Unitary exponential sandwich

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/exponentialSandwichCommutator.pdf
Peeter Joot — peeter.joot@gmail.com
Sept 27, 2010 exponentialSandwichCommutator.tex

1. Motivation.

One of the chapter II exercises in [1] involves a commutator exponential sandwich of the form

$$
\begin{equation*}
e^{i F} B e^{-i F} \tag{1}
\end{equation*}
$$

where F is Hermitian. Asking about commutators on physicsforums I was told that such sandwiches (my term) preserve expectation values, and also have a Taylor series like expansion involving the repeated commutators. Let's derive the commutator relationship.

2. Guts

Let's expand a sandwich of this form in series, and shuffle the summation order so that we sum over all the index plane diagonals $k+m=$ constant. That is

$$
\begin{aligned}
e^{A} B e^{-A} & =\sum_{k, m=0}^{\infty} \frac{1}{k!m!} A^{k} B(-A)^{m} \\
& =\sum_{r=0}^{\infty} \sum_{m=0}^{r} \frac{1}{(r-m)!m!} A^{r-m} B(-A)^{m} \\
& =\sum_{r=0}^{\infty} \frac{1}{r!} \sum_{m=0}^{r} \frac{r!}{(r-m)!m!} A^{r-m} B(-A)^{m} \\
& =\sum_{r=0}^{\infty} \frac{1}{r!} \sum_{m=0}^{r}\binom{r}{m} A^{r-m} B(-A)^{m} .
\end{aligned}
$$

Assuming that these interior sums can be written as commutators, we'll shortly have an induction exercise. Let's write these out for a couple values of r to get a feel for things.

- $r=1$

$$
\binom{1}{0} A B+\binom{1}{1} B(-A)=[A, B]
$$

- $r=2$

$$
\binom{2}{0} A^{2} B+\binom{2}{1} A B(-A)+\binom{2}{2} B(-A)^{2}=A^{2} B-2 A B A+B A
$$

This compares exactly to the double commutator:

$$
\begin{aligned}
{[A,[A, B]] } & =A(A B-B A)-(A B-B A) A \\
& =A^{2} B-A B A-A B A+B A^{2} \\
& =A^{2} B-2 A B A+B A^{2}
\end{aligned}
$$

- $r=3$

$$
\binom{3}{0} A^{3} B+\binom{3}{1} A^{2} B(-A)+\binom{3}{2} A B(-A)^{2}+\binom{3}{3} B(-A)^{3}=A^{3} B-3 A^{2} B A+3 A B A^{2}-B A^{3} .
$$

And this compares exactly to the triple commutator

$$
\begin{aligned}
{[A,[A,[A, B]]] } & =A^{3} B-2 A^{2} B A+A B A^{2}-\left(A^{2} B A-2 A B A^{2}+B A^{3}\right) \\
& =A^{3} B-3 A^{2} B A+3 A B A^{2}-B A^{3}
\end{aligned}
$$

The induction pattern is clear. Let's write the r fold commutator as

$$
\begin{equation*}
C_{r}(A, B) \equiv \underbrace{[A,[A, \cdots,[A, B]] \cdots]=\sum_{m=0}^{r}\binom{r}{m} A^{r-m} B(-A)^{m},, ~}_{r \text { times }} \tag{2}
\end{equation*}
$$

and calculate this for the $r+1$ case to verify the induction hypothesis. We have

$$
\begin{aligned}
C_{r+1}(A, B) & =\sum_{m=0}^{r}\binom{r}{m}\left(A^{r-m+1} B(-A)^{m}-A^{r-m} B(-A)^{m} A\right) \\
& =\sum_{m=0}^{r}\binom{r}{m}\left(A^{r-m+1} B(-A)^{m}+A^{r-m} B(-A)^{m+1}\right) \\
& =A^{r+1} B+\sum_{m=1}^{r}\binom{r}{m} A^{r-m+1} B(-A)^{m}+\sum_{m=0}^{r-1}\binom{r}{m} A^{r-m} B(-A)^{m+1}+B(-A)^{r+1} \\
& =A^{r+1} B+\sum_{k=0}^{r-1}\binom{r}{k+1} A^{r-k} B(-A)^{k+1}+\sum_{m=0}^{r-1}\binom{r}{m} A^{r-m} B(-A)^{m+1}+B(-A)^{r+1} \\
& =A^{r+1} B+\sum_{k=0}^{r-1}\left(\binom{r}{k+1}+\binom{r}{k}\right) A^{r-k} B(-A)^{k+1}+B(-A)^{r+1}
\end{aligned}
$$

We now have to sum those binomial coefficients. I like the search and replace technique for this, picking two visibly distinct numbers for r, and k that are easy to manipulate without abstract confusion. How about $r=7$, and $k=3$. Using those we have

$$
\begin{aligned}
\binom{7}{3+1}+\binom{7}{3} & =\frac{7!}{(3+1)!(7-3-1)!}+\frac{7!}{3!(7-3)!} \\
& =\frac{7!(7-3)}{(3+1)!(7-3)!}+\frac{7!(3+1)}{(3+1)!(7-3)!} \\
& =\frac{7!(7-3+3+1)}{(3+1)!(7-3)!} \\
& =\frac{(7+1)!}{(3+1)!((7+1)-(3+1))!}
\end{aligned}
$$

Straight text replacement of 7 and 3 with r and k respectively now gives the harder to follow, but more general identity

$$
\begin{aligned}
\binom{r}{k+1}+\binom{r}{k} & =\frac{r!}{(k+1)!(r-k-1)!}+\frac{r!}{k!(r-k)!} \\
& =\frac{r!(r-k)}{(k+1)!(r-k)!}+\frac{r!(k+1)}{(k+1)!(r-k)!} \\
& =\frac{r!(r-k+k+1)}{(k+1)!(r-k)!} \\
& =\frac{(r+1)!}{(k+1)!((r+1)-(k+1))!} \\
& =\binom{r+1}{k+1}
\end{aligned}
$$

For our commutator we now have

$$
\begin{aligned}
C_{r+1}(A, B) & =A^{r+1} B+\sum_{k=0}^{r-1}\binom{r+1}{k+1} A^{r-k} B(-A)^{k+1}+B(-A)^{r+1} \\
& =A^{r+1} B+\sum_{s=1}^{r}\binom{r+1}{s} A^{r+1-s} B(-A)^{s}+B(-A)^{r+1} \\
& =\sum_{s=0}^{r+1}\binom{r+1}{s} A^{r+1-s} B(-A)^{s}
\end{aligned}
$$

That completes the inductive proof and allows us to write

$$
\begin{equation*}
e^{A} B e^{-A}=\sum_{r=0}^{\infty} \frac{1}{r!} C_{r}(A, B), \tag{3}
\end{equation*}
$$

Or, in explicit form

$$
\begin{equation*}
e^{A} B e^{-A}=B+\frac{1}{1!}[A, B]+\frac{1}{2!}[A,[A, B]]+\cdots \tag{4}
\end{equation*}
$$

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009. 1

