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1. Motivation.

One of the chapter II exercises in [1] involves a commutator exponential sandwich of the form

e'FBe~'F (1)

where F is Hermitian. Asking about commutators on physicsforums I was told that such
sandwiches (my term) preserve expectation values, and also have a Taylor series like expansion
involving the repeated commutators. Let’s derive the commutator relationship.

2. Guts

Let’s expand a sandwich of this form in series, and shuffle the summation order so that we
sum over all the index plane diagonals k 4 m = constant. That is
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Assuming that these interior sums can be written as commutators, we’ll shortly have an in-
duction exercise. Let’s write these out for a couple values of 7 to get a feel for things.

e r—=1

(é) AB + G) B(—A) = [A, B]

e r=2



2
(3) A’B + G) AB(—A) + <2> B(—A)?> = A’B—2ABA + BA
This compares exactly to the double commutator:

[A,[A,B]] = A(AB — BA) — (AB— BA)A
= A’B— ABA — ABA + BA?
= A’B—2ABA + BA?

er=3

(3) A3B + <‘I’> A?B(—A) + G) AB(—A)* + @) B(—A)®> = A’B —3A’BA +3ABA* — BAS.

And this compares exactly to the triple commutator

[A,[A,[A,B]]] = A’B —2A?BA + ABA®? — (A’BA — 2ABA? + BA3)
— A’B —3A?BA +3ABA%? — BA®

The induction pattern is clear. Let’s write the r fold commutator as

CAB) = (A, (A, [AB] -] = io () B, @

and calculate this for the r + 1 case to verify the induction hypothesis. We have
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We now have to sum those binomial coefficients. I like the search and replace technique for
this, picking two visibly distinct numbers for r, and k that are easy to manipulate without abstract
confusion. How about r = 7, and k = 3. Using those we have
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Straight text replacement of 7 and 3 with r and k respectively now gives the harder to follow,
but more general identity
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For our commutator we now have
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That completes the inductive proof and allows us to write
eABe 4 = i l'c,(A,B), 3)
= !
Or, in explicit form
1 1
eBe 4 = B+ 11 [A/ B+ 5, [A [AB] + - (4)
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