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1. Motivation.

Chapter 9 problems from [1].
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2. Notes

3. Problems

3.1. Problem 1.

3.1.1 Statement.

Assume x(t) and p(t) to be Heisenberg operators with x(0) = x0 and p(0) = p0. For a Hamil-
tonian corresponding to the harmonic oscillator show that

x(t) = x0 cos ωt +
p0

mω
sin ωt (1)

p(t) = p0 cos ωt−mωx0 sin ωt. (2)

3.1.2 Solution.

Recall that the Hamiltonian operators were defined by factoring out the time evolution from a
set of states

〈α(t)|A|β(t)〉 = 〈α(0)|eiHt/h̄ Ae−iHt/h̄|β(0)〉. (3)

So one way to complete the task is to compute these exponential sandwiches. Recall from the
appendix of chapter 10, that we have

eABe−A = B + [A, B] +
1
2!

[A, [A, B]] + · · · (4)

Perhaps there is also some smarter way to do this, but lets first try the obvious way.
Let’s summarize the variables we will work with

α =

√
mω

h̄
(5)

X =
1

α
√

2
(a + a†) (6)

P = −ih̄
α√
2
(a− a†) (7)

H = h̄ω(a†a + 1/2) (8)[
a, a†

]
= 1 (9)

The operator in the exponential sandwich is

A = iHt/h̄ = iωt(a†a + 1/2) (10)

Note that the constant 1/2 factor will commute with all operators, which reduces the compu-
tation required

[iHt/h̄, B] = (iωt)
[

a†a, B
]

(11)
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For B = X, or B = P, we’ll want some intermediate results

[
a†a, a

]
= a†aa− aa†a

= a†aa− (a†a + 1)a
= −a,

and

[
a†a, a†

]
= a†aa† − a†a†a

= a†aa† − a†(aa† − 1)

= a†

Using these we can evaluate the commutators for the position and momentum operators. For
position we have

[iHt/h̄, X] = (iωt)
1

α
√

2

[
a†a, a + a†

]
= (iωt)

1
α
√

2
(−a + a†)

=
ωt
α2
−ih̄α√

2
(a− a†).

Since α2h̄ = mω, we have

[iHt/h̄, X] = (ωt)
P

mω
. (12)

For the momentum operator we have

[iHt/h̄, P] = (iωt)
−ih̄α√

2

[
a†a, a− a†

]
= (iωt)

ih̄α√
2
(a + a†)

= (ωt)(h̄α2)X

So we have
[iHt/h̄, P] = (−ωt)(mω)X (13)

The expansion of the exponential series of nested commutators can now be written down by
inspection and we get

XH = X + (ωt)
P

mω
− (ωt)2

2!
X− (ωt)3

3!
P

mω
+ · · · (14)

PH = P− (ωt)(mω)X− (ωt)2

2!
P +

(ωt)3

3!
(mω)X + · · · (15)
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Collection of terms gives us the desired answer

XH = X cos(ωt) +
P

mω
sin(ωt) (16)

PH = P cos(ωt)− (mω)X sin(ωt) (17)

3.2. Problem 2.

3.2.1 Statement.

On the basis of the results already derived for the harmonic oscillator, determine the energy
eigenvalues and the ground-state wavefunction for the truncated oscillator

V(x) =
1
2

Kx2θ(x)

3.2.2 Solution.

We require u(0) = 0, so our solutions are limited to the truncated odd harmonic oscillator
solutions. The normalization will be different since only the x > 0 integration range is significant.
Our energy eigenvalues are

En =

(
n +

1
2

)
h̄ω, n = 1, 3, 5, · · · (18)

And its wave function is

v1(x) ∝ u1(x)θ(x) = Axe−α2x2/2θ(x) (19)

where u1(x) is the first odd wavefunction for the non-truncated oscillator. Normalizing this
we find A2√π/4α3 = 1, or

v1(x) = 2
(

α3
√

π

)1/2

xe−α2x2/2θ(x) (20)

3.3. Problem 3.

3.3.1 Statement.

Show that for the harmonic oscillator in the state |n〉, the following uncertainty product holds.

∆x∆p =

(
n +

1
2

)
h̄ (21)
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3.3.2 Solution.

I tried this first explicitly with the first two wave functions

u0(x) =
(

α2

π

)1/4

e−α2x2/2 (22)

u1(x) =
√

2α2

(
α2

π

)1/4

xe−α2x2/2 (23)

For the |0〉 state we find easily that 〈X〉 = 0

〈0|X|0〉 =
∫

dx〈0|X|x〉 〈x|0〉

=
∫

dxx|〈x|0〉|2

=
∫

dxx|u0(x)|2

∝
∫

dxxe−α2x2

and this is zero since we are integrating an odd function over an even range (presuming that
we take the principle value of the integral).

For the |1〉 state this we have

〈0|X|0〉 ∝
∫

dxx5e−α2x2
= 0

Since each un(x) is a polynomial times a e−α2x2/2 factor we have 〈X〉 = 0 for all states |n〉.
The momentum expectation values for states |0〉 and |1〉 are also fairly simple to compute. We

have

〈n|P|n〉 =
∫

dx〈n|P|x〉 〈x|n〉

=
∫

dx′dx
〈
n|x′

〉
〈x|P|x〉 〈x|n〉

= −ih̄
∫

dx′dxu∗n(x′)δ(x− x′)
∂

∂x
un(x)

= −ih̄
∫

dxu∗n(x)
∂

∂x
un(x)

For the |0〉 state our derivative is odd since a factor of x is brought down, and we are again
integrating an odd function over an even range. For the |1〉 case our derivative is proportional to

∂

∂x
u1(x) ∝

∂

∂x

(
xe−α2x2

)
=
(
1− 2α2x2) e−α2x2
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Again, this is an even function, while u1(x) is odd, so we have zero. Noting that we can express
each un(x) in terms of Hankel functions

un(x) =
(

α√
π2nn!

)1/2

Hn(αx)e−α2x2/2 (24)

where H2n(x) is even and H2n−1(x) is odd, we note that this expectation value will always be
zero since we will have an even times odd function in the integration kernel.

Knowing that the position and momentum expectation values are zero reduces this problem
to the calculation of 〈n|X2|n〉〈n|P2|n〉. Either of these expectation values are again not too hard to
compute for n = 0, 1. However, we now have to keep track of the proportionality constants. As
expected this yields

〈0|X2|0〉〈0|P2|0〉 = h̄2/4 (25)

〈1|X2|1〉〈1|P2|1〉 = 9h̄2/4 (26)

These are respectively

∆x∆p =

(
0 +

1
2

)
h̄ (27)

∆x∆p =

(
1 +

1
2

)
h̄ (28)

However, these integrals were only straightforward (albeit tedious) to calculate because we
had explicit representations for u0(x) and u1(x). For the general wave function, what we have to
work with is either the Hankel function representation of 24 or the derivative form

un(x) = (−1)n
(

α√
π2nn!

)1/2

eα2x2/2 dn

d(αx)n e−α2x2
(29)

Expanding this explicitly for arbitrary n isn’t going to be feasible. We can reduce the scope of
the problem by trying to be lazy and see how some work can be avoided. One possible trick is
noting that we can express the squared momentum expectation in terms of the Hamiltonian

〈n|P2|n〉 = 〈n|2m
(

H − 1
2

mω2X2
)
|n〉

=

(
n +

1
2

)
2mh̄ω−m2ω2〈n|X2|n〉

=

(
n +

1
2

)
2h̄2α2 − h̄2α4〈n|X2|n〉

So we can get away with only calculating 〈n|X2|n〉, an exercise in integration by parts
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〈n|X2|n〉 = α√
π2nn!

∫
dxx2eα2x2

(
dn

d(αx)n e−α2x2
)2

=
1

α2
√

π2nn!

∫
dyy2ey2

(
dn

dyn e−y2
)2

=
1

α2
√

π2nn!

∫
dy

1
2

y
d

dy
ey2
(

dn

dyn e−y2
)2

=
1

α2
√

π2nn!
1
−2

∫
dyey2 d

dy

(
y
(

dn

dyn e−y2
)2
)

=
1

α2
√

π2nn!
1
−2

∫
dyey2

((
dn

dyn e−y2
)2

+ 2y
dn

dyn e−y2 dn+1

dyn+1 e−y2

)

= − 1
2α2 −

1
α2
√

π2nn!
1
2

∫
dy

d
dy

ey2 dn

dyn e−y2 dn+1

dyn+1 e−y2

= − 1
2α2 +

1
α2
√

π2nn!
1
2

∫
dyey2

(
dn+1

dyn+1 e−y2 dn+1

dyn+1 e−y2
+

dn

dyn e−y2 dn+2

dyn+2 e−y2
)

The second term in this remaining integral is proportional to 〈n|n + 2〉 = 0, which leaves us
with

〈n|X2|n〉 = − 1
2α2 +

n + 1
α2 =

1
α2

(
n +

1
2

)
(30)

Our squared momentum expectation value is then

〈n|P2|n〉 =
(

n +
1
2

)
2h̄2α2 − h̄2α4〈n|X2|n〉

=

(
n +

1
2

)
h̄2α2

This completes the problem, and we are left with

∆x∆p =

(
n +

1
2

)
h̄. (31)

3.4. Problem 4.

3.4.1 Statement.

Consider the following two-dimensional harmonic oscillator problem:

− h̄2

2m
∂2u
∂x2 −

h̄2

2m
∂2u
∂y2 +

1
2

K1x2u +
1
2

K2y2u = Eu (32)

where (x, y) are the coordinates of the particle. Use the separation of variables technique to
obtain the energy eigenvalues. Discuss the degeneracy in the eigenvalues if K1 = K2.
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3.4.2 Solution.

Write u = A(x)B(y). Substitute and dividing throughout by u we have

(
− h̄2

2m
A′′

A
+

1
2

K1x2

)
+

(
− h̄2

2m
B′′

B
+

1
2

K2y2

)
= E (33)

Introduction of a pair of constants E1, E2 for each of the independent terms we have

H1A = − h̄2

2m
A′′ +

1
2

K1x2A = E1A (34)

H2B = − h̄2

2m
B′′ +

1
2

K1y2B = E2B (35)

H = H1 + H2 (36)
E = E1 + E2 (37)

For each of these equations we have a set of quantized eigenvalues and can write

E1m =

(
m +

1
2

)
h̄

√
K1

m
(38)

E2n =

(
n +

1
2

)
h̄

√
K2

m
(39)

H1Am(x) = E1m Am(x) (40)
H2An(y) = E2nBn(y) (41)

The complete eigenstates are then

umn(x, y) = Am(x)Bn(y) (42)

with total energy satisfying

Humn(x, y) =
h̄√
m

((
m +

1
2

)√
K1 +

(
n +

1
2

)√
K2

)
umn(x, y) (43)

A general state requires a double sum over the possible combinations of states Ψ = ∑mn cmnumn,
however if K1 = K2 = K, we cannot distinguish between umn and unm based on the energy eigen-
values

Humn(x, y) = h̄

√
K
m

(m + n + 1) umn(x, y) = Hunm(x, y) (44)

In this case, we can write the wave function corresponding to a general state for the system as
just Ψ = ∑m+n=constant cmnumn. This reduction in the cardinality of this set of basis eigenstates is
the degeneracy to be discussed.

8



3.5. Problem 5,6.

3.5.1 Statement.

Consider now a variation on Problem 4 in which we have a coupled oscillator with the poten-
tial given by

V(x, y) =
1
2

K
(

x2 + y2 + 2λxy
)

(45)

Obtain the energy eigenvalues by changing variables (x, y) to (x′, y′) such that the new poten-
tial is quadratic in (x′, y′), without the coupling term.

3.5.2 Solution.

This has the look of a diagonalization problem so we write the potential in matrix form

V(x, y) =
1
2

K
[
x y

] [1 λ
λ 1

] [
x
y

]
=

1
2

KX̃MX (46)

The similarity transformation required is

M =
1√
2

[
1 1
1 −1

] [
1 + λ 0

0 1− λ

]
1√
2

[
1 1
1 −1

]
(47)

Our change of variables is therefore

X′ =
1√
2

[
1 1
1 −1

]
X =

1√
2

[
x + y
x− y

]
(48)

Our Laplacian should also remain diagonal under this orthonormal transformation, but we
can verify this by expanding out the partials explicitly

∂

∂x
=

∂x′

∂x
∂

∂x′
+

∂y′

∂x
∂

∂y′
=

1√
2

(
∂

∂x′
+

∂

∂y′

)
(49)

∂

∂y
=

∂x′

∂y
∂

∂x′
+

∂y′

∂y
∂

∂y′
=

1√
2

(
∂

∂x′
− ∂

∂y′

)
(50)

Squaring and summing we have

∂2

∂x2 +
∂2

∂y2 =
1
2

(
∂

∂x′
+

∂

∂y′

)2

+
1
2

(
∂

∂x′
− ∂

∂y′

)2

=
∂2

∂x′2
+

∂2

∂y′2
(51)

Our transformed Hamiltonian operator is thus

− h̄2

2m
∂2u
∂x′2
− h̄2

2m
∂2u
∂y′2

+
1
2

K(1 + λ)x′2u +
1
2

K(1− λ)y′2u = Eu (52)

So, provided |λ| < 1, the energy eigenvalue equation is given by 43 with K1 = K(1 + λ), and
K2 = K(1− λ).
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3.6. Problem 7.

3.6.1 Statement.

Consider two coupled harmonic oscillators in one dimension of natural length a and spring
constant K connecting three particles located at x1, x2, and x3. The corresponding Schrödinger
equation is given as

− h̄2

2m
∂2u
∂x1

2 −
h̄2

2m
∂2u
∂x22 −

h̄2

2m
∂2u
∂x32 +

K
2
(
(x2 − x1 − a)2 + (x3 − x2 − a)2) u = Eu (53)

Obtain the energy eigenvalues using the matrix method.

3.6.2 Solution.

Let’s start with an initial simplifying substitution to get rid of the factors of a. Write

r1 = x1 + a (54)
r2 = x2 (55)
r3 = x3 − a (56)

These were picked so that the differences in our quadratic terms involve only factors of rk

x2 − x1 − a = r2 − r1 (57)
x3 − x2 − a = r3 − r2 (58)

Schrödinger’s equation is now

− h̄2

2m
∂2u
∂r1

2 −
h̄2

2m
∂2u
∂r22 −

h̄2

2m
∂2u
∂r32 +

K
2
(
(r2 − r1)

2 + (r3 − r2)
2) u = Eu (59)

Putting our potential into matrix form, we have

V(r1, r2, r3) =
K
2
(
(r2 − r1)

2 + (r3 − r2)
2) = K

2
[
r1 r2 r3

]  1 −1 0
−1 2 −1
0 −1 1

r1
r2
r3

 (60)

This symmetric matrix, let’s call it M

M =

 1 −1 0
−1 2 −1
0 −1 1

 (61)
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has eigenvalues 0, 1, 3, with orthonormal eigenvectors

e0 =
1√
3

1
1
1

 (62)

e1 =
1√
2

 1
0
−1

 (63)

e3 =
1√
6

 1
−2
1

 (64)

Writing

U = [e0e1e3] =


1√
3

1√
2

1√
6

1√
3

0 − 2√
6

1√
3
− 1√

2
1√
6

 (65)

M = U

0 0 0
0 1 0
0 0 3

 Ũ = UDŨ (66)

Writing R′ = ŨR, and ∇′ = Ũ∇, we see that the Laplacian has no mixed partial terms after
transformation

∇′ ·∇′ = (Ũ∇)̃Ũ∇
= ∇̃∇
= ∇ ·∇

Schrödinger’s equation is then just(
− h̄2

2m
∇′2 + K

2
R̃′DR′

)
u = Eu (67)

Or

− h̄2

2m
∂2u
∂r′1

2 −
h̄2

2m
∂2u
∂r′2

2 −
h̄2

2m
∂2u
∂r′3

2 +
K
2

(
r′2

2
+ 3r′3

2
)

u = Eu (68)

Separation of variables provides us with one free particle wave equation, and two harmonic
oscillator equations
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− h̄2

2m
∂2u1

∂r′1
2 = E1u1 (69)

− h̄2

2m
∂2u
∂r′2

2 +
K
2

r′2
2u2 = E2u2 (70)

− h̄2

2m
∂2u
∂r′3

2 +
3K
2

r′3
2u3 = E3u3 (71)

We can borrow the Harmonic oscillator energy eigenvalues from problem 4 again with K1 = K,
and K2 = 3K.

3.7. Problem 8.

3.7.1 Statement.

As a variation of Problem 7 assume that the middle particle at x2 has a different mass M.
Reduce this problem to the form of Problem 7 by a scale change in x2 and then use the matrix
method to obtain the energy eigenvalues.

3.7.2 Solution.

We write
√

Mx2 =
√

mx′2, x1 + a = x′1, x3 − a = x′3, and then Schrödinger’s equation takes the
form (

− h̄2

2m
∇′2 + V(X′)

)
u = Eu (72)

V(X′) =
K
2

((√
m
M

x′2 − x′1

)2

+

(
−
√

m
M

x′2 + x′3

)2)
(73)

With µ =
√

m/M, we have

V(X′) =
K
2

X̃′

 1 −µ 0
−µ 2µ2 −µ
0 −µ 1

X′ (74)

We find that this symmetric matrix has eigenvalues 0, 1, 1 + 2µ2, and eigenvectors

e0 =
1√

1 + 2µ2

µ
1
µ

 (75)

e1 =
1√
2

 1
0
−1

 (76)

e1+2µ2 =
1√

2 + 4µ2

 1
−2µ

1

 (77)
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The rest of the problem is now no different than the tail end of Problem 7, and we end up with
K1 = K, K2 = (1 + 2µ2)K.
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