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1. Notes.

Chapter III notes and problems for [1].
FIXME: Some puzzling stuff in the interaction section and superposition of time-dependent
states sections. Work through those here.



2. Problems

2.1. Problem 1. Virial Theorem.
2.1.1 Statement.

With the assumption that (r - p) is independent of time, and

2

_ P _
H=__+V()=T+V (1)
show that
2(T) = (r-VV). (2)

2.1.2 Solution.

I floundered with this a bit, but found the required hint in physicsforums. We can start with
the Hamiltonian time derivative relation

ihdiH — Ay, H] 3)

So, with the assumption that (r- p) is independent of time, and the use of a stationary state
|¢) for the expectation calculation we have

= = (Ir-p.H])
_ _<[r.v,§;]>—<[r-v,v<r>]>.

The exercise now becomes one of evaluating the remaining commutators. For the Laplacian
commutator we have

[r 'V, Vz} P = Xt — OO Xt

- xmamananlp - ananlp - anxmanamlp
- xmamananlp - ananlp - ananlp - Xmananamllj
= 2V?yp

For the potential commutator we have


http://www.physicsforums.com/showthread.php?t=164682

[r-V,V(0)] Y = xu0uVp — VX0
= Xy (O V)X, VO p — VX1 0P

= (r- (VW)

Putting all the 7 factors back in, we get

p2
2 <2m> =(r-(VV)),
which is the desired result.

Followup: why assume (r - p) is independent of time?

2.2. Problem 2. Application of virial theorem.
Calculate (T) with V = Aln(r/a).

r-VV =rt- Mfaln(r/a)
or
= /\rlﬁ
ar
=A
=
(Ty =A/2

2.3. Problem 3. Heisenberg Position operator representation.

2.3.1 Partl.

Express x as an operator xy for H = p?/2m.
With

(plx]p)y = (o U  xU|ypo)

We want to expand

Xy = U*xu
— ez’Ht/hxe—th/h

5 11(1'Ht>"x<—th
o K R h

We to evaluate H*xH' to proceed. Using p"x = —iinp"~! + xp", we have

4)



This gives us

— d 5
XH x+m ()

2.3.2 PartlIl.

Express x as an operator xy for H = p?/2m + V with V = Ax™.

In retrospect, for the first part of this problem, it would have been better to use the series
expansion for this exponential sandwich

Or, in explicit form

1 1
e Be 4 = B+ 11 [ABl+ o7 [A[A Bl + - (6)

Doing so, we’d find for the first commutator
it ’ tp
o [p% x| = ot )

so that the series has only the first two terms, and we’d obtain the same result. That seems
like a logical approach to try here too. For the first commutator, we get the same tp/m result since
[V,x] =0.
Employing
x"p = ihnx""1 + px", (8)

I find



<lht>2 [H,[H,x]] = l;l:j [x", p]

_ nifzx\xn,1
m
_ n#V
T omx
The triple commutator gets no prettier, and I get
3 2 2
it it [ p . hnt°v
() i i = 5 | B vaxn, -2 Y
itnP A [, .
~ hom2m [p - ]
n(n—1)V
= s (ihn + 2px)
Putting all the pieces together this gives
: , tp nt?V. nn—-1)8V
xy = e/ My HIN — 4 ﬁp — 5t (12m23)c3 (ihn +2px) + - -- )

If there is a closed form for this it isn’t obvious to me. Would a fixed lower degree potential
function shed any more light on this. How about the Harmonic oscillator Hamiltonian

2 2
_P mw= »
H = o + — X (10)

... this one works out nicely since there’s an even-odd alternation.
Get

pt sin(w?t*/2)

_ 2,2
xg = xcos(wt/2) + 222 (11)

I'd not expect such a tidy result for an arbitrary V(x) = Ax" potential.

2.4. Problem 4. Feynman-Hellman relation.

For continuously parametrized eigenstate, eigenvalue and Hamiltonian [(A)), E(A) and H(A)
respectively, we can relate the derivatives



D (HIp)) = - (Elp))

—
gol) _ aE a\¢>
Left multiplication by (| gives
0 0
121 + AL = 2y 1y A2
_—
) 0
@129 + (1B A2 = (912 ) + g A2
_—
W2 19) = 2 i),
which provides the desired identity
oE oH
2 w2y 1)

2.5. Problem 5.
2.5.1 Description.
With eigenstates |¢;) and |¢2), of H with eigenvalues E; and E;, respectively, and

x1) = —=(l¢1) + [¢2))

HS\H
N

X2) = \ﬁ(|¢1> — |¢2))
and |¢(0)) = |x1), determine |ip(¢)) in terms of |¢p;) and |¢7).
2.5.2 Solution.

() = e~ |p(0))
e_th/h|X1>

e (1) — [¢2))

(efiElt/hM)l) o efiEzt/h’(Pz» 0

NS



2.6. Problem 6.
2.6.1 Description.

Consider a Coulomb like potential —A/r with angular momentum ! = 0. If the eigenfunction
is
u(r) = uge P’ (13)
determine ug, B, and the energy eigenvalue E in terms of A, and m.

2.6.2 Solution.

We can start with the normalization constant ug by integrating

1= u%/ dre Fre=Fr
0

—2pBr

Uy — 5

0

wo = /2B 14

To go further, we need the Hamiltonian. Note that we can write the Laplacian with the angular
momentum operator factored out using

V%:é(@-vy+x-v+wxxvf) (15)

With zero for the angular momentum operator x x V, and switching to spherical coordinates,
we have

V2=%a+%a@y

1 1 1
== *ar + *ar + *rarr
r r r

2
= *ar + arr
r

We can now write the Hamiltonian for the zero angular momentum case

n (2 A
H = o <rar +arr> -7 (16)



With application of this Hamiltonian to the eigenfunction we have

2
Euob’_ﬁr = <_2h (zar ‘|‘arr) - /\> uoe_ﬁr
m\r r
n (2 ) A
= —=(Z(= - = —pr
( 2m <r( ‘B)+ﬁ> r)uoe '

In particular for r = co we have

g
_% _r (17)
h? B> n (2 ) A
" aw <_2m (Gemer) -7
-
2, A
2mr"”
Collecting all the results we have
Am
P=" 18
2
E— ‘Ath (19)
V2Am
o = — (20)

2.7. Problem 7.
2.71 Description.

A particle in a uniform field Eg. Show that the expectation value of the position operator (r)
satisfies

d* (r)
m—a = eEp. (21)
2.7.2 Solution.
This follows from Ehrehfest’s theorem once we formulate the force eEy = —V ¢, in terms of a
potential ¢. That potential is
¢ = —eEy- (x,y,2) (22)



The Hamiltonian is therefore

Ehrehfest’s theorem gives us

or

1%
aTck = —e(Eo)k

Putting all the last bits together, and summing over the directions e; we have

dZ

mﬁek (xk> = € <€(E0)k> = EEO [l

2.8. Problem 8.

2.8.1 Description.

(23)

(24)

For Hamiltonian eigenstates |E,), C = AB, A = [B, H|, obtain the matrix element (E,,|C|E,)

in terms of the matrix element of A.

2.8.2 Solution.

I was able to get most of what was asked for here, with a small exception. I started with the

matrix element for A, which is

(Em|A|E,) = (Ew|BH — HB|E,) = (E;; — Es){Ew|B|Ey)

Next, computing the matrix element for C we have

(25)



(En|C|E,) = (E,,|BHB — HB?|E,)
=) (Ew|BH|Eq)(Eq|B|Ey) — Em(Em|B|Ea){Ea| B|Ex)
a

= ) Ea(Em|B|Eq)(Ea|B|En) — Em(Em|B|Eq)(Ea|B|En)
= Z(Ea - Em)<Em,B’Ea><Ea‘B‘En>
= Z(Em‘A’Ea><Ea|B‘En>

= <Em‘A’En><En’B’En> + Z(Em,A|Ea><Ea’B’En>

a#tn
E.|A|E
— (En| AlEn)(Ea|BIEs) + Y (Ew| A|Eg) {EelAEn)
a#n E”_E”

Except for the (E,|B|E,) part of this expression, the problem as stated is complete. The re-
lationship 25 is no help for with n = m, so I see no choice but to leave that small part of the
expansion in terms of B.

2.9. Problem 9.
2.9.1 Description.

Operator A has eigenstates |a;), with a unitary change of basis operation U|a;) = |b;). Deter-
mine in terms of U, and A the operator B and its eigenvalues for which |b;) are eigenstates.

2.9.2 Solution.

Consider for motivation the matrix element of A in terms of |b;). We will also let Ala;) = a;|a;).
We then have

(ai]Alaj) = (b]UAU" (b))

We also have
(a;|Alaj) = aj(a;l|a;)
= 0;j

So it appears that the operator UAU" has the orthonormality relation required. In terms of
action on the basis {|b;) }, let’s see how it behaves. We have

UAU b)) = UA|a;)
= Ua;|a;)
= w;|b;)

So we see that the operators A and B = UAU' have common eigenvalues.

10



2.10. Problem 10.
2.10.1 Description.
With H|n) = E,|n), A = [H,F] and (0|F|0) = 0, show that

(0]A|n) (n|A[0)
E,— Eo

)3

n#£0

— (0]AF|0) 6)

2.10.2 Solution.

(0| AF|0) = (0|HFF — FHF|0)
= )_ Eo{0|F|n)(n|F|0) — E,(0|F|n)(n|F|0)

= ) _(Eo — Eu){0[F|n) (n|F|0)
= ) (Eo — Eu)(0[F|n)(n|F|0)
n#0

We also have

(0] A[n)(n|A[0) = (O|HF — FH]|n){n|A|0)
= (Eo — Ex)(0[F|n){n|HF — FH|0)
= —(Eo — E)*(0|F|n) (n|F|0)

Or, forn # 0,

__ (0]A[n)(n|A]0)
(O1Fln) (n[Fl0) = — 2 EIHEEE
This gives
o = (0]A]n)(n|Al0)
<O‘AF|0> = n;)(EO En) (EO _ En)Z
_ v (0]A[n){n|A|0)
_7;) E, — Ep -

2.11. Problem 11. commutator of angular momentum with Hamiltonian.

Show that [L, H] = 0, where H = p?/2m + V(r).
This follows by considering [L, p2] ,and [L, V(r)]. Let

11



Ljx = xjpx — xxpj, (27)
so that

L= eiei]-ijk. (28)

We now need to consider the commutators of the operators Lj with p? and V(r).
Let’s start with p2. In particular

pzxmpn = PxPrXmPn
= pr(PkXm)pn
= pr(—=ihdxm + XmpPr) Pn
= —ihpupn + (PkXm) Prpn
= —ihpmpn + (=il + XmPi) Ppn
= —2ipwpPn + XmPup>.

So our commutator with p? is

[Lix, P*] = (xjpx — xjpr)p* — (—=2ihipjpi + xjpxp® + 2ihipep; — xkpjp°).

Since p;pr = pkpj, all terms cancel out, and the problem is reduced to showing that

L, H] = [L,V(r)] = 0.

Now assume that V() has a series representation

= Za]-rf = Zaj(xkxk)f/z
j j

We’d like to consider the action of x,,p, on this function

XmpPa V(1)Y= —ihxy, Za] (xexi )/ ?¥

= —ihx,, Zaj jxn( xkxk)j/z’l + rjan‘I’)
j
1hx X
= _mn Za]]r] + X V() pn'¥

LmnV(T’) = (men - anm)V(r)

Thx,x, L Thxa Xy
- _ iyl
- 3 Za]]r -
j

Zajjrj + V() (XmPn — XnpPm)
j

= V(*)Lyn
Thus Ly, V(r)] = 0 as expected, implying [L, H] = 0.
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