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1. Motivation.

In [1] equation (25) we have a forced harmonic oscillator equation

mẍ + mω2x = γ(t). (1)

The solution of this equation is provided, but for fun lets derive it.

2. Guts

Writing

ωu = ẋ, (2)

we can rewrite the second order equation as a first order linear system

u̇ + ωx = γ(t)/mω (3)
ẋ − ωu = 0, (4)



Or, with X = (u, x), in matrix form

Ẋ + ω

[
0 1
−1 0

]
X =

[
γ(t)/mω

0

]
. (5)

The two by two matrix has the same properties as the complex imaginary, squaring to the identity matrix, so the equation to solve is now of the form

Ẋ + ωiX = Γ. (6)

The homogeneous part of the solution is just the matrix

X = e−iωt A

=

(
cos(ωt)

[
1 0
0 1

]
− sin(ωt)

[
0 1
−1 0

])
A,

where A is a two by one column matrix of constants. Assuming for the specific solution X = e−iωt A(t), and substuiting we have

e−iωt Ȧ = Γ(t). (7)

This integrates directly, fixing the unknown column vector function A(t)

A(t) = A(0) +
∫ t

0
eiωτΓ(τ). (8)

Thus the non-homogeneous solution takes the form



X = e−iωt A(0) +
∫ t

0
eiω(τ−t)Γ(τ). (9)

Note that A(0) = (ẋ0/ω, x0). Multiplying this out, and discarding all but the second row of the matrix product gives x(t), and Feynman’s equation (26)
follows directly.
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