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Exercise 15.2 in [1] is to do a center of mass change of variables for the two particle Hamiltonian
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Before trying this, I was surprised that this would result in a diagonal form for the transformed
Hamiltonian, so it is well worth doing the problem to see why this is the case. He uses

ξ = r1 − r2 (2)
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Lets use coordinates xk
(1) for r1, and xk

(2) for r2. Expanding the first order partial operator for
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(1) by chain rule in terms of η, and ξ coordinates we have
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We also have
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The second partials for these x coordinates are not a diagonal quadratic second partial opera-
tor, but are instead
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The desired result follows directly, since the mixed partial terms conveniently cancel when we
sum (1/m1)∂/∂x(1)
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With the shorthand of the text

∇η = ∑
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(7)
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, (8)

this is the result to be proven.
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