Two particle center of mass Laplacian change of variables.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2009/twoParticleCMLaplacian.pdf
Peeter Joot — peeter.joot@gmail.com
Nov 30, 2009 RCSfile : twoParticleCMLaplacian.tex, v Last Revision : 1.3
Date : 2009/12/0102: 35 : 29

Contents

Exercise 15.2 in [1] is to do a center of mass change of variables for the two particle Hamiltonian

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2}+V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) . \tag{1}
\end{equation*}
$$

Before trying this, I was surprised that this would result in a diagonal form for the transformed Hamiltonian, so it is well worth doing the problem to see why this is the case. He uses

$$
\begin{align*}
& \boldsymbol{\xi}=\mathbf{r}_{1}-\mathbf{r}_{2} \tag{2}\\
& \boldsymbol{\eta}=\frac{1}{M}\left(m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}\right) . \tag{3}
\end{align*}
$$

Lets use coordinates $x_{k}{ }^{(1)}$ for \mathbf{r}_{1}, and $x_{k}{ }^{(2)}$ for \mathbf{r}_{2}. Expanding the first order partial operator for $\partial / \partial x_{1}{ }^{(1)}$ by chain rule in terms of η, and ξ coordinates we have

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}^{(1)}} & =\frac{\partial \eta_{k}}{\partial x_{1}^{(1)}} \frac{\partial}{\partial \eta_{k}}+\frac{\partial \xi_{k}}{\partial x_{1}^{(1)}} \frac{\partial}{\partial \xi_{k}} \\
& =\frac{m_{1}}{M} \frac{\partial}{\partial \eta_{1}}+\frac{\partial}{\partial \xi_{1}} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}^{(2)}} & =\frac{\partial \eta_{k}}{\partial x_{1}^{(2)}} \frac{\partial}{\partial \eta_{k}}+\frac{\partial \xi_{k}}{\partial x_{1}^{(2)}} \frac{\partial}{\partial \xi_{k}} \\
& =\frac{m_{2}}{M} \frac{\partial}{\partial \eta_{1}}-\frac{\partial}{\partial \xi_{1}} .
\end{aligned}
$$

The second partials for these x coordinates are not a diagonal quadratic second partial operator, but are instead

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}^{(1)}} \frac{\partial}{\partial x_{1}^{(1)}}=\frac{\left(m_{1}\right)^{2}}{M^{2}} \frac{\partial^{2}}{\partial \eta_{1} \partial \eta_{1}}+\frac{\partial^{2}}{\partial \xi_{1} \partial \xi_{1}}+2 \frac{m_{1}}{M} \frac{\partial^{2}}{\partial \xi_{1} \partial \eta_{1}} \tag{4}\\
& \frac{\partial}{\partial x_{1}^{(2)}} \frac{\partial}{\partial x_{1}^{(2)}}=\frac{\left(m_{2}\right)^{2}}{M^{2}} \frac{\partial^{2}}{\partial \eta_{1} \partial \eta_{1}}+\frac{\partial^{2}}{\partial \xi_{1} \partial \xi_{1}}-2 \frac{m_{2}}{M} \frac{\partial^{2}}{\partial \xi_{1} \partial \eta_{1}} . \tag{5}
\end{align*}
$$

The desired result follows directly, since the mixed partial terms conveniently cancel when we $\operatorname{sum}\left(1 / m_{1}\right) \partial / \partial x_{1}^{(1)} \partial / \partial x_{1}^{(1)}+\left(1 / m_{2}\right) \partial / \partial x_{1}^{(2)} \partial / \partial x_{1}^{(2)}$. This leaves us with

$$
\begin{equation*}
H=\frac{-\hbar^{2}}{2} \sum_{k=1}^{3}\left(\frac{1}{M} \frac{\partial^{2}}{\partial \eta_{k} \partial \eta_{k}}+\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \frac{\partial^{2}}{\partial \xi_{k} \partial \xi_{k}}\right)+V(\boldsymbol{\xi}) \tag{6}
\end{equation*}
$$

With the shorthand of the text

$$
\begin{align*}
& \nabla_{\eta}=\sum_{k} \frac{\partial^{2}}{\partial \eta_{k} \partial \eta_{k}} \tag{7}\\
& \boldsymbol{\nabla}_{\xi}=\sum_{k} \frac{\partial^{2}}{\partial \tilde{\xi}_{k} \partial \tilde{\xi}_{k}} \tag{8}
\end{align*}
$$

this is the result to be proven.

References

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.

