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1. Motivation.

While linear approximations, such as the small angle approximation for the pendum, are often used to understand the dynamics of non-linear systems,
exact solutions may be possible in some cases. Walk through the setup for such an exact solution.

2. Guts

The equation to consider solutions of has the form
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We have an unpleasant mix of space and time derivatives, preventing any sort of antidifferentiation. Assuming constant mass m, and employing the chain

rule a refactoring in terms of velocities is possible.
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The one dimensional Newton’s law Equation 1 now takes the form
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This can now be antidifferentiated for
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Taking roots and rearranging produces an implicit differential form x in terms of time
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One can concievably integrate this and invert to solve for position as a function of time, but substitution of a more specific potential is required to go

further.
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