Right multiplication by γ0/γ we have

m
d
dt

γ (c + v) =
q
2c

((E + icB) (c + v)− (c + v) (−E + icB))

=
q
2c

(+2Ec + Ev + vE + ic(Bv − vB))

After a last bit of reduction this is

m
d
dt

γ (c + v) = q(E + v × B) + qE · v/c (15)

In terms of four vector momentum this is

ṗ = q(E · v/c + E + v × B)γ0 (16)

3.3 Relation to the energy momentum tensor.

It appears that to relate the energy momentum tensor to the Lorentz force we
have to work with the upper index quantities rather than the lower index stress
tensor vectors. Doing so our four vector force per unit volume is

∂ ṗ
∂V

= (j · E + ρE + j × B)γ0 (17)

= −1
c
〈Fγµ J〉γµ (18)

= −(∇ · T(γµ))γµ (19)

The term 〈Fγµ J〉γµ appears to be expressed simply has F · J in [Doran and
Lasenby(2003)]. Understanding that simple statement is now possible now
that an exploration of some of the underlying ideas has been made. In retro-
spect having seen the bivector product form of the Lorentz force equation, it
should have been clear, but some of the associated trickiness in their treatment
obscured this fact ( Although their treatment is only two pages, I still only un-
derstand half of what they are doing!)
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4 Expansion of the energy momentum tensor.

While all the components of the divergence of the energy momentum tensor
have been expanded explicitly, this hasn’t been done here for the tensor itself.
A mechanical expansion of the tensor in terms of field tensor components Fµν

has been done previously and isn’t particularily enlightening. Let’s work it
out here in terms of electric and magnetic field components. In particular for
the T0µ and Tµ0 components of the tensor in terms of energy density and the
Poynting vector.

4.1 In terms of electric and magnetic field components.

Here we want to expand

T(γµ) =
−ε0

2
(E + icB)γµ(E + icB)

It will be convienient here to temporarily work with ε0 = c = 1, and put
them back in afterwards.

4.1.1 First row.

First expanding T(γ0) we have

T(γ0) =
1
2
(E + iB)(E − iB)γ0

=
1
2
(E2 + B2 + i(BE − EB))γ0

=
1
2
(E2 + B2)γ0 + i(B ∧ E)γ0

Using the wedge product dual a ∧ b = i(a × b), and putting back in the
units, we have our first stress energy four vector,

T(γ0) =
(

ε0

2
(E2 + c2B2) +

1
µ0c

(E × B)
)

γ0 (20)

In particular the energy density and the components of the Poynting vector
can be picked off by dotting with each of the γµ vectors. That is

U = T(γ0) · γ0 (21)

P/c · σk = T(γ0) · γk (22)
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4.1.2 First column.

We have Poynting vector terms in the T0k elements of the matrix. Let’s quickly
verify that we have them in the Tk0 positions too.

To do so, again with c = ε0 = 1 temporarily this is a computation of

T(γk) · γ0 =
1
2
(T(γk)γ0 + γ0T(γk))

=
−1
4

(FγkFγ0 + γ0FγkF)

=
1
4
(Fσkγ0Fγ0 − γ0Fγ0σkF)

=
1
4
(Fσk(−E + iB)− (−E + iB)σkF)

=
1
4
〈σk(−E + iB)(E + iB)− σk(E + iB)(−E + iB)〉

=
1
4

〈
σk(−E2 − B2 + 2(E × B))− σk(−E2 − B2 − 2(E × B))

〉

Adding back in the units we have

T(γk) · γ0 = ε0c(E × B) · σk =
1
c

P · σk (23)

As expected, these are the components of the Poynting vector (scaled by
1/c for units of energy density).

4.1.3 Diagonal and remaining terms.

T(γa) · γb =
1
2
(T(γa)γb + γbT(γa))

=
−1
4

(FγaFγb + γaFγbF)

=
1
4
(Fσaγ0Fγb − γaFγ0σbF)

=
1
4
(Fσa(−E + iB)σb + σa(−E + iB)σbF)

=
1
2
〈σa(−E + iB)σb(E + iB)〉

From this point is there any particularily good or clever way to do the re-
maining reduction? Doing it with coordinates looks like it would be easy, but
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also messy. A decomposition of E and B that are parallel and perpendicular to
the spatial basis vectors also looks feasable.

Let’s try the dumb way first

T(γa) · γb =
1
2

〈
σa(−Ekσk + iBkσk)σb(Emσm + iBmσm)

〉
=

1
2
(BkEm − EkBm)〈iσaσkσbσm〉 −

1
2
(EkEm + BkBm)〈σaσkσbσm〉

Reducing the scalar operations is going to be much different for the a = b,
and a 6= b cases. For the diagonal case we have

T(γa) · γa =
1
2
(BkEm − EkBm)〈iσaσkσaσm〉 −

1
2
(EkEm + BkBm)〈σaσkσaσm〉

= −1
2 ∑

m,k 6=a

1
2
(BkEm − EkBm)〈iσkσm〉 +

1
2 ∑

m,k 6=a
(EkEm + BkBm)〈σkσm〉

+
1
2 ∑

m
(BaEm − EaBm)〈iσaσm〉 −

1
2 ∑

m
(EaEm + BaBm)〈σaσm〉

Inserting the units again we have

T(γa) · γa =
ε0

2

(
∑
k 6=a

(
(Ek)2 + c2(Bk)2

)
−
(
(Ea)2 + c2(Ba)2

))
(24)

Or, adding and subtracting, we have the diagonal in terms of energy den-
sity (minus a fudge)

T(γa) · γa = U − ε0

(
(Ea)2 + c2(Ba)2

)
(25)

Now, for the off diagonal terms. For a 6= b this is

T(γa) · γb =
1
2 ∑

m
(BaEm − EaBm)〈iσbσm〉 +

1
2 ∑

m
(BbEm − EbBm)〈iσaσm〉

− 1
2 ∑

m
(EaEm + BaBm)〈σbσm〉 −

1
2 ∑

m
(EbEm + BbBm)〈σaσm〉

+
1
2 ∑

m,k 6=a,b
(BkEm − EkBm)〈iσaσkσbσm〉 −

1
2 ∑

m,k 6=a,b
(EkEm + BkBm)〈σaσkσbσm〉

The first two scalar filters that include i will be zero, and we have deltas
〈σbσm〉 = δbm in the next two. The remaining two terms have only vector and
bivector terms, so we have zero scalar parts. That leaves (restoring units)
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T(γa) · γb = − ε0

2

(
EaEb + EbEa + c2(BaBb + BbBa)

)
(26)

4.2 Summarizing.

Collecting all the results, with Tµν = T(γµ) · γν, we have

T00 =
ε0

2

(
E2 + c2B2

)
(27)

Taa =
ε0

2

(
E2 + c2B2

)
− ε0

(
(Ea)2 + c2(Ba)2

)
(28)

Tk0 = T0k =
1
c

(
1

µ0
(E × B)

)
· σk (29)

Tab = Tba = − ε0

2

(
EaEb + EbEa + c2(BaBb + BbBa)

)
(30)

4.3 Assemblying a four vector.

Let’s see what one of the Taµγµ rows of the tensor looks like in four vector
form. Let f 6= g 6= h represent an even permutation of the integers 1, 2, 3. Then
we have

T f = T f µγµ

=
ε0

2
c(EgBh − EhBg)γ0

+
ε0

2

(
−(E f )2 + (Eg)2 + (Eh)2 + c2(−(B f )2 + (Bg)2 + (Bh)2)

)
γ f

− ε0

2

(
E f Eg + EgE f + c2(B f Bg + BgB f )

)
γg

− ε0

2

(
E f Eh + EhE f + c2(B f Bh + BhB f )

)
γh

It is pretty amazing that the divergence of this produces the f component
of the Lorentz force (density)

∂µT f µ = (ρE + j × B) · σf (31)

Demonstrating this directly without having STA as an available tool would
be quite tedious, and looking at this expression inspires no particular attempt
to try!
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5 Conjugation?

5.1 Followup: energy momentum tensor.

This also suggests a relativistic generalization of conjugation, since the time
basis vector should perhaps not have a distinguishing role. Something like
this:

F†µ = γµ F̃γµ

Or perhaps:

F†µ = γµ F̃γµ

may make sense for consideration of the other components of the general
energy momentum tensor, which had roughly the form:

Tµν ∝ T(γµ) · γν

(with some probable adjustments to index positions). Think this through
later.
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