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1. Motivation.

In [1] chapter 6, we have a statement that in classical mechanics the electromagnetic interaction
is due to a transformation of the following form
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Let’s verify that this does produce the classical interaction law. Putting a more familiar label on
this, we should see that we obtain the Lorentz force law from a transformation of the Hamiltonian.

2. Hamiltonian equations.

Recall that the Hamiltonian was defined in terms of conjugate momentum components py as
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we can take x; partials to obtain the first of the Hamiltonian system of equations for the motion
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With p, = 0L /0%, and taking p; partials too, we have the system of equations
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3. Classical interaction

Starting with the free particle Hamiltonian
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we make the transformation required to both the energy and momentum terms
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From 4b we find
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Taking derivatives and employing 4a we have

dpe _ | d°x | edAy
dt " di2 ¢ dt
__9H
axk
_le 0JA, op 1 reN2  JAx
= ichan anm o) Man
le dx, e 0A, o¢p 1 seN2  0JA;
= - A P R A I Pid
mec <m T ”) Xy eaxk m (c) K ox;
_e dx, 0A, _ 68790
o dt oxg Xy
Rearranging and utilizing the convective derivative expansion d/dt = (dx,/dt)o/dx, (ie:
chain rule), we have
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We guess and expect that the first term of 9 is e(v/c x B)y. Let’s verify this
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Since €4,p€4m = SakOpm — SamOpr We have
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This matches what we had in 9, and we are able to put that into the traditional Lorentz force
vector form
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It’s good to see that we get the classical interaction from this transformation before moving on
to the trickier seeming QM interaction.
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