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1 Some identities.

[Feynman et al.(1963)Feynman, Leighton, and Sands] electrodynamics chapter
II lists a number of differential vector identities.

1. ∇ · (∇T) = ∇2T = a scalar field

2. ∇× (∇T) = 0

3. ∇(∇ · h) = a vector field

4. ∇ · (∇× h) = 0

5. ∇× (∇× h) = ∇(∇ · h)−∇2h

6. (∇ ·∇)h = a vector field

Let’s see how all these translate to GA form.

1.1 Divergence of a gradient.

This one has the same form, but expanding it can be evaluated by grade selec-
tion

∇ · (∇T) = 〈∇∇T〉
= (∇2)T

A less sneaky expansion would be by coordinates
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∇ · (∇T) = ∑
k,j

(σk∂k) · (σj∂jT)

=

〈
∑
k,j

(σk∂k)(σj∂jT)

〉

=

〈(
∑
k,j

σk∂kσj∂j

)
T

〉

=
〈
∇2T

〉
= ∇2T

1.2 Curl of a gradient is zero.

The duality analogue of this is

∇× (∇T) = −i(∇ ∧ (∇T))

Let’s verify that this bivector curl is zero. This can also be done by grade
selection

∇ ∧ (∇T) = 〈∇(∇T)〉2

= 〈(∇∇)T〉2

= (∇ ∧∇)T
= 0

Again, this is sneaky and side steps the continuity requirement for mixed
partial equality. Again by coordinates is better

∇ ∧ (∇T) =

〈
∑
k,j

σk∂k(σj∂jT)

〉
2

=

〈
∑
k<j

σkσj(∂k∂j − ∂j∂k)T

〉
2

= ∑
k<j

σk ∧ σj(∂k∂j − ∂j∂k)T

So provided the mixed partials are zero the curl of a gradient is zero.

1.3 Gradient of a divergence.

Nothing more to say about this one.
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1.4 Divergence of curl.

This one looks like it will have a dual form using bivectors.

∇ · (∇× h) = ∇ · (−i(∇ ∧ h))
= 〈∇(−i(∇ ∧ h))〉
= 〈−i∇(∇ ∧ h)〉
= −(i∇) · (∇ ∧ h)

Is this any better than the cross product relationship?
I don’t really think so. They both say the same thing, and only possible

value to this duality form is if more than three dimensions are required (in
which case the sign of the pseudoscalar i has to be dealt with more carefully).
Geometrically one has the dual of the gradient (a plane normal to the vector
itself) dotted with the plane formed by the gradient and the vector operated
on. The corresponding statement for the cross product form is that we have
a dot product of a vector with a vector normal to it, so also intuitively expect
a zero. In either case, because we are talking about operators here just saying
this is zero because of geometrical arguments isn’t neccessarily convicing. Let’s
evaluate this explicitly in coordinates to verify

(i∇) · (∇ ∧ h) = 〈i∇(∇ ∧ h)〉

=

〈
i ∑

k,j,l
σk∂k

(
(σj ∧ σl)∂jhl

)〉

= −i ∑
l

σl ∧
(

∑
k<j

(σk ∧ σj)(∂k∂j − ∂j∂k)hl

)

This inner quantity is zero, again by equality of mixed partials. While the
dual form of this identity wasn’t really any better than the cross product form,
there is nothing in this zero equality proof that was tied to the dimension of the
vectors involved, so we do have a more general form than can be expressed by
the cross product, which could be of value in Minkowski space later.

1.5 Curl of a curl.

This will also have a dual form. That is
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∇× (∇× h) = −i(∇ ∧ (∇× h))
= −i(∇ ∧ (−i(∇ ∧ h)))
= −i〈∇(−i(∇ ∧ h))〉2

= i〈i∇(∇ ∧ h)〉2

= i2∇ · (∇ ∧ h)
= −∇ · (∇ ∧ h)

Now, let’s expand this quanity

∇ · (∇ ∧ h)

If the gradient could be treated as a plain old vector we could just do

a · (a ∧ h) = a2h− a(a · h)

With the gradient substituted this is exactly the desired identity (with the
expected sign difference)

∇ · (∇ ∧ h) = ∇2h−∇(∇ · h)

A coordinate expansion to truely verify that this is valid is logically still
required, but having done the others above, it is clear how this would work
out.

1.6 Laplacian of a vector.

This one isn’t interesting seeming.

2 Two more theorems.

Two theorems without proof are mentioned in the text.

2.1 Zero curl implies gradient solution.

Theorem was

If ∇×A = 0
there is a ψ
such that A = ∇ψ
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This appears to be half of an if and only if theorem. The unstated part is if
one has a gradient then the curl is zero

A = ∇ψ

=⇒
∇×A = ∇×∇ψ = 0

This last was proven above, and follows from the assumed mixed partial
equality. Now, the real problem here is to find ψ given A. First note that we can
remove the three dimensionality of the theorem by duality writing ∇× A =
−i(∇ ∧ A). In one sense changing the theorem to use the wedge instead of
cross makes the problem harder since the wedge product is defined not just for
R3. However, this also allows starting with the simpler R2 case, so let’s do that
one first.

Write

A = σ1 A1 + σ2 A2 = σ1(∂1ψ) + σ2(∂2ψ) (1)

The gradient is

∇ = σ1∂1 + σ2∂2

Our curl is then

(σ1∂1 + σ2∂2) ∧ (σ1 A1 + σ2 A2) = (σ1 ∧ σ2)(∂1 A2 − ∂2 A1)

So we have

∂1 A2 = ∂2 A1 (2)

Now from 1 this means we must have

∂1∂2ψ = ∂2∂1ψ (3)

This is just a statement of mixed partial equality, and doesn’t look partic-
ularily useful for solving for ψ. It really shows that the is redundancy in the
problem, and instead of substuiting for both of A1 and A2 in 2, we can use one
or the other.

Doing so we have two equations, either of which we can solve for

∂2∂1ψ = ∂1 A2

∂1∂2ψ = ∂2 A1
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Integrating once gives

∂1ψ =
∫

∂1 A2dy + B(x)

∂2ψ =
∫

∂2 A1dx + C(y)

And a second time produces solutions for ψ in terms of the vector coordi-
nates

ψ =
∫∫

∂A2

∂x
dydx +

∫
B(x)dx + D(y) (4)

ψ =
∫∫

∂A1

∂y
dxdy +

∫
C(y)dy + E(x) (5)

Is there a natural way to merge these so that ψ can be expressed more sym-
metrically in terms of both coordinates? Looking at 4 I am led to guess that its
possible to combine these into a single equation expressing ψ in terms of both
A1 and A2. One way to do so is perhaps just to average the two as in

ψ = α
∫∫

∂A2

∂x
dydx + (1− α)

∫∫
∂A1

∂y
dxdy +

∫
C(y)dy + E(x) +

∫
B(x)dx + D(y)

But that seems pretty arbitrary. Perhaps that’s the point?
FIXME: work some examples.
FIXME: look at more than the R2 case.

2.2 Zero divergence implies curl solution.

Theorem was

If ∇ ·D = 0
there is a C
such that D = ∇× C

As above, if D = ∇× C, then we have

∇ ·D = ∇ · (∇× C)

and this has already been shown to be zero. So the problem becomes find
C given D.

Also, as before an equivalent generalized (or de-generalized) problem can
be expressed.
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That is

∇ ·D = 〈∇D〉
= 〈∇(∇× C)〉
= 〈∇− i(∇ ∧ C)〉
= −〈i∇ · (∇ ∧ C)〉 − 〈i∇ ∧ (∇ ∧ C)〉
= −〈i∇ · (∇ ∧ C)〉

So if ∇ ·D it is also true that ∇ · (∇ ∧ C) = 0
Thus the (de)generalized theorem to prove is

If ∇ · D = 0
there is a C
such that D = ∇ ∧ C

In the R3 case, to prove the original theorem we want a bivector D = −iD,
and seek a vector C such that D = ∇ ∧ C (D = −i(∇ ∧ C)).

∇ · D = ∇ · (∇ ∧ C)

= (σk∂k) · (σi ∧ σj∂iCj)

= σk · (σi ∧ σj)∂k∂iCj

= (σjδki − σiδkj)∂k∂iCj

= σj∂i∂iCj − σi∂j∂iCj

= σj∂i(∂iCj − ∂jCi)

If this is to equal zero we must have the following constraint on C

∂iiCj = ∂ijCi (6)

If the following equality was also true

∂iCj = ∂jCi

Then this would also work, but would also mean D equals zero so that is
not an interesting solution. So, we must go back to 6 and solve for Ck in terms
of D.

Suppose we have D explicitly in terms of coordinates

D = Dijσ
i ∧ σj

= ∑
i<j

(Dij − Dji)σi ∧ σj
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compare this to ∇ ∧ C

C = (∂iCj)σi ∧ σj

= ∑
i<j

(∂iCj − ∂jCi)σi ∧ σj

With the identity

∂iCj = Di j

Equation 6 becomes

∂ijCi = ∂iDij

=⇒
∂jCi = Dij + αij(xk 6=i)

Where αij(xk 6=i) is some function of all the xk 6= xi.
Integrating once more we have

Ci =
∫ (

Dij + αij(xk 6=i)
)

dxj + βij(xk 6=j)
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