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1. Motivation.

Chapter II notes for [1].

2. Notes

2.1. Canonical Commutator

Based on the canonical relationship [X, P] = ih̄, and 〈x′|x〉 = δ(x′ − x), Desai determines the
form of the P operator in continuous space. A consequence of this is that the matrix element of
the momentum operator is found to have a delta function specification

〈x′|P|x〉 = δ(x− x′)
(
−ih̄

d
dx

)
.

In particular the matrix element associated with the state |φ〉 is found to be

〈x′|P|φ〉 = −ih̄
d

dx′
φ(x′).

Compare this to [2], where this last is taken as the definition of the momentum operator, and
the relationship to the delta function is not spelled out explicitly. This canonical commutator
approach, while more abstract, seems to have less black magic involved in the setup. We do
require the commutator relationship [X, P] = ih̄ to be pulled out of a magic hat, but at least the
magic show is a structured one based on a small set of core assumptions.

It will likely be good to come back to this later when trying to reconcile this new (for me) Dirac
notation with the more basic notation I’m already comfortable with. When trying to compare the
two, it will be good to note that there is a matrix element that is implied in the more old fashioned
treatment in a book such as [3].

There is one fundamental assumption that appears to be made in this section that isn’t justified
by anything except the end result. That is the assumption that P is a derivative like operator, acting
with a product rule action. That’s used to obtain (2.28) and is a fairly black magic operation. This
same assumption, is also hiding, somewhat sneakily, in the manipulation for (2.44).

If one has to make that assumption that P is a derivative like operator, I don’t feel this method
of introducing it is any less arbitrary seeming. It is still pulled out of a magic hat, only because the
answer is known ahead of time. The approach of [3], where the derivative nature is presented as
consequence of transforming (via Fourier transforms) from the position to the momentum repre-
sentation, seems much more intuitive and less arbitrary.
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2.2. Generalized momentum commutator.

It is stated that

[P, Xn] = −nih̄Xn−1.

Let’s prove this. The n = 1 case is the canonical commutator, which is assumed. Is there any
good way to justify that from first principles, as presented in the text? We have to prove this for n,
given the relationship for n− 1. Expanding the nth power commutator we have

[P, Xn] = PXn − XnP

= PXn−1X− XnP

Rearranging the n− 1 result we have

PXn−1 = Xn−1P− (n− 1)ih̄Xn−2,

and can insert that in our [P, Xn] expansion for

[P, Xn] =
(

Xn−1P− (n− 1)ih̄Xn−2
)

X− XnP

= Xn−1(PX)− (n− 1)ih̄Xn−1 − XnP

= Xn−1(XP− ih̄)− (n− 1)ih̄Xn−1 − XnP

= −Xn−1ih̄− (n− 1)ih̄Xn−1

= −nih̄Xn−1 �

2.3. Uncertainty principle.

The origin of the statement [∆A, ∆B] = [A, B] is not something that seemed obvious. Expand-
ing this out however is straightforward, and clarifies things. That is

[∆A, ∆B] = (A− 〈A〉)(B− 〈B〉)− (B− 〈B〉)(A− 〈A〉)
= (AB− 〈A〉 B− 〈B〉 A + 〈A〉 〈B〉)− (BA− 〈B〉 A− 〈A〉 B + 〈B〉 〈A〉)
= AB− BA
= [A, B] �

2.4. Size of a particle

I found it curious that using ∆x∆p ≈ h̄ instead of ∆x∆p ≥ h̄/2, was sufficient to obtain
the hydrogen ground state energy Emin = −e2/2a0, without also having to do any factor of two
fudging.

3



2.5. Space displacement operator.

2.5.1 Initial notes.

I’d be curious to know if others find the loose use of equality for approximation after approxi-
mation slightly disturbing too?

I also find it curious that (2.140) is written

D(x) = exp
(
−i

P
h̄

x
)

,

and not

D(x) = exp
(
−ix

P
h̄

)
.

Is this intentional? It doesn’t seem like P ought to be acting on x in this case, so why order the
terms that way?

Expanding the application of this operator, or at least its first order Taylor series, is helpful to
get an idea about this. Doing so, with the original ∆x′ value used in the derivation of the text we
have to start

D(∆x′)|φ〉 ≈
(

1− i
P
h̄

∆x′
)
|φ〉

=

(
1− i

(
−ih̄δ(x− x′)

∂

∂x

)
1
h̄

∆x′
)
|φ〉

This shows that the ∆x factor can be commuted with the momentum operator, as it is not a
function of x′, so the question of Px, vs xP above appears to be a non-issue.

Regardless of that conclusion, it seems worthy to continue an attempt at expanding this shift
operator action on the state vector. Let’s do so, but do so by computing the matrix element
〈x′|D(∆x′)|φ〉. That is

〈x′|D(∆x′)|φ〉 ≈
〈

x′|φ
〉
− 〈x′|δ(x− x′)

∂

∂x
∆x′|φ〉

= φ(x′)−
∫
〈x′|δ(x− x′)

∂

∂x
∆x′|x′〉

〈
x′|φ

〉
dx′

= φ(x′)− ∆x′
∫

δ(x− x′)
∂

∂x
〈

x′|φ
〉

dx′

= φ(x′)− ∆x′
∂

∂x′
〈

x′|φ
〉

= φ(x′)− ∆x′
∂

∂x′
φ(x′)

This is consistent with the text. It is interesting, and initially surprising that the space displace-
ment operator when applied to a state vector introduces a negative shift in the wave function
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associated with that state vector. In the derivation of the text, this was associated with the use of
integration by parts (ie: due to the sign change in that integration). Here we see it sneak back in,
due to the i2 once the momentum operator is expanded completely.

As last note and question. The first order Taylor approximation of the momentum operator
was used. If the higher order terms are retained, as in

exp
(
−i∆x′

P
h̄

)
= 1− ∆x′δ(x− x′)

∂

∂x
+

1
2

(
−∆x′δ(x− x′)

∂

∂x

)2

+ · · · ,

then how does one evaluate a squared delta function (or Nth power)?
Talked to Vatche about this after class. The key to this is sequential evaluation. Considering

the simple case for P2, we evaluate one operator at a time, and never actually square the delta
function

〈x′|P2|φ〉

I was also questioned why I was including the delta function at this point. Why would I do
that. Thinking further on this, I see that isn’t a reasonable thing to do. That delta function only
comes into the mix when one takes the matrix element of the momentum operator as in

〈x′|P|x〉 = −ih̄δ(x− x′)
d

dx′
.

This is very much like the fact that the delta function only shows up in the continuous repre-
sentation in other context where one has matrix elements. The most simple example of which is
just

〈
x′|x

〉
= δ(x− x′).

I also see now that the momentum operator is directly identified with the derivative (no delta
function) in two other places in the text. These are equations (2.32) and (2.46) respectively:

P(x) = −ih̄
d

dx

P = −ih̄
d

dX
.

In the first, (2.32), I thought the P(x) was somehow different, just a helpful expression found
along the way, but now it occurs to me that this was intended to be an unambiguous representation
of the momentum operator itself.

2.5.2 A second try.

Getting a feel for this Dirac notation takes a bit of adjustment. Let’s try evaluating the matrix
element for the space displacement operator again, without abusing the notation, or thinking that
we have a requirement for squared delta functions and other weirdness. We start with

5



D(∆x′)|φ〉 = e−
iP∆x′

h̄ |φ〉

=
∫

dxe−
iP∆x′

h̄ |x〉 〈x|φ〉

=
∫

dxe−
iP∆x′

h̄ |x〉φ(x).

Now, to evaluate e−
iP∆x′

h̄ |x〉, we can expand in series

e−
iP∆x′

h̄ |x〉 = |x〉+
∞

∑
k=1

1
k!

(
−i∆x′

h̄

)k

Pk|x〉.

It is tempting to left multiply by 〈x′| and commute that past the Pk, then write Pk = −ih̄d/dx.
That probably produces the correct result, but is abusive of the notation. We can still left multiply
by 〈x′|, but to be proper, I think we have to leave that on the left of the Pk operator. This yields

〈x′|D(∆x′)|φ〉 =
∫

dx

(〈
x′|x

〉
+

∞

∑
k=1

1
k!

(
−i∆x′

h̄

)k

〈x′|Pk|x〉
)

φ(x)

=
∫

dxδ(x′ − x)φ(x) +
∞

∑
k=1

1
k!

(
−i∆x′

h̄

)k ∫
dx〈x′|Pk|x〉φ(x).

The first integral is just φ(x′), and we are left with integrating the higher power momentum
matrix elements, applied to the wave function φ(x). We can proceed iteratively to expand those
integrals

∫
dx〈x′|Pk|x〉φ(x) =

∫∫
dxdx′′〈x′|Pk−1|x′′〉〈x′′|P|x〉φ(x)

Now we have a matrix element that we know what to do with. Namely, 〈x′′|P|x〉 = −ih̄δ(x′′−
x)∂/∂x, which yields

∫
dx〈x′|Pk|x〉φ(x) = −ih̄

∫∫
dxdx′′〈x′|Pk−1|x′′〉δ(x′′ − x)

∂

∂x
φ(x)

= −ih̄
∫

dx〈x′|Pk−1|x〉∂φ(x)
∂x

.

Each similar application of the identity operator brings down another −ih̄ and derivative
yielding

∫
dx〈x′|Pk|x〉φ(x) = (−ih̄)k ∂kφ(x′)

∂x′k
.
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Going back to our displacement operator matrix element, we now have

〈x′|D(∆x′)|φ〉 = φ(x′) +
∞

∑
k=1

1
k!

(
−i∆x′

h̄

)k

(−ih̄)k ∂kφ(x′)
∂x′k

= φ(x′) +
∞

∑
k=1

1
k!

(
−∆x′

∂

∂x′

)k

φ(x′)

= φ(x′ − ∆x′).

This shows nicely why the sign goes negative and it is no longer surprising when one observes
that this can be obtained directly by using the adjoint relationship

〈x′|D(∆x′)|φ〉 = (D†(∆x′)|x′〉)†|φ〉
= (D(−∆x′)|x′〉)†|φ〉
= |x′ − ∆x′〉†|φ〉
=
〈

x′ − ∆x′|φ
〉

= φ(x′ − ∆x′)

That’s a whole lot easier than the integral manipulation, but at least shows that we now have
a feel for the notation, and have confirmed the exponential formulation of the operator nicely.

2.6. Time evolution operator

The phrase “we identify time evolution with the Hamiltonian”. What a magic hat maneuver!
Is there a way that this would be logical without already knowing the answer?

2.7. Dispersion delta function representation.

The Principle part notation here I found a bit unclear. He writes

lim
ε→0

(x′ − x)
(x′ − x)2 + ε2 = P

(
1

x′ − x

)
.

In complex variables the principle part is the negative power series terms. For example for
f (z) = ∑ akzk, the principle part is

−1

∑
k=−∞

akzk

This doesn’t vanish at z = 0 as the principle part in this section is stated to. In (2.202) he
pulls the P out of the integral, but I think the intention is really to keep this associated with the
1/(x′ − x), as in

lim
ε→0

1
π

∫ ∞

0
dx′

f (x′)
x′ − x− iε

=
1
π

∫ ∞

0
dx′ f (x′)P

(
1

x′ − x

)
+ i f (x)

Will this even have any relevance in this text?
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3. Problems.

3.1. 1. Cauchy-Schwartz identity.

We wish to find the value of λ that is just right to come up with the desired identity. The
starting point is the expansion of the inner product

〈a + λb|a + λb〉 = 〈a|a〉+ λλ∗ 〈b|b〉+ λ 〈a|b〉+ λ∗ 〈b|a〉

There is a trial and error approach to this problem, where one magically picks λ ∝ 〈b|a〉 / 〈b|b〉n,
and figures out the proportionality constant and scale factor for the denominator to do the job. A
nicer way is to set up the problem as an extreme value exercise. We can write this inner product
as a function of λ, and proceed with setting the derivative equal to zero

f (λ) = 〈a|a〉+ λλ∗ 〈b|b〉+ λ 〈a|b〉+ λ∗ 〈b|a〉

Its derivative is

d f
dλ

=

(
λ∗ + λ

dλ∗

dλ

)
〈b|b〉+ 〈a|b〉+ dλ∗

dλ
〈b|a〉

= λ∗ 〈b|b〉+ 〈a|b〉+ dλ∗

dλ

(
λ 〈b|b〉+ 〈b|a〉

)
Now, we have a bit of a problem with dλ∗/dλ, since that doesn’t actually exist. However, that

problem can be side stepped if we insist that the factor that multiplies it is zero. That provides a
value for λ that also kills of the remainder of d f /dλ. That value is

λ = −〈b|a〉〈b|b〉 .

Back substitution yields

〈a + λb|a + λb〉 = 〈a|a〉 − 〈a|b〉 〈b|a〉 / 〈b|b〉 ≥ 0.

This is easily rearranged to obtain the desired result:

〈a|a〉 〈b|b〉 ≥ 〈b|a〉 〈a|b〉 .

3.2. 2. Uncertainty relation.

3.2.1 The problem.

Using the Schwarz inequality of problem 1, and a symmetric and antisymmetric (anticommu-
tator and commutator) sum of products that
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|∆A∆B|2 ≥ 1
4
|[A, B]|2, (1)

and that this result implies

∆x∆p ≥ h̄
2

. (2)

3.2.2 The solution.

This problem seems somewhat misleading, since the Schwarz inequality appears to have noth-
ing to do with showing 1, but only with the split of the operator product into symmetric and an-
tisymmetric parts. Another possible tricky thing about this problem is that there is no mention
of the anticommutator in the text at this point that I can find, so if one does not know what it is
defined as, it must be figured out by context.

I’ve also had an interpretation problem with this since ∆x∆p in 2 cannot mean the operators
as is the case of 1. My assumption is that in 2 these deltas are really absolute expectation values,
and that we really want to show

|〈∆X〉||〈∆P〉| ≥ h̄
2

. (3)

However, I’m unable to demonstrate this. Instead I’m able to show two things:

〈
(∆X)2〉 〈(∆P)2〉 ≥ h̄2

4

|〈∆X∆P〉| ≥ h̄
2

Is one of these the result to be shown? Note that only the first of these required the Schwarz
inequality. Also, it seems strange that we want the expectation of the operator ∆X∆P?

Starting with the first part of the problem, note that we can factor any operator product into a
linear combination of two Hermitian operators using the commutator and anticommutator. That
is

CD =
1
2
(CD + DC) +

1
2
(CD− DC)

=
1
2
(CD + DC) +

1
2i

(CD− DC) i

≡ 1
2
{C, D}+ 1

2i
[C, D] i

For Hermitian operators C, and D, using (CD)† = D†C† = DC, we can show that the two
operator factors are Hermitian,
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(
1
2
{C, D}

)†

=
1
2
(CD + DC)†

=
1
2

(
D†C† + C†D†

)
=

1
2
(DC + CD)

=
1
2
{C, D},

(
1
2
[C, D] i

)†

= − i
2
(CD− DC)†

= − i
2

(
D†C† − C†D†

)
= − i

2
(DC− CD)

=
1
2
[C, D] i

So for the absolute squared value of the expectation of product of two operators we have

〈CD〉2 =

∣∣∣∣〈1
2
{C, D}+ 1

2i
[C, D] i

〉∣∣∣∣2
=

∣∣∣∣12 〈{C, D}〉+ 1
2i
〈[C, D] i〉

∣∣∣∣2.

Now, these expectation values are real, given the fact that these operators are Hermitian. Sup-
pose we write a = 〈{C, D}〉 /2, and b = 〈[C, D] i〉 /2, then we have

∣∣∣∣12 〈{C, D}〉+ 1
2i
〈[C, D] i〉

∣∣∣∣2 = |a− bi|2

= (a− bi)(a + bi)

= a2 + b2

So we have for the squared expectation value of the operator product CD

〈CD〉2 =
1
4
〈{C, D}〉2 + 1

4
〈[C, D] i〉2

=
1
4
|〈{C, D}〉|2 + 1

4
|〈[C, D] i〉|2

=
1
4
|〈{C, D}〉|2 + 1

4
|〈[C, D]〉|2

≥ 1
4
|〈[C, D]〉|2.
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With C = ∆A, and D = ∆B, this almost completes the first part of the problem. The remaining
thing to note is that [∆A, ∆B] = [A, B]. This last is straight forward to show

[∆A, ∆B] = [A− 〈A〉, B− 〈B〉]
= (A− 〈A〉)(B− 〈B〉)− (B− 〈B〉)(A− 〈A〉)
= (AB− 〈A〉 B− 〈B〉 A + 〈A〉 〈B〉)− (BA− 〈B〉 A− 〈A〉 B + 〈B〉 〈A〉)
= AB− BA
= [A, B] .

Putting the pieces together we have

〈∆A∆B〉2 ≥ 1
4
|〈[A, B]〉|2. (4)

With expectation value implied by the absolute squared, this reproduces relation 1 as desired.
For the remaining part of the problem, with |α〉 = ∆A|ψ〉, and |β〉 = ∆B|ψ〉, and noting that

(∆A)† = ∆A for Hermitian operator A (or B too in this case), the Schwartz inequality

〈α|α〉 〈β|β〉 ≥ |〈β|α〉|2, (5)

takes the following form

〈ψ|(∆A)†∆A|ψ〉〈ψ|(∆B)†B|ψ〉 ≥
∣∣∣〈ψ|(∆B)† A|ψ〉

∣∣∣2.

These are expectation values, and allow us to use 4 to show

〈
(∆A)2〉 〈(∆B)2〉 ≥ |〈∆B∆A〉|2

=
1
4
|〈[B, A]〉|2.

For A = X, and B = P, this is

〈
(∆X)2〉 〈(∆P)2〉 ≥ h̄2

4
(6)

Hmm. This doesn’t look like it is quite the result that I expected? We have
〈
(∆X)2〉 〈(∆P)2〉

instead of 〈∆X〉2 〈∆P〉2?
Let’s step back slightly. Without introducing the Schwarz inequality the result 4 of the com-

mutator manipulation, and [X, P] = ih̄ gives us

〈∆X∆P〉2 ≥ h̄2

4
,
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and taking roots we have

|〈∆X∆P〉| ≥ h̄
2

. (7)

Is this really what we were intended to show?
Attempting to answer this myself, I refer to [2], where I find he uses a loose notation for this

too, and writes in his equation 3.36

(∆C)2 =
〈
(C− 〈C〉)2〉 = 〈C2〉− 〈C〉2

This usage seems consistent with that, so I think that it is a reasonable assumption that un-
certainty relation ∆x∆p ≥ h̄/2 is really shorthand notation for the more cumbersome relation
involving roots of the expectations of mean-square deviation operators

√
〈(X− 〈X〉)2〉

√
〈(P− 〈P〉)2〉 ≥ h̄

2
. (8)

This is in fact what was proved arriving at 6.
Ah ha! Found it. Referring to equation 2.93 in the text, I see that a lower case notation ∆x =√
(∆X)2, was introduced. This explains what seemed like ambiguous notation ... it was just tricky

notation, perfectly well explained, but done in passing in the text in a somewhat hidden seeming
way.

3.3. 3.

This problem done by inspection.

3.4. 4.

TODO.

3.5. 5. Hermitian radial differential operator.

Show that the operator

R = −ih̄
∂

∂r
,

is not Hermitian, and find the constant a so that

T = −ih̄
(

∂

∂r
+

a
r

)
,

is Hermitian.
For the first part of the problem we can show that

(
〈ψ̂|R|φ̂〉

)∗ 6= 〈φ̂|R|ψ̂〉.
12



For the RHS we have

〈φ̂|R|ψ̂〉 = −ih̄
∫∫∫

drdθdφr2 sin θφ̂
∗ ∂ψ̂

∂r

and for the LHS we have

(
〈ψ̂|R|φ̂〉

)∗
= ih̄

∫∫∫
drdθdφr2 sin θψ̂

∂φ̂
∗

∂r

= −ih̄
∫∫∫

drdθdφ sin θ

(
2rψ̂ + r2 ∂r

∂ψ̂

)
φ̂
∗

So, unless rψ̂ = 0, the operator R is not Hermitian.
Moving on to finding the constant a such that T is Hermitian we calculate

(
〈ψ̂|T|φ̂〉

)∗
= ih̄

∫∫∫
drdθdφr2 sin θψ̂

(
∂

∂r
+

a
r

)
φ̂
∗

= ih̄
∫∫∫

drdθdφ sin θψ̂

(
r2 ∂

∂r
+ ar

)
φ̂
∗

= −ih̄
∫∫∫

drdθdφ sin θ

(
r2 ∂ψ̂

∂r
+ 2rψ̂− arψ̂

)
φ̂
∗

and

〈φ̂|T|ψ̂〉 = −ih̄
∫∫∫

drdθdφr2 sin θφ̂
∗
(

r2 ∂ψ̂

∂r
+ arψ̂

)
So, for T to be Hermitian, we require

2r− ar = ar.

So a = 1, and our Hermitian operator is

T = −ih̄
(

∂

∂r
+

1
r

)
.

3.6. 6. Radial directional derivative operator.

3.6.1 Problem.

Show that

D = p · r̂ + r̂ · p,

is Hermitian. Expand this operator in spherical coordinates. Compare result to problem 5.

13



3.6.2 Solution.

Tackling the spherical coordinates expression of of the operator D, we have

1
−ih̄

DΨ = (∇ · r̂ + r̂ ·∇)Ψ

= (∇ · r̂)Ψ + (∇Ψ) · r̂ + r̂ · (∇Ψ)

= (∇ · r̂)Ψ + 2r̂ · (∇Ψ) .

Here braces have been used to denote the extend of the operation of the gradient. In spherical
polar coordinates, our gradient is

∇ ≡ r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ
.

This gets us most of the way there, and we have

1
−ih̄

DΨ = 2
∂Ψ
∂r

+

(
r̂ · ∂r̂

∂r
+

1
r

θ̂ · ∂r̂
∂θ

+
1

r sin θ
φ̂ · ∂r̂

∂φ

)
Ψ.

Since ∂r̂/∂r = 0, we are left with evaluating θ̂ · ∂r̂/∂θ, and φ̂ · ∂r̂/∂φ. To do so I chose to employ
the (Geometric Algebra) exponential form of the spherical unit vectors [4]

I = e1e2e3

φ̂ = e2 exp(Ie3φ)

r̂ = e3 exp(Iφ̂θ)

θ̂ = e1e2φ̂ exp(Iφ̂θ).

The partials of interest are then

∂r̂
∂θ

= e3 Iφ̂ exp(Iφ̂θ) = θ̂,

and

∂r̂
∂φ

=
∂

∂φ
e3
(
cos θ + Iφ̂ sin θ

)
= e1e2 sin θ

∂φ̂

∂φ

= e1e2 sin θe2e1e2 exp(Ie3φ)

= sin θφ̂.

Only after computing these, did I find exactly these results for the partials of interest, in math-
world’s Spherical Coordinates page, which confirms these calculations. Note that a different angle
convention is used there, so one has to exchange φ, and θ and the corresponding unit vector labels.

14
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Substitution back into our expression for the operator we have

D = −2ih̄
(

∂

∂r
+

1
r

)
,

an operator that is exactly twice the operator of problem 5, already shown to be Hermitian.
Since the constant numerical scaling of a Hermitian operator leaves it Hermitian, this shows that
D is Hermitian as expected.

3.6.3 θ̂ directional momentum operator

Let’s try this for the other unit vector directions too. We also want

(
∇ · θ̂+ θ̂ ·∇

)
Ψ = 2θ̂ · (∇Ψ) +

(
∇ · θ̂

)
Ψ.

The work consists of evaluating

∇ · θ̂ = r̂ · ∂θ̂

∂r
+

1
r

θ̂ · ∂θ̂

∂θ
+

1
r sin θ

φ̂ · ∂θ̂

∂φ
.

This time we need the ∂θ̂/∂θ, ∂θ̂/∂φ partials, which are

∂θ̂

∂θ
= e1e2φ̂Iφ̂ exp(Iφ̂θ)

= −e3 exp(Iφ̂θ)

= −r̂.

This has no θ̂ component, so does not contribute to ∇ · θ̂. Noting that

∂φ̂

∂φ
= −e1 exp(Ie3φ) = e2e1φ̂,

the φ partial is

∂θ̂

∂φ
= e1e2

(
∂φ̂

∂φ
exp(Iφ̂θ) + φ̂I sin θ

∂φ̂

∂φ

)
= φ̂

(
exp(Iφ̂θ) + I sin θe2e1φ̂

)
,

with φ̂ component

φ̂ · ∂θ̂

∂φ
=
〈
exp(Iφ̂θ) + I sin θe2e1φ̂

〉
= cos θ + e3 · φ̂ sin θ

= cos θ.
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Assembling the results, and labeling this operator Θ we have

Θ ≡ 1
2
(
p · θ̂+ θ̂ · p

)
= −ih̄

1
r

(
∂

∂θ
+

1
2

cot θ

)
.

It would be reasonable to expect this operator to also be Hermitian, and checking this explicitly
by comparing 〈Φ|Θ|Ψ〉∗ and 〈Ψ|Θ|Φ〉, shows that this is in fact the case.

3.6.4 φ̂ directional momentum operator

Let’s try this for the other unit vector directions too. We also want

(
∇ · φ̂ + φ̂ ·∇

)
Ψ = 2φ̂ · (∇Ψ) +

(
∇ · φ̂

)
Ψ.

The work consists of evaluating

∇ · φ̂ = r̂ · ∂φ̂

∂r
+

1
r

θ̂ · ∂φ̂

∂θ
+

1
r sin θ

φ̂ · ∂φ̂

∂φ
.

This time we need the ∂φ̂/∂θ, ∂φ̂/∂φ = e2e1φ̂ partials. The θ partial is

∂φ̂

∂θ
=

∂

∂θ
e2 exp(Ie3φ)

= 0.

We conclude that ∇ · φ̂ = 0, and expect that we have one more Hermitian operator

Φ ≡ 1
2
(
p · φ̂ + φ̂ · p

)
= −ih̄

1
r sin θ

∂

∂φ
.

It is simple to confirm that this is Hermitian since the integration by parts does not involve any
of the volume element. In fact, any operator −ih̄ f (r, θ)∂/∂φ would also be Hermitian, including
the simplest case −ih̄∂/∂φ. Have to dig out my Bohm text again, since I seem to recall that one
used in the spherical Harmonics chapter.

3.6.5 A note on the Hermitian test and Dirac notation.

I’ve been a bit loose with my notation. I’ve stated that my demonstrations of the Hermitian
nature have been done by showing

〈φ|A|ψ〉∗ − 〈ψ|A|φ〉 = 0.
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However, what I’ve actually done is show that

(∫
d3xφ∗(x)A(x)ψ(x)

)∗
−
∫

d3xψ∗(x)A(x)φ(x) = 0.

To justify this note that

〈φ|A|ψ〉∗ =
(∫∫

d3rd3s 〈φ|r〉 〈r|A|s〉 〈s|ψ〉
)∗

=
∫∫

d3rd3sφ(r)δ3(r− s)A∗(s)ψ(s)

=
∫

d3rφ(r)A∗(r)ψ(r),

and

〈φ|A|ψ〉∗ =
∫∫

d3rd3s 〈ψ|r〉 〈r|A|s〉 〈s|φ〉

=
∫∫

d3rd3s〈r|ψ(r)δ3(r− s)A(s)φ(s)

=
∫

d3rψ(r)A(r)φ(r).

Working backwards one sees that the comparison of the wave function integrals in explicit
inner product notation is sufficient to demonstrate the Hermitian property.

3.7. 7. Some commutators.

3.7.1 7. Problem.

For D in problem 6, obtain

• i) [D, xi]

• ii) [D, pi]

• iii) [D, Li], where Li = ei · (r× p).

• iv) Show that eiαD/h̄xie−iαD/h̄ = eαxi

3.7.2 7. Expansion of [D, xi].

While expressing the operator as D = −2ih̄(1/r)(1 + ∂r) has less complexity than the D =
p · r̂ + r̂ · p, since no operation on r̂ is required, this doesn’t look particularly convenient for use
with Cartesian coordinates. Slightly better perhaps is

D = −2ih̄
1
r
(r ·∇+ 1)

17



[D, xi]Ψ = DxiΨ− xiDΨ

= −2ih̄
1
r
(r ·∇+ 1) xiΨ + 2ih̄xi

1
r
(r ·∇+ 1)Ψ

= −2ih̄
1
r

r ·∇xiΨ + 2ih̄xi
1
r

r ·∇Ψ

= −2ih̄
1
r

r · (∇xi)Ψ− 2ih̄xi
1
r

r ·∇Ψ + 2ih̄xi
1
r

r ·∇Ψ

= −2ih̄
1
r

r · eiΨ.

So this first commutator is:

[D, xi] = −2ih̄
xi

r
.

3.7.3 7. Alternate expansion of [D, xi].

Let’s try this instead completely in coordinate notation to verify. I’ll use implicit summation
for repeated indexes, and write ∂k = ∂/∂xk. A few intermediate results will be required

∂k
1
r
= ∂k(xmxm)

−1/2

= −1
2

2xk(xmxm)
−3/2

Or

∂k
1
r
= − xk

r3 (9)

∂k
xi

r
=

δik

r
− xi

r3 (10)

∂k
xk

r
=

3
r
− xk

r3 (11)

The action of the momentum operators on the coordinates is

pkxiΨ = −ih̄∂kxiΨ
= −ih̄ (δik + xi∂k)Ψ
= −ih̄δik + xi pk

18



pkxkΨ = −ih̄∂kxkΨ
= −ih̄ (3 + xk∂k)Ψ

Or

pkxi = −ih̄δik + xi pk (12)
pkxk = −3ih̄ + xk pk (13)

And finally

pk
1
r

Ψ = (pk
1
r
)Ψ +

1
r

pkΨ

= −ih̄
(
− xk

r3

)
Ψ +

1
r

pkΨ

So

pk
1
r
= ih̄

xk

r3 +
1
r

pk (14)

We can use these to rewrite D

D = pk
xk

r
+

xk

r
pk

= pkxk
1
r
+

xk

r
pk

= (−3ih̄ + xk pk)
1
r
+

xk

r
pk

= −3ih̄
r

+ xk

(
ih̄

xk

r3 +
1
r

pk

)
+

xk

r
pk

D =
2
r
(−ih̄ + xk pk) (15)

This leaves us in the position to compute the commutator

[D, xi] =
2
r
(−ih̄ + xk pk)xi −

2xi

r
(−ih̄ + xk pk)

=
2
r

xk(−ih̄δik + xi pk)−
2xi

r
xk pk

= −2ih̄xi

r
So, unless I’m doing something fundamentally wrong, the same way in both methods, this

appears to be the desired result. I question my answer since utilizing this for the later computation
of eiαD/h̄xie−iαD/h̄ did not yield the expected answer.
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3.7.4 7. [D, pi]

[D, pi] = −
2ih̄
r
(1 + xk pk)pi + 2ih̄pi

1
r
(1 + xk pk)

= −2ih̄
r

(
pi + xk pk pi −

(
ih̄

xi

r2 + pi

)
(1 + xk pk)

)
= −2ih̄

r

(
xk pk pi − ih̄

xi

r2 − ih̄
xixk

r2 pk − (−ih̄δki + xk pi) pk

)
= −2ih̄

r

(
−ih̄

xi

r2 − ih̄
xixk

r2 pk + ih̄pi

)
= − ih̄

r

( xi

r
D + 2ih̄pi

)
�

If there is some significance to this expansion, other than to get a feel for operator manipula-
tion, it escapes me.

3.7.5 7. [D, Li]

To expand [D, Li], it will be sufficient to consider any specific index i ∈ {1, 2, 3} and then utilize
cyclic permutation of the indexes in the result to generalize. Let’s pick i = 1, for which we have

L1 = x2 p3 − x3 p2

It appears we will want to know

pmD = −2ih̄pm
1
r
(1 + xk pk)

= −2ih̄
(

ih̄
xm

r3 +
1
r

pm

)
(1 + xk pk)

= −2ih̄
(

ih̄
xm

r3 +
1
r

pm + ih̄
xmxk

r3 pk +
1
r

pmxk pk

)
= −2ih̄

r

(
ih̄

xm

r2 + pm + ih̄
xmxk

r2 pk − ih̄pm + xk pm pk

)
and we also want

Dxm = −2ih̄
r
(1 + xk pk)xm

= −2ih̄
r
(xm + xk(−ih̄δkm + xm pk))

= −2ih̄
r
(xm − ih̄xm + xmxk pk)

This also happens to be Dxm = xmD + 2(ih̄)2xm
r , but does that help at all?
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Assembling these we have

[D, L1] = Dx2 p3 − Dx3 p2 − x2 p3D + x3 p2D

= −2ih̄
r
(x2 − ih̄x2 + x2xk pk)p3 +

2ih̄
r
(x3 − ih̄x3 + x3xk pk)p2

+
2ih̄x2

r

(
ih̄

x3

r2 + p3 + ih̄
x3xk

r2 pk − ih̄p3 + xk p3 pk

)
− 2ih̄x3

r

(
ih̄

x2

r2 + p2 + ih̄
x2xk

r2 pk − ih̄p2 + xk p2 pk

)

With a bit of brute force it is simple enough to verify that all these terms mystically cancel out,
leaving us zero

[D, L1] = 0

There surely must be an easier way to demonstrate this. Likely utilizing the commutator rela-
tionships derived earlier.

3.7.6 7. eiαD/h̄xie−iαD/h̄

We will need to evaluate Dkxi. We have the first power from our commutator relation

Dxi = xi

(
D− 2ih̄

r

)
A successive application of this operator therefore yields

D2xi = Dxi

(
D− 2ih̄

r

)
= xi

(
D− 2ih̄

r

)2

So we have

Dkxi = xi

(
D− 2ih̄

r

)k

This now preps us to expand the first product in the desired exponential sandwich
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eiαD/h̄xi = xi +
∞

∑
k=1

1
k!

(
iD
h̄

)k

xi

= xi +
∞

∑
k=1

1
k!

(
i
h̄

)k

Dkxi

= xi +
∞

∑
k=1

1
k!

(
i
h̄

)k

xi

= xie
iα
h̄ (D− 2ih̄

r )

= xie2α/reiαD/h̄.

The exponential sandwich then produces

eiαD/h̄xie−iαD/h̄ = e2α/rxi

Note that this isn’t the value we are supposed to get. Either my value for Dxi is off by a factor
of 2/r or the problem in the text contains a typo.

3.8. 8. Reduction of some commutators using the fundamental commutator relation.

Using the fundamental commutation relation

[p, x] = −ih̄,

which we can also write as

px = xp− ih̄,

expand
[
x, p2], [x2, p

]
, and

[
x2, p2].

The first is [
x, p2] = xp2 − p2x

= xp2 − p(px)

= xp2 − p(xp− ih̄)

= xp2 − (xp− ih̄)p + ih̄p
= 2ih̄p

The second is [
x2, p

]
= x2 p− px2

= x2 p− (xp− ih̄)x

= x2 p− x(xp− ih̄) + ih̄x
= 2ih̄x
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Note that it is helpful for the last reduction of this problem to observe that we can write this as

px2 = x2 p− 2ih̄x

Finally for this last we have

[
x2, p2] = x2 p2 − p2x2

= x2 p2 − p(x2 p− 2ih̄x)

= x2 p2 − (x2 p− 2ih̄x)p + 2ih̄(xp− ih̄)

= 4ih̄xp− 2(ih̄)2

That’s about as reduced as this can be made, but it is not very tidy looking. From this point we
can simplify it a bit by factoring

[
x2, p2] = 4ih̄xp− 2(ih̄)2

= 2ih̄(2xp− ih̄)
= 2ih̄(xp + px)
= 2ih̄{x, p}

3.9. 9. Finite displacement operator.

3.9.1 9. Part I.

For

F(d) = e−ipd/h̄,

the first part of this problem is to show that

[x, F(d)] = xF(d)− F(d)x = dF(d)

We need to evaluate

e−ipd/h̄x =
∞

∑
k=0

1
k!

(
−ipd

h̄

)k

x.

To do so requires a reduction of pkx. For k = 2 we have

p2x = p(xp− ih̄)
= (xp− ih̄)p− ih̄p

= xp2 − 2ih̄p.
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For the cube we get p3x = xp3 − 3ih̄p2, supplying confirmation of an induction hypothesis
pkx = xpk − kih̄pk−1, which can be verified

pk+1x = p(xpk − kih̄pk−1)

= (xp− ih̄)pk − kih̄pk

= xpk+1 − (k + 1)ih̄pk �

For our exponential we then have

e−ipd/h̄x = x +
∞

∑
k=1

1
k!

(
−id

h̄

)k

(xpk − kih̄pk−1)

= xe−ipd/h̄ +
∞

∑
k=1

1
(k− 1)!

(
−ipd

h̄

)k−1

(−id/h̄)(−ih̄)

= (x− d)e−ipd/h̄.

Put back into our commutator we have[
x, e−ipd/h̄

]
= de−ipd/h̄,

completing the proof.

3.9.2 9. Part II.

For state |α〉 with |αd〉 = F(d)|α〉, show that the expectation values satisfy

〈X〉d = 〈X〉+ d

〈X〉d = 〈αd|X|αd〉

=
∫∫

dx′dx′′
〈
αd|x′

〉
〈x′|X|x′′〉

〈
x′′|αd

〉
=
∫∫

dx′dx′′α∗dx′δ(x′ − x′′)x′αd(x′′)

=
∫

dx′α∗d(x′)x′αd(x′)

But

αd(x′) = exp
(
− id

h̄
(−ih̄)

∂

∂x′

)
α(x′)

= e−d ∂
∂x′ α(x′)

= α(x′ − d),
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so our position expectation is

〈X〉d =
∫

dx′α∗(x′ − d)x′α(x′ − d).

A change of variables x = x′ − d gives us

〈X〉d =
∫

dxα∗(x)(x + d)α(x)

〈X〉+ d + d
∫

dxα∗xα(x) �

3.10. 10. Hamiltonian position commutator and double commutator

For

H =
1

2m
p2 + V(x)

calculate [H, x], and [[H, x], x].
These are

[H, x] =
1

2m
p2x + V(x)x− 1

2m
xp2 − xV(x)

=
1

2m
p(xp− ih̄)− 1

2m
xp2

=
1

2m
((xp− ih̄)p− ih̄p)− 1

2m
xp2

= − ih̄p
m

and

[[H, x], x] = − ih̄
m

[p, x]

=
(−ih̄)2

m

= − h̄2

m

We also have to show that

∑
k
(Ek − En)|〈k|x|n〉|2 =

h̄2

2m

Expanding the absolute value in terms of conjugates we have
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∑
k
(Ek − En)|〈k|x|n〉|2 = ∑

k
(Ek − En)〈k|x|n〉〈n|x|k〉

= ∑
k
〈k|x|n〉〈n|xEk|k〉 − 〈k|xEn|n〉〈n|x|k〉

= ∑
k
〈n|xH|k〉〈k|x|n〉 − 〈n|x|k〉〈k|xH|n〉

= 〈n|xHx|n〉 − 〈n|xxH|n〉
= 〈n|x [H, x] |n〉

= − ih̄
m
〈n|xp|n〉

It is not obvious where to go from here. Taking the clue from the problem that the result
involves the double commutator, we have

− h̄2

m
= 〈n| [[H, x], x] |n〉

= 〈n|Hx2 − 2xHx + x2H|n〉
= 2En〈n|x2|n〉 − 2〈n|xHx|n〉
= 2En〈n|x2|n〉 − 2〈n|(− [H, x] + Hx)x|n〉
= 2〈n| [H, x] x|n〉

= −2ih̄
m
〈n|px|n〉

= −2ih̄
m
〈n|xp− ih̄|n〉

= −2ih̄
m
〈n|xp|n〉+ 2(ih̄)2

m
So, somewhat flukily by working backwards, with a last rearrangement, we now have

− ih̄
m
〈n|xp|n〉 = h̄2

m
− h̄2

2m

=
h̄2

2m
Substitution above gives the desired result. This is extremely ugly, and doesn’t follow any sort

of logical progression. Is there a good way to sequence this proof?

3.11. 11. Another double commutator.

3.11.1 Attempt 1. Incomplete.

H =
p2

2m
+ V(r)
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use
[[

H, eik·r], e−ik·r] to obtain

∑
n
(En − Es)

∣∣∣〈n|eik·r|s〉
∣∣∣2

First evaluate the commutators. The first is

[
H, eik·r

]
=

1
2m

[
p2, eik·r

]
The Laplacian applied to this exponential is

∇2eik·rΨ = ∂m∂meiknxn Ψ

= ∂m(ikmeik·rΨ + eik·r∂mΨ)

= −k2eik·rΨ + ieik·rk ·∇Ψ + ieik·rk ·∇Ψ + eik·r∇2Ψ

Factoring out the exponentials this is

∇2eik·r = eik·r
(
−k2 + 2ik ·∇+∇2

)
,

and in terms of p, we have

p2eik·r = eik·r ((h̄k)2 + 2(h̄k) · p + p2) = eik·r(h̄k + p)2

So, finally, our first commutator is

[
H, eik·r

]
=

1
2m

eik·r ((h̄k)2 + 2(h̄k) · p
)

(16)

The double commutator is then

[[
H, eik·r

]
, e−ik·r

]
= eik·r h̄k

m
·
(

pe−ik·r − e−ik·rp
)

To simplify this we want

k ·∇e−ik·rΨ = kn∂ne−ikmxm Ψ

= e−ik·r (kn(−ikn)Ψ + kn∂nΨ)

= e−ik·r (−ik2 + k ·∇
)

Ψ

The double commutator is then left with just[[
H, eik·r

]
, e−ik·r

]
= − 1

m
(h̄k)2 (17)
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Now, returning to the energy expression

∑
n
(En − Es)

∣∣∣〈n|eik·r|s〉
∣∣∣2 = ∑

n
(En − Es)〈s|e−ik·r|n〉〈n|eik·r|s〉

= ∑
n
〈s|e−ik·rH|n〉〈n|eik·r|s〉 − 〈s|e−ik·r|n〉〈n|eik·rH|s〉

= 〈s|e−ik·rHeik·r|s〉 − 〈s|e−ik·reik·rH|s〉

= 〈s|e−ik·r
[

H, eik·r
]
|s〉

=
1

2m
〈s|e−ik·reik·r ((h̄k)2 + 2(h̄k) · p

)
|s〉

=
1

2m
〈s|(h̄k)2 + 2(h̄k) · p|s〉

=
(h̄k)2

2m
+

1
m
〈s|(h̄k) · p|s〉

I can’t figure out what to do with the h̄k · p expectation, and keep going around in circles.
I figure there is some trick related to the double commutator, so expanding the expectation of

that seems appropriate

− 1
m
(h̄k)2 = 〈s|

[[
H, eik·r

]
, e−ik·r

]
|s〉

= 〈s|
[

H, eik·r
]

e−ik·r − e−ik·r
[

H, eik·r
]
|s〉

=
1

2m
〈s|eik·r((h̄k)2 + 2h̄k · p)e−ik·r − e−ik·reik·r((h̄k)2 + 2h̄k · p)|s〉

=
1
m
〈s|eik·r(h̄k · p)e−ik·r − h̄k · p|s〉

3.11.2 Attempt 2.

I was going in circles above. With the help of betel on physicsforums, I got pointed in the right
direction. Here’s a rework of this problem from scratch, also benefiting from hindsight.

Our starting point is the same, with the evaluation of the first commutator

[
H, eik·r

]
=

1
2m

[
p2, eik·r

]
. (18)

To continue we need to know how the momentum operator acts on an exponential of this form

pe±ik·rΨ = −ih̄em∂me±iknxn Ψ

= e±ik·r (−ih̄(±iemkm)Ψ− ih̄em∂mΨ) .

This gives us the helpful relationship
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pe±ik·r = e±ik·r(p± h̄k). (19)

Squared application of the momentum operator on the positive exponential found in the first
commutator 18, gives us

p2eik·r = eik·r(h̄k + p)2 = eik·r((h̄k)2 + 2h̄k · p + p2), (20)

with which we can evaluate this first commutator.

[
H, eik·r

]
=

1
2m

eik·r((h̄k)2 + 2h̄k · p). (21)

For the double commutator we have

2m
[[

H, eik·r
]
, e−ik·r

]
= eik·r((h̄k)2 + 2h̄k · p)e−ik·r − ((h̄k)2 + 2h̄k · p)

= eik·r2(h̄k · p)e−ik·r − 2h̄k · p
= 2h̄k · (p− h̄k)− 2h̄k · p,

so for the double commutator we have just a scalar

[[
H, eik·r

]
, e−ik·r

]
= − (h̄k)2

m
. (22)

Now consider the expectation of this double commutator, expanded with some unintuitive
steps that have been motivated by working backwards

〈s|
[[

H, eik·r
]
, e−ik·r

]
|s〉 = 〈s|2H − eik·rHe−ik·r − e−ik·rHeik·r|s〉

= 〈s|2e−ik·reik·rH − 2e−ik·rHeik·r|s〉
= 2 ∑

n
〈s|e−ik·r|n〉〈n|eik·rH|s〉 − 〈s|e−ik·rH|n〉〈n|eik·r|s〉

= 2 ∑
n

Es〈s|e−ik·r|n〉〈n|eik·r|s〉 − En〈s|e−ik·r|n〉〈n|eik·r|s〉

= 2 ∑
n
(Es − En)

∣∣∣〈n|eik·r|s〉
∣∣∣2

By 22, we have completed the problem

∑
n
(En − Es)

∣∣∣〈n|eik·r|s〉
∣∣∣2 =

(h̄k)2

2m
. (23)

There is one subtlety above that is worth explicit mention before moving on, in particular, I
did not find it intuitive that the following was true
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〈s|eik·rHe−ik·r + e−ik·rHeik·r|s〉 = 〈s|2e−ik·rHeik·r|s〉. (24)

However, observe that both of these exponential sandwich operators eik·rHe−ik·r, and e−ik·rHeik·r

are Hermitian, since we have for example

(eik·rHe−ik·r)† = (e−ik·r)†H†(eik·r)†

= eik·rHe−ik·r

Also observe that these operators are both complex conjugates of each other, and with k · r = α
for short, can be written

eiαHe−iα = cos αH cos α + sin αH sin α + i sin αH cos α− i cos αH sin α (25)

e−iαHeiα = cos αH cos α + sin αH sin α− i sin αH cos α + i cos αH sin α (26)

Because H is real valued, and the expectation value of a Hermitian operator is real valued,
none of the imaginary terms can contribute to the expectation values, and in the summation of 24
we can thus pick and double either of the exponential sandwich terms, as desired.
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