Classical Electrodynamic gauge interaction.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/gaugeInteractionHamiltonian.pdf
Peeter Joot — peeter.joot@gmail.com
Oct 22, 2010 gaugeInteractionHamiltonian.tex

Contents

1 Motivation. 1
2 Hamiltonian equations. 1
3 Classical interaction 2

1. Motivation.

In [1] chapter 6, we have a statement that in classical mechanics the electromagnetic interaction is due to a transformation of the following form

$$
\begin{align*}
& \mathbf{p} \rightarrow \mathbf{p}-\frac{e}{c} \mathbf{A} \tag{1}\\
& E \rightarrow E-e \phi \tag{2}
\end{align*}
$$

Let's verify that this does produce the classical interaction law. Putting a more familiar label on this, we should see that we obtain the Lorentz force law from a transformation of the Hamiltonian.

2. Hamiltonian equations.

Recall that the Hamiltonian was defined in terms of conjugate momentum components p_{k} as

$$
\begin{equation*}
H\left(x_{k}, p_{k}\right)=\dot{x}_{k} p_{k}-\mathcal{L}\left(x_{k}, \dot{x}_{k}\right) \tag{3}
\end{equation*}
$$

we can take x_{k} partials to obtain the first of the Hamiltonian system of equations for the motion

$$
\begin{aligned}
\frac{\partial H}{\partial x_{k}} & =-\frac{\partial \mathcal{L}}{\partial x_{k}} \\
& =-\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{k}}
\end{aligned}
$$

With $p_{k} \equiv \partial \mathcal{L} / \partial \dot{x}_{k}$, and taking p_{k} partials too, we have the system of equations

$$
\begin{gather*}
\frac{\partial H}{\partial x_{k}}=-\frac{d p_{k}}{d t} \tag{4a}\\
\frac{\partial H}{\partial p_{k}}=\dot{x}_{k} \tag{4b}
\end{gather*}
$$

3. Classical interaction

Starting with the free particle Hamiltonian

$$
\begin{equation*}
H=\frac{\mathbf{p}}{2 m}, \tag{5}
\end{equation*}
$$

we make the transformation required to both the energy and momentum terms

$$
\begin{equation*}
H-e \phi=\frac{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}}{2 m}=\frac{1}{2 m} \mathbf{p}^{2}-\frac{e}{m c} \mathbf{p} \cdot \mathbf{A}+\frac{1}{2 m}\left(\frac{e}{c}\right)^{2} \mathbf{A}^{2} \tag{6}
\end{equation*}
$$

From 4b we find

$$
\begin{equation*}
\frac{d x_{k}}{d t}=\frac{\partial H}{\partial p_{k}}=\frac{1}{m}\left(p_{k}-\frac{e}{c} A_{k}\right), \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
p_{k}=m \frac{d x_{k}}{d t}+\frac{e}{c} A_{k} . \tag{8}
\end{equation*}
$$

Taking derivatives and employing 4a we have

$$
\begin{aligned}
\frac{d p_{k}}{d t} & =m \frac{d^{2} x_{k}}{d t^{2}}+\frac{e}{c} \frac{d A_{k}}{d t} \\
& =-\frac{\partial H}{\partial x_{k}} \\
& =\frac{1}{m} \frac{e}{c} p_{n} \frac{\partial A_{n}}{\partial x_{k}}-e \frac{\partial \phi}{\partial x_{k}}-\frac{1}{m}\left(\frac{e}{c}\right)^{2} A_{k} \frac{\partial A_{k}}{\partial x_{k}} \\
& =\frac{1}{m} \frac{e}{c}\left(m \frac{d x_{n}}{d t}+\frac{e}{c} A_{n}\right) \frac{\partial A_{n}}{\partial x_{k}}-e \frac{\partial \phi}{\partial x_{k}}-\frac{1}{m}\left(\frac{e}{c}\right)^{2} A_{k} \frac{\partial A_{k}}{\partial x_{k}} \\
& =\frac{e}{c} \frac{d x_{n}}{d t} \frac{\partial A_{n}}{\partial x_{k}}-e \frac{\partial \phi}{\partial x_{k}}
\end{aligned}
$$

Rearranging and utilizing the convective derivative expansion $d / d t=\left(d x_{a} / d t\right) \partial / \partial x_{a}$ (ie: chain rule), we have

$$
\begin{equation*}
m \frac{d^{2} x_{k}}{d t^{2}}=\frac{e}{c} \frac{d x_{n}}{d t}\left(\frac{\partial A_{n}}{\partial x_{k}}-\frac{\partial A_{k}}{\partial x_{n}}\right)-e \frac{\partial \phi}{\partial x_{k}} \tag{9}
\end{equation*}
$$

We guess and expect that the first term of 9 is $e(\mathbf{v} / \mathcal{c} \times \mathbf{B})_{k}$. Let's verify this

$$
\begin{aligned}
(\mathbf{v} \times \mathbf{B})_{k} & =\dot{x}_{m} B_{d} \epsilon_{k m d} \\
& =\dot{x}_{m}\left(\epsilon_{d a b} \partial_{a} A_{b}\right) \epsilon_{k m d} \\
& =\dot{x}_{m} \partial_{a} A_{b} \epsilon_{d a b} \epsilon_{d k m}
\end{aligned}
$$

Since $\epsilon_{d a b} \epsilon_{d k m}=\delta_{a k} \delta_{b m}-\delta_{a m} \delta_{b k}$ we have

$$
\begin{aligned}
(\mathbf{v} \times \mathbf{B})_{k} & =\dot{x}_{m} \partial_{a} A_{b} \epsilon_{d a b} \epsilon_{d k m} \\
& =\dot{x}_{m} \partial_{a} A_{b} \delta_{a k} \delta_{b m}-\dot{x}_{m} \partial_{a} A_{b} \delta_{a m} \delta_{b k} \\
& =\dot{x}_{m}\left(\partial_{k} A_{m}-\partial_{m} A_{k}\right)
\end{aligned}
$$

This matches what we had in 9, and we are able to put that into the traditional Lorentz force vector form

$$
\begin{equation*}
m \frac{d^{2} \mathbf{x}}{d t^{2}}=e \frac{\mathbf{v}}{c} \times \mathbf{B}+e \mathbf{E} \tag{10}
\end{equation*}
$$

It's good to see that we get the classical interaction from this transformation before moving on to the trickier seeming QM interaction.

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009. 1

