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1. Disclaimer.

These are personal lecture notes for the Fall 2010, University of Toronto Quantum mechanics
I course, taught by Prof. Vatche Deyirmenjian. Typos, if any, are probably mine (Peeter), and no
claim nor attempt of spelling or grammar correctness will be made. The first four lectures I had
chosen not to take notes for since they followed the text [1] very closely.

PHY356F : Quantum Physics I Fall 2010

Lecture 5 — Review — October 12, 2010
Prof. Vatche Deyirmenjian Scribe: Peeter Joot

2. Lecture 5 — Review — October 12, 2010

Review. What have we learned?

2.1. Chapter 1.

Information about systems comes from vectors and operators. Express the vector |φ〉 describ-
ing the system in terms of eigenvectors |an〉. n ∈ 1, 2, 3, · · · .

of some operator A. What are the coefficients cn? Act on both sides by 〈am| to find

〈am|φ〉 = ∑
n

cn 〈am|an〉︸ ︷︷ ︸
Kronicker delta

= ∑ cnδmn

= cm
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cm = 〈am|φ〉

Analogy

v = ∑
i

viei

e1 · v = ∑
i

vie1 · ei = v1

Physical information comes from the probability for obtaining a measurement of the physical
entity associated with operator A. The probability of obtaining outcome am, an eigenvalue of A,
is |cm|2

2.2. Chapter 2.

Deal with operators that have continuous eigenvalues and eigenvectors.
We now express

|φ〉 =
∫

dk f (k)︸︷︷︸
coefficients analogous to cn

|k〉

Now if we project onto k′

〈
k′|φ

〉
=
∫

dk f (k)
〈
k′|k
〉︸ ︷︷ ︸

Dirac delta

=
∫

dk f (k)δ(k′ − k)

= f (k′)

Unlike the discrete case, this is not a probability. Probability density for obtaining outcome k′

is | f (k′)|2.
Example 2.

|φ〉 =
∫

dk f (k)|k〉

Now if we project x onto both sides

〈x|φ〉 =
∫

dk f (k) 〈x|k〉

With 〈x|k〉 = uk(x)
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φ(x) ≡ 〈x|φ〉

=
∫

dk f (k)uk(x)

=
∫

dk f (k)
1√
L

eikx

This is with periodic boundary value conditions for the normalization. The infinite normaliza-
tion is also possible.

φ(x) =
1√
L

∫
dk f (k)eikx

Multiply both sides by e−ik′x/
√

L and integrate. This is analogous to multiplying |φ〉 =∫
f (k)|k〉dk by 〈k′|. We get

∫
φ(x)

1√
L

e−ik′xdx =
1
L

∫∫
dk f (k)ei(k−k′)xdx

=
∫

dk f (k)
( 1

L

∫
ei(k−k′)x

)
=
∫

dk f (k)δ(k− k′)

= f (k′)

f (k′) =
∫

φ(x)
1√
L

e−ik′xdx

We can talk about the state vector in terms of its position basis φ(x) or in the momentum
space via Fourier transformation. This is the equivalent thing, but just expressed different. The
question of interpretation in terms of probabilities works out the same. Either way we look at the
probability density.

The quantity

|φ〉 =
∫

dk f (k)|k〉

is also called a wave packet state since it involves a superposition of many stats |k〉. Example:
See Fig 4.1 (Gaussian wave packet, with |φ|2 as the height). This wave packet is a snapshot of
the wave function amplitude at one specific time instant. The evolution of this wave packet is
governed by the Hamiltonian, which brings us to chapter 3.
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2.3. Chapter 3.

For

|φ〉 =
∫

dk f (k)|k〉

How do we find |φ(t)〉, the time evolved state? Here we have the option of choosing which
of the pictures (Schrödinger, Heisenberg, interaction) we deal with. Since the Heisenberg pic-
ture deals with time evolved operators, and the interaction picture with evolving Hamiltonian’s,
neither of these is required to answer this question. Consider the Schrödinger picture which gives

|φ(t)〉 =
∫

dk f (k)|k〉e−iEkt/h̄

where Ek is the eigenvalue of the Hamiltonian operator H.
STRONG SEEMING HINT: If looking for additional problems and homework, consider in

detail the time evolution of the Gaussian wave packet state.

2.4. Chapter 4.

For three dimensions with V(x, y, z) = 0

H =
1

2m
p2

p = ∑
i

piei

In the position representation, where

pi = −ih̄
d

dxi

the Sch equation is

Hu(x, y, z) = Eu(x, y, z)

H = − h̄2

2m
∇2

= − h̄2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
Separation of variables assumes it is possible to let

u(x, y, z) = X(x)Y(y)Z(z)

(these capital letters are functions, not operators).
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− h̄2

2m

(
YZ

∂2X
∂x2 + XZ

∂2Y
∂y2 + YZ

∂2Z
∂z2

)
= EXYZ

Dividing as usual by XYZ we have

− h̄2

2m

(
1
X

∂2X
∂x2 +

1
Y

∂2Y
∂y2 +

1
Z

∂2Z
∂z2

)
= E

The curious thing is that we have these three derivatives, which is supposed to be related to an
Energy, which is independent of any x, y, z, so it must be that each of these is separately constant.
We can separate these into three individual equations

− h̄2

2m
1
X

∂2X
∂x2 = E1

− h̄2

2m
1
Y

∂2Y
∂x2 = E2

− h̄2

2m
1
Z

∂2Z
∂x2 = E3

or

∂2X
∂x2 =

(
−2mE1

h̄2

)
X

∂2Y
∂x2 =

(
−2mE2

h̄2

)
Y

∂2Z
∂x2 =

(
−2mE3

h̄2

)
Z

We have then

X(x) = C1eikx

with

E1 =
h̄2k2

1
2m

=
p2

1
2m

E2 =
h̄2k2

2
2m

=
p2

2
2m

E3 =
h̄2k2

3
2m

=
p2

3
2m

We are free to use any sort of normalization procedure we wish (periodic boundary conditions,
infinite Dirac, ...)
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2.5. Angular momentum.

HOMEWORK: go through the steps to understand how to formulate ∇2 in spherical polar
coordinates. This is a lot of work, but is good practice and background for dealing with the Hy-
drogen atom, something with spherical symmetry that is most naturally analyzed in the spherical
polar coordinates.

In spherical coordinates (We won’t go through this here, but it is good practice) with

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

we have with u = u(r, θ, φ)

− h̄2

2m

(
1
r

∂rr(ru) +
1

r2 sin θ
∂θ(sin θ∂θu) +

1
r2 sin2 θ

∂φφu
)
= Eu

We see the start of a separation of variables attack with u = R(r)Y(θ, φ). We end up with

− h̄2

2m

(
r
R
(rR′)′ +

1
Y sin θ

∂θ(sin θ∂θY) +
1

Y sin2 θ
∂φφY

)

r(rR′)′ +
(

2mE
h̄2 r2 − λ

)
R = 0

1
Y sin θ

∂θ(sin θ∂θY) +
1

Y sin2 θ
∂φφY = −λ

Application of separation of variables again, with Y = P(θ)Q(φ) gives us

1
P sin θ

∂θ(sin θ∂θ P) +
1

Q sin2 θ
∂φφQ = −λ

sin θ

P
∂θ(sin θ∂θ P) + λ sin2 θ +

1
Q

∂φφQ = 0

sin θ

P
∂θ(sin θ∂θ P) + λ sin2 θ − µ = 0

1
Q

∂φφQ = −µ

or

1
P sin θ

∂θ(sin θ∂θ P) + λ− µ

sin2 θ
= 0 (1)
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∂φφQ = −µQ (2)

The equation for P can be solved using the Legendre function Pm
l (cos θ) where λ = l(l + 1)

and l is an integer
Replacing µ with m2, where m is an integer

d2Q
dφ2 = −m2Q

Imposing a periodic boundary condition Q(φ) = Q(φ + 2π), where (m = 0,±1,±2, · · · ) we
have

Q =
1√
2π

eimφ

There is the overall solution r(r, θ, φ) = R(r)Y(θ, φ) for a free particle. The functions Y(θ, φ)
are

Ylm(θ, φ) = N
(

1√
2π

eimφ

)
Pm

l (cos θ)︸ ︷︷ ︸
−l≤m≤l

where N is a normalization constant, and m = 0,±1,±2, · · · . Ylm is an eigenstate of the L2

operator and Lz (two for the price of one). There’s no specific reason for the direction z, but it is
the direction picked out of convention.

Angular momentum is given by

L = r× p

where

R = xx̂ + yŷ + zẑ

and

p = pxx̂ + pyŷ + pzẑ

The important thing to remember is that the aim of following all the math is to show that

L2Ylm = h̄2l(l + 1)Ylm

and simultaneously

LzYlm = h̄mYlm
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Part of the solution involves working with [Lz, L+], and [Lz, L−], where

L+ = Lx + iLy

L− = Lx − iLy

An exercise (not in the book) is to evaluate

[Lz, L+] = LzLx + iLzLy − LxLz − iLyLz (3)

where [
Lx, Ly

]
= ih̄Lz (4)[

Ly, Lz
]
= ih̄Lx (5)

[Lz, Lx] = ih̄Ly (6)

Substitution back in 3 we have

[Lz, L+] = [Lz, Lx] + i
[
Lz, Ly

]
= ih̄(Ly − iLx)

= h̄(iLy + Lx)

= h̄L+

PHY356F : Quantum Physics I Fall 2010

Lecture 6 — Orbital and Intrinsic Momentum — October 19, 2010
Prof. Vatche Deyirmenjian Scribe: Peeter Joot

3. Lecture 6 — Orbital and Intrinsic Momentum — October 19, 2010

Last time, we started thinking about angular momentum. This time, we will examine orbital
and intrinsic angular momentum.

Orbital angular momentum in classical physics and quantum physics is expressed as

L = r× p, (7)

and

L = R× P, (8)

where R and P are quantum mechanical operators corresponding to position and momentum

R = Xx̂ + Yŷ + Zẑ (9)
P = Pxx̂ + Pyŷ + Pzẑ (10)
L = Lxx̂ + Lyŷ + Lzẑ (11)

Practice problems:
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• a) Determine the commutators
[
Lx, Ly

]
,
[
Ly, Lz

]
, [Lz, Lx] and

[
Lx, Ly

]
= (ry pz − rz py)(rz px − rx pz)− (rz px − rx pz)(ry pz − rz py)

= ry pz(rz px − rx pz)− rz py(rz px − rx pz)− rz px(ry pz − rz py) + rx pz(ry pz − rz py)

= ry pzrz px − ry pzrx pz − rz pyrz px + rz pyrx pz − rz pxry pz + rz pxrz py + rx pzry pz − rx pzrz py

With pirj = rj pi − ih̄δij, we have

[
Lx, Ly

]
= ryrz pz px − ryrz px pz − rzry pz px + rzry px pz − rzrx py pz + rzrx pz py + rxrz py pz − rxrz pz py

+−ih̄
(
ry px − rx py

)
Since the pi pj operators commute, all the first terms cancel, leaving just

[
Lx, Ly

]
= ih̄Lz

• b) Lz in spherical coordinates.

The answer is

Lz ↔ −ih̄
∂

∂φ
(12)

Work through this.

Part of the task in this intro QM treatment is to carefully determine the eigenfunctions for these
operators.

The spherical harmonics are given by Ylm(θ, φ) such that

Ylm(θ, φ) ∝ eimφ (13)

LzYlm(θ, φ) = −ih̄
∂

∂φ
Ylm(θ, φ)

= −ih̄
∂

∂φ
constants(eimφ)

= h̄mconstantseimφ

= h̄mYlm(θ, φ)

The z-component is quantized since, m is an integer m = 0,±1,±2, .... The total angular mo-
mentum
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L2 = L · L = L2
x + L2

y + L2
z (14)

is also quantized (details in the book).
The eigenvalue properties here represent very important physical features. This is also impor-

tant in the hydrogen atom problem. In the hydrogen atom problem, the particle is effectively free
in the angular components, having only r dependence. This allows us to apply the work for the
free particle to our subsequent potential bounded solution.

Note that for the above, we also have the alternate, abstract ket notation, method of writing
the eigenvalue behavior.

Lz|lm〉 = h̄m|lm〉 (15)

Just like

X|x〉 = x|x〉 (16)
P|p〉 = p|p〉 (17)

For the total angular momentum our spherical harmonic eigenfunctions have the property

L2|lm〉 = h̄2l(l + 1)|lm〉 (18)

with l = 0, 1, 2, · · · .
Alternately in plain old non-abstract notation we can write this as

L2Ylm(θ, φ) = h̄2l(l + 1)Ylm(θ, φ) (19)

Now we can introduce the Raising and Lowering Operators, which are

L+ = Lx + iLy (20)
L− = Lx − iLy, (21)

respectively. These are abstract quantities, but also physically important since they relate quan-
tum levels of the angular momentum. How do we show this?

Last time, we saw that

[Lz, L+] = +h̄L+ (22)
[Lz, L−] = −h̄L− (23)

Note that it is implied that we are operating on ket vectors

Lz(L−|lm〉)

with

|lm〉 ↔ Ylm(θ, φ) (24)
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Question: What is L−|lm〉?
Substitute

LzL− − L−Lz = −h̄L−
=⇒
LzL− = L−Lz − h̄L−

Lz (L−|lm〉) = L−Lz|lm〉 − h̄L−|lm〉
= L−mh̄|lm〉 − L−|lm〉
= h̄ (mL−|lm〉 − L−|lm〉)
= h̄(m− 1) (L−|lm〉)

So L−|lm〉 = |ψ〉 is another spherical harmonic, and we have

Lz|ψ〉 = h̄(m− 1)|ψ〉 (25)

This lowering operator quantity causes a physical change in the state of the system, lowering
the observable state (ie: the eigenvalue) by h̄.

Now we want to normalize |ψ〉 = L−|lm〉, via 〈ψ|ψ〉 = 1.

1 = 〈ψ|ψ〉
= 〈lm|L†

−L−|ψ〉
= 〈lm|L+L−|ψ〉

We can use

L+L− = L2 − L2
z + h̄Lz, (26)

So, knowing (how exactly?) that

L−|lm〉 = C|l, m− 1〉 (27)

we have from 26

|C|2 = 〈lm|(L2 − L2
z + h̄Lz)|ψ〉

= 〈lm|lm〉︸ ︷︷ ︸
=1

(
h̄2l(l + 1)− (h̄m)2 + h̄2m

)
= h̄2 (l(l + 1)−m2 + m

)
.

we have

|C|2 〈l, m− 1|l, m− 1〉︸ ︷︷ ︸
=1

= h̄2 (l(l + 1)−m2 + m
)

. (28)
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and can normalize the functions |ψ〉 as

L−|lm〉 = h̄
(
l(l + 1)−m2 + m

)1/2 |l, m− 1〉 (29)

Abstract notation side note:

〈θ, φ|lm〉 = Ylm(θ, φ) (30)

3.1. Generalizing orbital angular momentum.

To explain the results of the Stern-Gerlach experiment, assume that there is an intrinsic angular
momentum S that has most of the same properties as L. But S has no classical counterpart such
as r× p.

This experiment is the classic QM experiment because the silver atoms not only have the orbital
angular momentum, but also have an additional observed intrinsic spin in the outermost electron.
In turns out that if you combine relativity and QM, you can get out something that looks like the
the S operator. That marriage produces the Dirac electron theory.

We assume the commutation relations

[
Sx, Sy

]
= ih̄Sz (31)[

Sy, Sz
]
= ih̄Sx (32)

[Sz, Sx] = ih̄Sy (33)

Where we have the analogous eigenproperties

S2|sm〉 = h̄2s(s + 1)|sm〉 (34)
Sz|sm〉 = h̄m|sm〉 (35)

with s = 0, 1/2, 1, 3/2, ...
Electrons and protons are examples of particles that have spin one half.
Note that there is no position representation of |sm〉. We cannot project these states.
This basic quantum mechanics end up applying to quantum computing and cryptography as

well, when we apply the mathematics we are learning here to explain the Stern-Gerlach experi-
ment to photon spin states.

(DRAWS Stern-Gerlach picture with spin up and down labeled |z+〉, and |z−〉 with the mag-
netic field oriented in along the z axis.)

Silver atoms have s = 1/2 and m = ±1/2, where m is the quantum number associated with
the z-direction intrinsic angular momentum. The angular momentum that is being acted on in the
Stern-Gerlach experiment is primarily due to the outermost electron.

Sz|z+〉 =
h̄
2
|z+〉 (36)

Sz|z−〉 = −
h̄
2
|z−〉 (37)

S2|z±〉 = 1
2

(
1
2
+ 1
)

h̄2|z±〉 (38)
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where

|z+〉 = |1
2

1
2
〉 (39)

|z−〉 = |1
2
− 1

2
〉 (40)

What about Sx? We can leave the detector in the x, z plane, but rotate the magnet so that it lies
in the x direction.

We have the correspondence

Sz ↔
h̄
2

[
0 1
1 0

]
, (41)

but this is perhaps more properly viewed as the matrix representation of the less specific form

Sz =
h̄
2
(|z+〉〈z+| − |z−〉〈z−|) . (42)

Where the translation to the form of 41 is via the matrix elements

〈z+|Sz|z+〉 (43)
〈z+|Sz|z−〉 (44)
〈z−|Sz|z+〉 (45)
〈z−|Sz|z−〉. (46)

We can work out the same for Sx using S+ and S−, or equivalently for σx using σ+ and σ−,
where

Sx =
h̄
2

σx (47)

Sy =
h̄
2

σy (48)

Sz =
h̄
2

σz (49)

The operators σx, σy, σz are the Pauli operators, and avoid the pesky h̄/2 factors.
We find

σx =

[
0 1
1 0

]
(50)

σy =

[
0 −i
i 0

]
(51)

σz =

[
1 0
0 −1

]
(52)
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And from |σx − λI| = (−λ)2 − 1, we have eigenvalues λ = ±1 for the σx operator.
The corresponding eigenkets in column matrix notation are found

[
∓1 1
1 ∓1

] [
a1
a2

]
= 0

=⇒ ∓a1 + a2 = 0
=⇒ a2 = ±a1

Or

|x±〉 ∝
[

a1
a2

]
= a1

[
1
±1

]
which can be normalized as

|x±〉 = 1√
2

[
1
±1

]
(53)

We see that this is different from

|z+〉 =
[

1
0

]
(54)

We will still end up with two spots, but there has been a projection of spin in a different fash-
ion? Does this mean the measurement will be different. There’s still a lot more to learn before
understanding exactly how to relate the spin operators to a real physical system.

PHY356F : Quantum Physics I Fall 2010

Lecture 7 — Stern Gerlach — October 26, 2010
Prof. Vatche Deyirmenjian Scribe: Peeter Joot

4. Lecture 7 — Stern Gerlach — October 26, 2010

Short class today since 43 minutes was wasted since the feedback given the Prof was so harsh
that he wants to cancel the mid-term because students have said they aren’t prepared. How ironic
that this wastes more time that could be getting us prepared!

4.1. Chapter I

Why do this (Dirac notation) math? Because of the Stern-Gerlach Experiment. Explaining the
Stern-Gerlach experiment is just not possible with wave functions and the “old style” Sch equation
that operates on wave functions

− h̄2

2m
∇2Ψ(x, t) + V(x)Ψ(x, t) = ih̄

∂Ψ(x, t)
∂t

. (55)

15



Review all of Chapter I so that you understand the idea of a Hermitian operator and its asso-
ciated eigenvalues and eigenvectors.

Hermitian operation A is associated with a measurable quantity.
Example. Sz is associated with the measurement of “spin-up” |z+〉 or “spin-down” |z−〉 states

in silver atoms in the Stern-Gerlach experiment.
Each operator has associated with it a set of eigenvalues, and those eigenvalues are the out-

comes of possible measurements.
Sz can be represented as

Sz =
h̄
2

[
1 0
0 −1

]
, (56)

or

Sz =
h̄
2
(|z+〉〈z+| − |z−〉|z−〉) . (57)

Find the eigenvalues of Sz in order to establish the possible outcomes of measurements of the
z-component of the intrinsic angular momentum.

This is the point of the course. It is to find the possible outcomes. You have to appreciate that
the measurement in the Stern-Gerlach experiment are trying to find the possible outcomes of the
z-component measurement. The eigenvalues of this operator give us those possible outcomes.

4.1.1 Example problem. What if you put a brick in the experiment?

In the Stern-Gerlach experiment the “spin down” along the z-direction are atoms are blocked.
Diagram: silver going through a hole, with a brick between the detector and the spin-down loca-
tion on the screen:

FIXME: scan it. Oct 26, Fig 1.
What is the probability of measuring an outcome of +h̄/2 along the x-direction?
Recall from Chapter I

|φ〉 = ∑
n

cn|an〉 (58)

We can express an arbitrary state |φ〉 in terms of basis vectors (could be eigenstates of an oper-
ator A, but could be for example the eigenstates of the operator B, say.) Note that here in physics
we will only work with orthonormal basis sets. The generality . To calculate the c′ns we take inner
products

〈am|φ〉 = ∑
n
〈am|an〉 = ∑

n
cnδmn = cm (59)

The probability for measured outcome am is

|cm|2 = |〈am|φ〉|2 (60)
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In the end we have to appreciate that part of QM is figuring out what the possible outcomes
are and the probabilities of those outcomes.

Appreciate that |φ〉 = |z+〉 in this case. This is a superposition of eigenstates of Sz. Why is it a
superposition? Because one of the coefficients is 1, and the other is 0.

|φ〉 = c1|z+〉+ c2|z−〉 = c1|z+〉+ 0|z−〉 (61)

So

c1 = 1 (62)

recall that

Sz =
h̄
2

[
1 0
0 −1

]
(63)

|z+〉 ↔
[

1
0

]
(64)

|z+〉 ↔
[

0
1

]
(65)

Also recall that

Sx =
h̄
2

[
0 1
1 0

]
(66)

|x+〉 ↔ 1√
2

[
1
1

]
(67)

|x−〉 ↔ 1√
2

[
1
−1

]
(68)

(with eigenvalues ±h̄/2).
These eigenvectors are expressed in terms of |z+〉 and |z−〉, so that

|x+〉 = 1√
2
(|z+〉+ |z−〉) (69)

|x−〉 = 1√
2
(|z+〉 − |z−〉) . (70)

Outcome +h̄/2 along the x-direction has an associated state |x+〉. That probability is

|〈x+|φ〉|2 =

∣∣∣∣ 1√
2
(〈z+|+ 〈z−|) |φ〉

∣∣∣∣2
=

1
2
|〈z+|φ〉+ 〈z−|φ〉|2

=
1
2
|〈z+|z+〉+ 〈z−|z+〉|2

=
1
2
|1 + 0|2

=
1
2
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4.1.2 Example problem variation. With a third splitter (SGZ)

The probability for outcome +h̄/2 along z after the second SGZ magnets is

∣∣〈z+|φ′〉∣∣2 = |〈z+|x+〉|2

=

∣∣∣∣〈z+| 1√
2
(|z+〉+ |z−〉)

∣∣∣∣2
=

1
2
|〈z+|z+〉+ 〈z+|z−〉|2

=
1
2

My question: what’s the point of the brick when the second splitter is already only being fed
by the “spin up” stream. Answer: just to ensure that the states are prepared in the expected way.
If the beams are two close together, without the brick perhaps we end up with some spin up in
the upper stream. Note that the beam separation here is on the order of centimeters. ie: imagine
that it is hard to redirect just one of the beams to the next stage splitter without blocking one of
the beams or else the next splitter inevitably gets fed with some of both. Might be nice to see a real
picture of the Stern-Gerlach apparatus complete with scale.

Why silver? Silver has 47 electrons, all of which but one are in spin pairs. Only the “outermost”
electron is free to have independent spin.

Aside: Note that we have the term “Collapse” to describe the now-known state after measure-
ment. There’s some debate about the applicability of this term, and the interpretation that this
imposes. Will not be discussed here.

4.2. On section 5.11, the complete wavefunction.

Aside: section 5.12 (Pauli exclusion principle and Fermi energy) excluded.
The complete wavefunction

|φ〉 = the complete state of an atomic in the Stern-Gerlach experiment
= |u〉 ⊗ |χ〉

We also write

|u〉 ⊗ |χ〉 = |u〉|χ〉 (71)

where |u〉 is associate with translation, and |χ〉 is associated with spin. This is a product state
where the ⊗ is a symbol for states in two or more different spaces.

PHY356F : Quantum Physics I Fall 2010

Lecture 8 — Making Sense of Quantum Mechanics — November 2, 2010
Prof. Vatche Deyirmenjian Scribe: Peeter Joot
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5. Lecture 8 — Making Sense of Quantum Mechanics — November 2, 2010

5.1. Discussion

Desai: “Quantum Theory is a linear theory ...”
We can discuss SHM without using sines and cosines or complex exponentials, say, only using

polynomials, but it would be HARD to do so, and much more work. We want the framework of
Hilbert space, linear operators and all the rest to make our life easier.

Dirac: “All the same the Mathematics is only a tool and one should learn to hold the physical
ideas on one’s mind without reference to the mathematical form”

You have to be able to understand the concepts and apply the concepts as well as the mathe-
matics.

Deyirmenjian: “Think before you compute.”
Joke: With his name included it is the 3Ds. There’s a lot of information included in the question,

so read it carefully.

Q: The equation A|an〉 = an|an〉 for operator A, eigenvalue an, n = 1, 2 and eigenvector |an〉 that
is identified by the eigenvalue an says that

• (a) measuring the physical quantity associated with A gives result an

• (b) A acting on the state |an〉 gives outcome an

• (c) the possible outcomes of measuring the physical quantity associated with A are the eigen-
values an

• (d) Quantum mechanics is hard.

|an〉 is a vector in a vector space or Hilbert space identified by some quantum number an, n ∈
1, 2, · · · .

The an values could be expressions. Example, Angular momentum is describe by states |lm〉, l =
0, 1, 2, · · · and m = 0,±1,±2

Recall that the problem is

L2|lm〉 = l(l + 1)h̄2|lm〉 (72)
Lz|lm〉 = mh̄|lm〉 (73)

We have respectively eigenvalues l(l + 1)h̄2, and mh̄.

A: Answer is (c). an isn’t a measurement itself. These represent possibilities. Contrast this to
classical mechanics where time evolution is given without probabilities

Fnet = ma (74)
x(0), x′(0) =⇒ x(t), x′(t) (75)
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The eigenvalues are the possible outcomes, but we only know statistically that these are the
possibilities.

(a),(b) are incorrect because we do not know what the initial state is, nor what the final outcome
is. We also can’t say “gives result an”. That statement is too strong!

Q: We wouldn’t say that A acts on pure state |an〉, instead. If the state of the system is |ψ〉 = |a5〉,
the probability of measuring outcome a5 is

• (a) a5

• (b) a2
5

• (c) 〈a5|ψ〉 = 〈a5|a5〉 = 1.

• (d) |〈a5|ψ〉|2 = |〈a5|a5〉|2 = |1|2 = 1.

A: (d) The eigenformula equation doesn’t say anything about any specific outcome. We want to
talk about probability amplitudes. When the system is prepared in a particular pure eigenstate,
then we have a guarantee that the probability of measuring that state is unity. We wouldn’t say
(c) because the probability amplitudes are the absolute square of the complex number 〈an|an〉.

The probability of outcome an, given initial state |Ψ〉 is |〈an|Ψ〉|2.
Wave function collapse: When you make a measurement of the physical quantity associated

with A, then the state of the system will be the value |a5〉. The state is not the number (eigenvalue)
a5.

Example: SGZ. With a “spin-up” measurement in the z-direction, the state of the system is
|z+〉. The state before the measurement, by the magnet, was |Ψ〉. After the measurement, the
state describing the system is |φ〉 = |z+〉. The measurement outcome is + h̄

2 for the spin angular
momentum along the z-direction.

FIXME: SGZ picture here.
There is an interaction between the magnet and the silver atoms coming out of the oven. Before

that interaction we have a state described by |Ψ〉. After the measurement, we have a new state
|φ〉. We call this the collapse of the wave function. In a future course (QM interpretations) the
language used and interpretations associated with this language can be discussed.

Q: Express Hermitian operator A in terms of its eigenvectors.

Q: The above question is vague because

• (a) The eigenvectors may form a discrete set.

• (b) The eigenvectors may form a continuous set.

• (c) The eigenvectors may not form a complete set.

• (d) The eigenvectors are not given.

A: None of the above. A Hermitian operator is guaranteed to have a complete set of eigenvec-
tors. The operator may also be both discrete and continuous (example: the complete spin wave
function).
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discrete:

A = A1

= A

(
∑
n
|an〉〈an|

)
= ∑

n
(A|an〉)〈an|

= ∑
n
(an|an〉)〈an|

= ∑
n

an|an〉〈an|

continuous:

A = A1

= A
(∫

dα|α〉〈α|
)

=
∫

dα(A|α〉)〈α|

=
∫

dα(α|α〉)〈α|

=
∫

dαα|α〉〈α|

An example is the position eigenstate |x〉, eigenstate of the Hermitian operator X. α is a label
indicating the summation.

general case with both discrete and continuous:

A = A1

= A

(
∑
n
|an〉〈an|+

∫
dα|α〉〈α|

)
= ∑

n
(A|an〉) 〈an|+

∫
dα (A|α〉) 〈α|

= ∑
n
(an|an〉) 〈an|+

∫
dα (α|α〉) 〈α|

= ∑
n

an|an〉〈an|+
∫

dαα|α〉〈α|

Problem Solving

• MODEL – Quantum, linear vector space

• VISUALIZE – Operators can have discrete, continuous or both discrete and continuous
eigenvectors.

• SOLVE – Use the identity operator.

• CHECK – Does the above expression give A|an〉 = an|an〉.

21



Check

A|am〉 = ∑
n

an|an〉 〈an|am〉+
∫

dαα|α〉 〈α|an〉

= ∑
n

an|an〉δnm

= am|am〉

What remains to be shown, used above, is that the continuous and discrete eigenvectors are
orthonormal. He has an example vector space, not yet discussed.

Q: what is 〈Ψ1|A|Ψ1〉, where A is a Hermitian operator, and |Ψ1〉 is a general state.

A: 〈Ψ1|A|Ψ1〉 = average outcome for many measurements of the physical quantity associated
with A such that the system is prepared in state |Ψ1〉 prior to each measurement.

Q: What if the preparation is |Ψ2〉. This isn’t necessarily an eigenstate of A, it is some linear
combination of eigenstates. It is a general state.

A: 〈Ψ2|A|Ψ2〉 = average of the physical quantity associated with A, but the preparation is |Ψ2〉,
not |Ψ1〉.

Q: What if our initial state is a little bit of |Ψ1〉, and a little bit of |Ψ2〉, and a little bit of |ΨN〉.
ie: how to describe what comes out of the oven in the Stern-Gerlach experiment. That spin is a
statistical mixture. We could understand this as only a statistical mix. This is a physical relevant
problem.

A: To describe that statistical situation we have the following.

〈A〉average = ∑
j

wj〈Ψj|A|Ψj〉 (76)

We sum up all the expectation values modified by statistical weighting factors. These wj’s
are statistical weighting factors for a preparation associated with |Ψj〉, real numbers (that sum to
unity). Note that these states |Ψj〉 are not necessarily orthonormal.

With insertion of the identity operator we have
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〈A〉average = ∑
j

wj〈Ψj|1A|Ψj〉

= ∑
j

wj〈Ψj|
(

∑
n
|an〉〈an|

)
A|Ψj〉

= ∑
j

∑
n

wj
〈
Ψj|an

〉
〈an|A|Ψj〉

= ∑
j

∑
n

wj〈an|A|Ψj〉
〈
Ψj|an

〉
= ∑

n
〈an|A

(
∑

j
wj|Ψj〉〈Ψj|

)
|an〉

This inner bit is called the density operator ρ

ρ ≡∑
j

wj|Ψj〉〈Ψj| (77)

Returning to the average we have

〈A〉average = ∑
n
〈an|Aρ|an〉 ≡ Tr(Aρ) (78)

The trace of an operator A is

Tr(A) = ∑
j
〈aj|A|aj〉 = ∑

j
Ajj (79)

5.2. Section 5.9, Projection operator.

Returning to the last lecture. From chapter 1, we have

Pn = |an〉〈an| (80)

is called the projection operator. This is physically relevant. This takes a general state and
gives you the component of that state associated with that eigenvector. Observe

Pn|φ〉 = |an〉 〈an|φ〉 = 〈an|φ〉︸ ︷︷ ︸
coefficient

|an〉 (81)
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Example: Projection operator for the |z+〉 state

Pz+ = |z+〉〈z+| (82)

We see that the density operator

ρ ≡∑
j

wj|Ψj〉〈Ψj|, (83)

can be written in terms of the Projection operators

|Ψj〉〈Ψj| = Projection operator for state|Ψj〉

The projection operator is like a dot product, determining the quantity of a state that lines in
the direction of another state.

Q: What is the projection operator for spin-up along the z-direction.

A:

Pz+ = |z+〉〈z+| (84)

Or in matrix form with

〈z+| =
[

1
0

]
(85)

〈z−| =
[

0
1

]
, (86)

so

Pz+ = |z+〉〈z+| =
[

1
0

] [
1 0

]
=

[
1 0
0 0

]
(87)

Q: A harder problem. What is Pχ, where

|χ〉 =
[

c1
c2

]
(88)

Note: We want normalized states, with 〈χ|χ〉 = |c1|2 + |c2|2 = 1.

A:

Pχ = |χ〉〈χ| =
[

c∗1
c∗2

] [
c1 c2

]
=

[
c∗1c1 c∗1c2
c∗2c1 c∗2c2

]
(89)

Observe that this has the proper form of a projection operator is that the square is itself

(|χ〉〈χ|)(|χ〉〈χ|) = |χ〉(〈χ|χ〉)〈χ|
= |χ〉〈χ|
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Q: Show that Pχ = a01 + a · σ, where a = (ax, ay, az) and σ = (σx, σy, σz).

A: See Section 5.9. Note the following about computing (σ · a)2.

(σ · a)2 = (axσx + ayσy + azσz)(axσx + ayσy + azσz)

= axaxσxσx + axayσxσy + axazσxσz + ayaxσyσx + ayayσyσy + ayazσyσz + azaxσzσx + azayσzσy + azazσzσz

= (a2
x + a2

y + a2
z)I + axay(σxσy + σyσx) + ayaz(σyσz + σzσy) + azax(σzσx + σxσz)

= |x|2 I

So we have

(σ · a)2 = (a · a)1 ≡ a2 (90)

Where the matrix representations

σx ↔
[

0 1
1 0

]
(91)

σy ↔
[

0 −i
i 0

]
(92)

σz ↔
[

1 0
0 −1

]
, (93)

would be used to show that

σ2
x = σ2

y = σ2
z = I (94)

and

σxσy = −σyσx (95)
σyσz = −σzσy (96)
σzσx = −σxσz (97)

PHY356F : Quantum Physics I Fall 2010
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6. Lecture 9 — Bound-state problems. — November 16, 2010

Motivation. Motivation for today’s physics is Solar Cell technology and quantum dots.
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6.1. Problem:

What are the eigenvalues and eigenvectors for an electron trapped in a 1D potential well?

6.1.1 MODEL.

Quantum state |Ψ〉 describes the particle. What V(X) should we choose? Try a quantum well
with infinite barriers first.

These spherical quantum dots are like quantum wells. When you trap electrons in this scale
you’ll get energy quantization.

6.1.2 VISUALIZE.

Draw a picture for V(X) with infinite spikes at ±a. (ie: figure 8.1 in the text).

6.1.3 SOLVE.

First task is to solve the time independent Schrödinger equation.

H|Ψ〉 = E|Ψ〉 (98)

derivable from

H|Ψ〉 = ih̄
∂

∂t
|Ψ〉 (99)

In the position representation, we project 〈x| onto H|Ψ〉 and solve for 〈x|Ψ〉 = Ψ(x). For the
problems in Chapter 8,

H =
P2

2m
+ V(X, Y, Z), (100)

where

P = momentum operator
X = position operator
m = electron mass

We should be careful to be strict about the notation, and not interchange the operators and
their specific representations (ie: not interchanging “little-x” and “big-x”) as we see in the text in
this chapter.

Here the potential energy operator V(X, Y, Z) is time independent.
If ih̄ d|Ψ〉

dt = H|Ψ〉 and H is time independent then |Ψ〉 = |u〉e−iEt/h̄ implies

ih̄
−iE

h̄
|u〉e−iEt/h̄ = H|u〉e−iEt/h̄

or

E|u〉 = H|u〉 (101)
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Here E is the energy eigenvalue, and |u〉 is the energy eigenstate. Our differential equation
now becomes

− h̄2

2m
d2u(x)

dx2 + V(x)u(x) = Eu(x) (102)

where V(x) = 0 for |x| < a. We won’t find anything like this for real, but this is our first
approximation to the quantum dot.

Our differential equation in the well is now

− h̄2

2m
d2u(x)

dx2 = Eu(x) (103)

or with α =
√

2mE/h̄2

d2u(x)
dx2 u(x) = −2mE

h̄2 u(x) = −α2u(x) (104)

Our solution for |x| < a is then

u(x) = A cos αx + B sin αx (105)

and for |x| > a we have u(x) = 0 since V(x) = ∞.
Setting u(a) = u(−a) = 0 we have

A cos αa + B sin αa = 0
A cos αa− B sin αa = 0

6.1.4 Type I.

B = 0, A cos αa = 0. For A 6= 0 we must have

cos αa = 0

or αa = n π
2 , where n = 1, 3, 5, ..., so our solution is

u(x) = A cos
(nπ

2a
x
)

(106)

6.1.5 Type II.

A = 0, B sin αa = 0. For B 6= 0 we must have

sin αa = 0

or αa = n π
2 , where n = 1, 2, 4, ..., so our solution is

u(x) = B sin
(nπ

2a
x
)

(107)
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6.1.6 Via determinant

We could also write [
cos αa sin αa
cos αa − sin αa

] [
A
B

]
= 0

and then must have zero determinant, or

−2 sin αa cos αa = − sin 2αa (108)

so we must have

2αa = nπ

or

α =
nπ

2a

regardless of A and B. We can then determine the solutions 106, and 107 simply by noting that
this value for α kills off either the sine or cosine terms of 105 depending on whether n is even or
odd.

6.2. CHECK.

un(x) = A cos
(nπ

2a
x
)

un(x) = B sin
(nπ

2a
x
)

satisfy the time independent Schrödinger equation, and the corresponding eigenvalues from
from

α =

√
2mE

h̄2 ,

or

E =
h̄2α2

2m
=

h̄2

2m

(nπ

2a

)2

for n = 1, 2, 3, · · · .

28



6.3. On the derivative of u at the boundaries

Integrating

− h̄2

2m
d2u(x)

dx2 u(x) + V(x)u(x) = Eu(x), (109)

over [a− ε, a + ε] we have

− h̄2

2m

∫ a−ε

a−ε

d2u(x)
dx2 dx +

∫ a−ε

a−ε
V(x)u(x)dx =

∫ a−ε

a−ε
Eu(x)dx (110)

− h̄2

2m

(
du
dx

∣∣∣∣a+ε

a−ε

+ 0 = 0

)
(111)

which gives us

du
dx

∣∣∣∣
a+ε

− du
dx

∣∣∣∣
a−ε

= 0 (112)

or

du
dx

∣∣∣∣
a+ε

=
du
dx

∣∣∣∣
a−ε

(113)

We can infer how the derivative behaves over the potential discontinuity, so in the limit where
ε→ 0 we must have wave function continuity at despite the potential discontinuity.

This sort of analysis, which is potential dependent, we see that for this infinite well potential,
our derivative must be continuous at the boundary.

6.4. Problem:

non-infinite step well potential.
Given a zero potential in the well |x| < a

− h̄2

2m
d2u(x)

dx2 u(x) + 0 = Eu(x), (114)

and outside of the well |x| > a

− h̄2

2m
d2u(x)

dx2 u(x) + V0u(x) = Eu(x) (115)

Inside of the well, we have the solution worked previously, with α =
√

2mE/h̄2

u(x) = A cos αx + B sin αx (116)
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Then we have outside of the well the same form

− h̄2

2m
d2u(x)

dx2 u(x) = (E−V0)u(x) (117)

With β =
√

2m(V0 − E)/h̄2, this is

d2u(x)
dx2 u(x) = β2u(x) (118)

If V0 − E > 0, we have V0 > E, and the states are “bound” or “localized” in the well.
Our solutions for this V0 > E case are then

u(x) = Deβx (119)

u(x) = Ce−βx (120)

for x ≤ a, and x ≥ a respectively.

Question: Why can we not have

u(x) = Deβx + Ce−βx (121)

for x ≤ −a?

Answer: As x → −∞ we would then have

u(x)→ Ceβ∞ → ∞

This is a non-physical solution, and we discard it based on our normalization requirement.
Our total solution, in regions x < −a, |x| ≤ a, and x > a respectively

u1(x) = Deβx

u2(x) = A cos αx + B sin αx

u3(x) = Ce−βx

To find the coefficients, set u1(−a) = u2(−a), u2(a) = u3(a) u′1(−a) = u′2(−a), u′2(a) = u′3(a),
and NORMALIZE u(x).

Now, how about in region 2 (x < −a), V0 < E implies that our equation is

d2u(x)
dx2 u(x) = −2m

h̄2 (E−V0)u(x) = −k2u(x) (122)

We no longer have quantized energy for such a solution. These correspond to the “unbound”
or “continuum” states. Even though we do not have quantized energy we still have quantum
effects. Our solution becomes
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u1(x) = C2eikx + D2e−ikx

u2(x) = Aeiαx + Be−iαx

u3(x) = C3eikx

Question. Why no D2e−ikx, in the u3(x) term?
Answer. We can, but this is not physically relevant. Why is because we associate eikx with an

incoming wave, with reflection in the x < −a interval, and both e±iαx in the |x| < a interval, but
just an outgoing wave eikx in the x > a region.

FIXME: scan picture: 9.1 in my notebook.
Observe that this is not normalizable as is. We require “delta-function” normalization. What

we can do is ask about current densities. How much passes through the barrier, and so forth.
Note to self. We probably really we want to consider a wave packet of states, something like:

Ψ1(x) =
∫

dk f1(k)eikx

Ψ2(x) =
∫

dα f2(α)eiαx

Ψ3(x) =
∫

dk f3(k)eikx

Then we’d have something that we can normalize. Play with this later.
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7. Lecture 10 — Hydrogen atom. — November 23, 2010

7.1. Introduce the center of mass coordinates.

We’ll want to solve this using the formalism we’ve discussed. The general problem is a proton,
positively charged, with a nearby negative charge (the electron).

Our equation to solve is

(
− h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2

)
ū(r1, r2) + V(r1, r2)ū(r1, r2) = Eū(r1, r2). (123)

Here
(
− h̄2

2m1
∇2

1 − h̄2

2m2
∇2

2

)
is the total kinetic energy term. For hydrogen we can consider the

potential to be the Coulomb potential energy function that depends only on r1− r2. We can trans-
form this using a center of mass transformation. Introduce the center of mass coordinate and
relative coordinate vectors
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R =
m1r1 + m2r2

m1 + m2
(124)

r = r1 − r2. (125)

The notation ∇2
k represents the Laplacian for the positions of the k’th particle, so that if r1 =

(x1, x2, x3) is the position of the first particle, the Laplacian for this is:

∇2
1 =

∂2

∂x2
1
+

∂2

∂y2
1
+

∂2

∂z2
1

(126)

Here R is the center of mass coordinate, and r is the relative coordinate. With this transforma-
tion we can reduce the problem to a single coordinate PDE.

We set ū(r1, r2) = u(r)U(R) and E = Erel + Ecm, and get

− h̄2

2µ
∇r

2u(r) + V(r)u(r) = Erelu(r) (127)

and

− h̄2

2M
∇R

2U(R) = EcmU(R) (128)

where M = m1 + m2 is the total mass, and µ = m1m2/M is the reduced mass.
Aside: WHY do we care (slide of Hydrogen line spectrum shown)? This all started because

when people looked at the spectrum for the hydrogen atom, a continuous spectrum was not
found. Instead what was found was quantized frequencies. All this abstract Hilbert space no-
tation with its bras and kets is a way of representing observable phenomena.

Also note that we have the same sort of problems in electrodynamics and mechanics, so we
are able to recycle this sort of work, either applying it in those problems later, or using those
techniques here.

In Electromagnetism these are the problems involving the solution to

∇ · E = 0 (129)

or for
E = −∇Φ (130)

∇2Φ = 0, (131)

where E is the electric field and Φ is the electric potential.
We need sol solve 127 for u(r). In spherical coordinates

− h̄2

2m
1
r

d2

dr2 (rRl) +

(
V(r) +

h̄2

2m
l(l + 1)

)
Rl = ERl (132)

where
u(r) = Rl(r)Ylm(θ, φ) (133)

This all follows by the separation of variables technique that we’ll use here, in E and M, in
PDEs, and so forth.
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FIXME: picture drawn. Theta measured down from e3 axis to the position r and φ measured
in the x, y plane measured in the e1 to e2 orientation.

For the hydrogen atom, we have

V(r) = −Ze2

r
(134)

Here is what this looks like.
We introduce

ρ = αr (135)

α =

√
−8mE

h̄2 (136)

λ =
2mZe2

h̄2α
(137)

2m(−E)
h̄2α2

=
1
4

(138)

and write
d2Rl

dρ2 +
2
ρ

dRl

dρ
+

(
λ

ρ
− l(l + 1)

ρ2 − 1
4

)
Rl = 0 (139)

7.2. Large ρ limit.

For ρ→ ∞, 139 becomes
d2Rl

dρ2 −
1
4

Rl = 0 (140)

which implies solutions of the form

Rl(ρ) = e±ρ/2 (141)

but keep Rl(ρ) = e−ρ/2 and note that Rl(ρ) = F(ρ)e−ρ/2 is also a solution in the limit of ρ→ ∞,
where F(ρ) is a polynomial.

Let F(ρ) = ρsL(ρ) where L(ρ) = a0 + a1ρ + · · · aνρν + · · · .

7.3. Small ρ limit.

We also want to consider the small ρ limit, and piece together the information that we find.
Think about the following. The small ρ→ 0 or r → 0 limit gives

d2Rl

dρ2 −
l(l + 1)

ρ2 Rl = 0 (142)
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Question: Is this correct?
Not always. Also: we will also think about the l = 0 case later (where λ/ρ would probably

need to be retained.)
We need:

d2Rl

dρ2 +
2
ρ

dRl

dρ
− l(l + 1)

ρ2 Rl = 0 (143)

Instead of using 142 as in the text, we must substitute Rl = ρs into the above to find

s(s− 1)ρs−2 + 2sρs−2 − l(l + 1)ρs−2 = 0 (144)

(s(s− 1) + 2s− l(l + 1)) ρs−2 = (145)

for this equality for all ρ we need

s(s− 1) + 2s− l(l + 1) = 0 (146)

Solutions s = l and s = −(l + 1) can be found to this, and we need s positive for normalizabil-
ity, which implies

Rl(ρ) = ρl L(ρ)e−ρ/2. (147)

Now we need to find what restrictions we must have on L(ρ). Recall that we have L(ρ) =

∑ aνρν. Substitution into 142 gives

ρ
d2L
dρ

+ (2(l + 1)− ρ)
dL
dρ

+ (λ− l − 1)L = 0 (148)

We get
A0 + A1ρ + · · · Aνρν + · · · = 0 (149)

For this to be valid for all ρ,

aν+1 ((ν + 1)(ν + 2l + 2))− aν (ν− λ + l + 1) = 0 (150)

or
aν+1

aν
=

ν− λ + l + 1
(ν + 1)(ν + 2l + 2)

(151)

For large ν we have
aν+1

aν
=

1
ν + 1

→ 1
ν

(152)

Recall that for the exponential Taylor series we have

eρ = 1 + ρ +
ρ2

2!
+ · · · (153)

for which we have
aν+1

aν
→ 1

ν
(154)

L(ρ) is behaving like eρ, and if we had that
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Rl(ρ) = ρl L(ρ)e−ρ/2 → ρleρe−ρ/2 = ρleρ/2 (155)

This is divergent, so for normalizable solutions we require L(ρ) to be a polynomial of a finite
number of terms.

The polynomial L(ρ) must stop at ν = n′, and we must have

aν+1 = an′+1 = 0 (156)

an′ 6= 0 (157)

From 150 we have

an′
(
n′ − λ + l + 1

)
= 0 (158)

so we require
n′ = λ− l − 1 (159)

Let λ = n, an integer and n′ = 0, 1, 2, · · · so that n′ + l + 1 = n says for n = 1, 2, · · ·

l ≤ n− 1 (160)

If

λ = n =
2mZe2

h̄2α
(161)

we have

E = En = −Z2e2

2a0

1
n2 (162)

where a0 = h̄2/me2 is the Bohr radius, and α =
√
−8mE/h̄2. In the lecture m was originally

used for the reduced mass. I’ve switched to µ earlier so that this cannot be mixed up with this use
of m for the azimuthal quantum number associated with LzYlm = mh̄Ylm.

PICTURE ON BOARD. Energy level transitions on 1/n2 graph with differences between n = 2
to n = 1 shown, and photon emitted as a result of the n = 2 to n = 1 transition.

From Chapter 4 and the story of the spherical harmonics, for a given l, the quantum number
m varies between −l and l in integer steps. The radial part of the solution of this separation of
variables problem becomes

Rl = ρl L(ρ)e−ρ/2 (163)

where the functions L(ρ) are the Laguerre polynomials, and our complete wavefunction is

unlm(r, θ, φ) = Rl(ρ)Ylm(θ, φ) (164)

n = 1, 2, · · · (165)
l = 0, 1, 2, · · · , n− 1 (166)

m = −l,−l + 1, · · · 0, 1, 2, · · · , l − 1, l (167)

Note that for n = 1, l = 0, R10 ∝ e−r/a0 , as graphed here.
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8. Lecture 11 — Harmonic oscillator. — November 30, 2010

9. Setup.

Why study this problem?
It is relevant to describing the oscillation of molecules, quantum states of light, vibrations of

the lattice structure of a solid, and so on.
FIXME: projected picture of masses on springs, with a ladle shaped well, approximately Har-

monic about the minimum of the bucket.
The problem to solve is the one dimensional Hamiltonian

V(X) =
1
2

KX2 (168)

K = mω2 (169)

H =
P2

2m
+ V(X) (170)

where m is the mass, ω is the frequency, X is the position operator, and P is the momentum
operator. Of these quantities, ω and m are classical quantities.

This problem can be used to illustrate some of the reasons why we study the different pictures
(Heisenberg, Interaction and Schrödinger). This is a problem well suited to all of these (FIXME:
lookup an example of this with the interaction picture. The book covers H and S methods.

We attack this with a non-intuitive, but cool technique. Introduce the raising a† and lowering
a operators:

a =

√
mω

2h̄

(
X + i

P
mω

)
(171)

a† =

√
mω

2h̄

(
X− i

P
mω

)
(172)

Question: are we using the dagger for more than Hermitian conjugation in this case.

Answer: No, this is precisely the Hermitian conjugation operation.
Solving for X and P in terms of a and a†, we have

a + a† =

√
mω

2h̄
2X

a− a† =

√
mω

2h̄
2i

P
mω
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or

X =

√
h̄

2mω
(a† + a) (173)

P = i

√
h̄mω

2
(a† − a) (174)

Express H in terms of a and a†

H =
P2

2m
+

1
2

KX2

=
1

2m

(
i

√
h̄mω

2
(a† − a)

)2

+
1
2

mω2

(√
h̄

2mω
(a† + a)

)2

=
−h̄ω

4

(
a†a† + a2 − aa† − a†a

)
+

h̄ω

4

(
a†a† + a2 + aa† + a†a

)

H =
h̄ω

2

(
aa† + a†a

)
=

h̄ω

2

(
2a†a +

[
a, a†

])
(175)

Since [X, P] = ih̄1 then we can show that
[
a, a†] = 1. Solve for

[
a, a†] as follows

ih̄ = [X, P]

=

[√
h̄

2mω
(a† + a), i

√
h̄mω

2
(a† − a)

]

=

√
h̄

2mω
i

√
h̄mω

2

[
a† + a, a† − a

]
=

ih̄
2

([
a†, a†

]
−
[

a†, a
]
+
[

a, a†
]
− [a, a]

)
=

ih̄
2

(
0 + 2

[
a, a†

]
− 0
)

Comparing LHS and RHS we have as stated

[
a, a†

]
= 1 (176)

and thus from 175 we have

H = h̄ω

(
a†a +

1
2

)
(177)

Let |n〉 be the eigenstate of H so that H|n〉 = En|n〉. From 177 we have

H|n〉 = h̄ω

(
a†a +

1
2

)
|n〉 (178)

37



or

a†a|n〉+ |n〉
2

=
En

h̄ω
|n〉 (179)

a†a|n〉 =
(

En

h̄ω
− 1

2

)
|n〉 = λn|n〉 (180)

We wish now to find the eigenstates of the “Number” operator a†a, which are simultaneously
eigenstates of the Hamiltonian operator.

Observe that we have

a†a(a†|n〉) = a†(aa†|n〉)
= a†(1 + a†a)|n〉

where we used
[
a, a†] = aa† − a†a = 1.

a†a(a†|n〉) = a†
(

1 +
En

h̄ω
− 1

2

)
|n〉

= a†
(

En

h̄ω
+

1
2

)
|n〉,

or
a†a(a†|n〉) = (λn + 1)(a†|n〉) (181)

The new state a†|n〉 is presumed to lie in the same space, expressible as a linear combination
of the basis states in this space. We can see the effect of the operator aa† on this new state, we find
that the energy is changed, but the state is otherwise unchanged. Any state a†|n〉 is an eigenstate
of a†a, and therefore also an eigenstate of the Hamiltonian.

Play the same game and win big by discovering that

a†a(a|n〉) = (λn − 1)(a|n〉) (182)

There will be some state |0〉 such that

a|0〉 = 0|0〉 (183)

which implies
a†(a|0〉) = (a†a)|0〉 = 0 (184)

so from 180 we have

λ0 = 0 (185)

Observe that we can identify λn = n for

λn =

(
En

h̄ω
− 1

2

)
= n, (186)

or
En

h̄ω
= n +

1
2

(187)
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or

En = h̄ω

(
n +

1
2

)
(188)

where n = 0, 1, 2, · · · .
We can write

h̄ω

(
a†a +

1
2

1
)
|n〉 = En|n〉

a†a|n〉+ 1
2
|n〉 = En

h̄ω
|n〉

or

a†a|n〉 =
(

En

h̄ω
− 1

2

)
|n〉 = λn|n〉 = n|n〉 (189)

We call this operator a†a = N, the number operator, so that

N|n〉 = n|n〉 (190)

10. Relating states.

Recall the calculation we performed for

L+|lm〉 = C+|l, m + 1〉 (191)
L−|lm〉 = C+|l, m− 1〉 (192)

Where C+, and C+ are constants. The next game we are going to play is to work out Cn for the
lowering operation

a|n〉 = Cn|n− 1〉 (193)

and the raising operation
a†|n〉 = Bn|n + 1〉. (194)

For the Hermitian conjugate of a|n〉 we have

(a|n〉)† = (Cn|n− 1〉)† = C∗n|n− 1〉 (195)

So
(〈n|a†)(a|n〉) = CnC∗n 〈n− 1|n− 1〉 = |Cn|2 (196)

Expanding the LHS we have

|Cn|2 = 〈n|a†a|n〉
= 〈n|n|n〉
= n 〈n|n〉
= n
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For
Cn =

√
n (197)

Similarly
(〈n|a†)(a|n〉) = BnB∗n 〈n + 1|n + 1〉 = |Bn|2 (198)

and

|Bn|2 = 〈n| aa†︸︷︷︸
aa†−a†a=1

|n〉

= 〈n|
(

1 + a†a
)
|n〉

= (1 + n) 〈n|n〉
= 1 + n

for
Bn =

√
n + 1 (199)

11. Heisenberg picture.

How does the lowering operator a evolve in time?

A: Recall that for a general operator A, we have for the time evolution of that operator

ih̄
dA
dt

= [A, H] (200)

Let’s solve this one.

ih̄
da
dt

= [a, H]

=
[

a, h̄ω(a†a + 1/2)
]

= h̄ω
[

a, (a†a + 1/2)
]

= h̄ω
[

a, a†a
]

= h̄ω
(

aa†a− a†aa
)

= h̄ω
(
(aa†)a− a†aa

)
= h̄ω

(
(a†a + 1)a− a†aa

)
= h̄ωa

Even though a is an operator, it can undergo a time evolution and we can think of it as a
function, and we can solve for a in the differential equation

da
dt

= −iωa (201)
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This has the solution
a = a(0)e−iωt (202)

here a(0) is an operator, the value of that operator at t = 0. The exponential here is just a scalar
(not effected by the operator so we can put it on either side of the operator as desired).

CHECK:
a′ = a(0)

d
dt

e−iωt = a(0)(−iω)e−iωt = −iωa (203)

12. A couple comments on the Schrödinger picture.

We don’t do this in class, but it is very similar to the approach of the hydrogen atom. See the
text for full details.

In the Schrödinger picture,

− h̄2

2m
d2u
dx2 +

1
2

mω2x2u = Eu (204)

This does directly to the wave function representation, but we can relate these by noting that
we get this as a consequence of the identification u = u(x) = 〈x|u〉.

In 204, we can switch to dimensionless quantities with

ξ = “xi (z)” = αx (205)

with

α =

√
mω

h̄
(206)

This gives, with λ = 2E/h̄ω,

d2u
dξ2 + (λ− ξ2)u = 0 (207)

We can use polynomial series expansion methods to solve this, and find that we require a
terminating expression, and write this in terms of the Hermite polynomials (courtesy of the clever
French once again).

When all is said and done we will get the energy eigenvalues once again

E = En = h̄ω

(
n +

1
2

)
(208)

13. Back to the Heisenberg picture.

Let us express
〈x|n〉 = un(x) (209)

With
a|0〉 = 0, (210)

we have

0 =

(
X + i

P
mω

)
|0〉, (211)
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and

0 = 〈x|
(

X + i
P

mω

)
|0〉

= 〈x|X|0〉+ i
1

mω
〈x|P|0〉

= x 〈x|0〉+ i
1

mω
〈x|P|0〉

Recall that our matrix operator is

〈x′|P|x〉 = δ(x− x′)
(
−ih̄

d
dx

)
(212)

〈x|P|0〉 = 〈x|P
∫
|x′〉〈x′|dx′︸ ︷︷ ︸

=1

|0〉

=
∫
〈x|P|x′〉

〈
x′|0

〉
dx′

=
∫

δ(x− x′)
(
−ih̄

d
dx

) 〈
x′|0

〉
dx′

=

(
−ih̄

d
dx

)
〈x|0〉

We have then

0 = xu0(x) +
h̄

mω

du0(x)
dx

(213)

NOTE: picture of the solution to this LDE on slide.... but I didn’t look closely enough.
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14. Lecture 12 — Rotations, Angular Momentum. — December 6, 2010

Last time. The Harmonic Oscillator

14.1. This time. Rotations (chapter 26).

Why are we doing the math? Because it applies to physical systems. Slides of IBM’s SEM
quantum coral and others shown and discussed.
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PICTURE: Standard right handed coordinate system with point (x, y, z). We’d like to discuss
how to represent this point in other coordinate systems, such as one with the x, y axes rotated to
x′, y′ through an angle φ.

Our problem is to find in the rotated coordinate system from (x, y, z) to (x′, y′, z′).
There’s clearly a relationship between the representations. That relationship between x′, y′, z′

and x, y, z for a counter-clockwise rotation about the z axis is

x′ = x cos φ− y sin φ (214)
y′ = x sin φ + y cos φ (215)
z′ = z (216)

Treat (x, y, z) and (x′, y′, z′) like vectors and writex′

y′

z′

 =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

x
y
z

 (217)

Or x′

y′

z′

 = Rz(φ)

x
y
z

 (218)

Q: Is Rz(φ) a unitary operator? Definition U is unitary if U†U = 1, where 1 is the identity
operator. We take Hermitian conjugates, which in this case is just the transpose since all elements
of the matrix are real, and multiply

(Rz(φ))
†Rz(φ) =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1

cos φ − sin φ 0
sin φ cos φ 0

0 0 1


=

 cos2 φ + sin2 φ − sin φ cos φ + sin φ cos φ 0
− cos φ sin φ + cos φ sin φ cos2 φ + sin2 φ 0

0 0 1


=

1 0 0
0 1 0
0 0 1


= 1

Apply the above to a vector v = (vx, vy, vz) and write v′ = (v′x, v′y, v′z). These are related as

v = Rz(φ)v (219)

Now we want to consider the infinitesimal case where we allow the rotation angle to get arbi-
trarily small. Consider this specific z axis rotation case, and assume that φ is very small. Let φ = ε
and write
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v′ =

v′x
v′y
v′z

 = Rz(φ)

vx
vy
vz

 =

cos ε − sin ε 0
sin ε cos ε 0

0 0 1

 v (220)

≈

1 −ε 0
ε 1 0
0 0 1

 v =

1 0 0
0 1 0
0 0 1

+

0 −ε 0
ε 0 0
0 0 1

 v (221)

Define

Sz = ih̄

0 −1 0
1 0 0
0 0 1

 (222)

which is the generator of infinitesimal rotations about the z axis.
Our rotated coordinate vector becomes

v′ =

1 0 0
0 1 0
0 0 1

+
ih̄ε

ih̄

0 −1 0
1 0 0
0 0 1

 v

=
(

1 +
ε

ih̄
Sz

)
v

Or

v′ =
(

1− iε
h̄

Sz

)
v (223)

Many infinitesimal rotations can be combined to create a finite rotation via

lim
N→∞

(
1 +

α

N

)N
= eα (224)

α = −iφSz/h̄ (225)

For a finite rotation
v′ = e−i φSz

h̄ v (226)

Now think about transforming g(x, y, z), an arbitrary function. Take ε is very small so that

x′ = x cos φ− y sin φ = x cos ε− y sin ε ≈ x− yε (227)
y′ = x sin φ + y cos φ = x sin ε + y cos ε ≈ xε + y (228)
z′ = z (229)

Question: Why can we assume that ε is small.
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Answer: We declare it to be small because it is simpler, and eventually build up to the general
case where it is larger. We want to master the easy task before moving on to the more difficult
ones. Our function is now transformed

g(x′, y′, z′) ≈ g(x− yε, y + xε, z)

= g(x, y, z)− εy
∂g
∂x

+ εx
∂g
∂y

+ · · ·

=

(
1− εy

∂

∂x
+ εx

∂

∂y

)
g(x, y, z)

Recall that the coordinate definition of the angular momentum operator is

Lz = −ih̄
(

x
∂

∂y
− y

∂

∂x

)
= xpy − ypx (230)

We can now write

g(x′, y′, z′) =
(

1 +
−ih̄ε

−ih̄

(
x

∂

∂y
− y

∂

∂x

))
g(x, y, z)

=

(
1 +

iε
h̄

Lz

)
g(x, y, z)

For a finite rotation with angle φ we have

g(x′, y′, z′) = ei φLz
h̄ g(x, y, z) (231)

Question: somebody says that the rotation is clockwise not counterclockwise. I didn’t follow
the reasoning briefly mentioned on the board since it looks right to me. Perhaps this is the age old
mixup between rotating the coordinates and the basis vectors. Review what’s in the text carefully.
Can also check by

If you rotate a ket, and examine how the state representation of that ket changes under rotation,
we have

|x′, y′, z′〉 = |x− εy, y + εx, z〉 (232)

Or 〈
Ψ|x′, y′, z′

〉
= Ψ∗(x′, y′, z′)
= Ψ∗(x− εy, y + εx, z)

= Ψ∗(x, y, z)− ε
∂Ψ∗

∂y
+ ε

∂Ψ∗

∂x

=

(
1 +

iε
h̄

Lz

)
Ψ∗(x, y, z)

Taking the complex conjugate we have

Ψ(x′, y′, z′)
(

1− iε
h̄

Lz

)
Ψ(x, y, z) (233)
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For infinitesimal rotations about the z axis we have for functions

Ψ(x′, y′, z′) = e−
iε
h̄ Lz Ψ(x, y, z) (234)

For finite rotations of a vector about the z axis we have

v′ = e−
iφSz

h̄ Ψ(x, y, z)v (235)

and for functions
Ψ(x′, y′, z′) = e−

iφLz
h̄ Ψ(x, y, z) (236)

Vatche has mentioned some devices being researched right now where there is an attempt
to isolate the spin orientation so that, say, only spin up or spin down electrons are allowed to
flow. There are some possible interesting applications here to Quantum computation. Can we
actually make a quantum computing device that is actually usable? We can make NAND devices
as mentioned in the article above. Can this be scaled? We don’t know how to do this yet.

Recall that one description of a “particle” that has both a position and spin representation is

|Ψ〉 = |u〉 ⊗ |sm〉 (237)

where we have a tensor product of kets. One usually just writes the simpler

|u〉 ⊗ |sm〉 ≡ |u〉|sm〉 (238)

An example of the above is u1(r)
u2(r)
u3(r)

 =
(
〈r|〈sm|

)
|Ψ〉 (239)

where u1 is spin component one. For s = 1 this would be m = −1, 0, 1.
Here we have also used

|r〉 = |x〉 ⊗ |y〉 ⊗ |z〉
= |x〉|y〉|z〉
= |xyz〉

We can now ask the question of how this thing transforms. We transform each component of
this as a vector. The transformation of

u1(r)
u2(r)
u3(r)


results in u1(r)

u2(r)
u3(r)

′ = e−iφ(Sz+Lz)/h̄

u1(r)
u2(r)
u3(r)

 (240)

Or with Jz = Sz + Lz
|Ψ′〉 = e−iφJz/h̄|Ψ〉 (241)

Observe that this separates out nicely with the Sz operation acting on the vector parts, and the
Lz operator acting on the functional dependence.
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