Hoop and spring oscillator problem.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/hoopSpring.pdf
Peeter Joot — peeter.joot@gmail.com
June 19, 2010 hoopSpring.tex

1. Motivation.

Nolan was attempting to setup and solve the equations for the following system (1)

Figure 1: Coupled hoop and spring system.
One mass is connected between two springs to a bar. That bar moves up and down as forced by the motion of the other mass along a immovable hoop. While Nolan didn't include any gravitational force in his potential terms (ie: system lying on a table perhaps) it doesn't take much more to include that, and I'll do so. I also include the distance L to the center of the hoop, which I believe required.

2. Guts

The Lagrangian can be written by inspection. Writing $x=x_{1}$, and $x_{2}=R \sin \theta$, we have

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2} R^{2} \dot{\theta}^{2}-\frac{1}{2} k_{1} x^{2}-\frac{1}{2} k_{2}(L+R \sin \theta-x)^{2}-m_{1} g x-m_{2} g(L+R \sin \theta) . \tag{1}
\end{equation*}
$$

Evaluation of the Euler-Lagrange equations gives

$$
\begin{align*}
m_{1} \ddot{x} & =-k_{1} x+k_{2}(L+R \sin \theta-x)-m_{1} g \tag{2a}\\
m_{2} R^{2} \ddot{\theta} & =-k_{2}(L+R \sin \theta-x) R \cos \theta-m_{2} g R \cos \theta, \tag{2b}
\end{align*}
$$

or

$$
\begin{align*}
& \ddot{x}=-x \frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2} R \sin \theta}{m_{1}}-g+\frac{k_{2} L}{m_{1}} \tag{3a}\\
& \ddot{\theta}=-\frac{1}{R}\left(\frac{k_{2}}{m_{2}}(L+R \sin \theta-x)+g\right) \cos \theta . \tag{3b}
\end{align*}
$$

Just like any other coupled pendulum system, this one is non-linear. There's no obvious way to solve this in closed form, but we could determine a solution in the neighborhood of a point $(x, \theta)=\left(x_{0}, \theta_{0}\right)$. Let's switch our dynamical variables to ones that express the deviation from the initial point $\delta x=x-x_{0}$, and $\delta \theta=\theta-\theta_{0}$, with $u=(\delta x)^{\prime}$, and $v=(\delta \theta)^{\prime}$. Our system then takes the form

$$
\begin{align*}
u^{\prime} & =f(x, \theta)=-x \frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2} R \sin \theta}{m_{1}}-g+\frac{k_{2} L}{m_{1}} \tag{4a}\\
v^{\prime} & =g(x, \theta)=-\frac{1}{R}\left(\frac{k_{2}}{m_{2}}(L+R \sin \theta-x)+g\right) \cos \theta \tag{4b}\\
(\delta x)^{\prime} & =u \tag{4c}\\
(\delta \theta)^{\prime} & =v . \tag{4d}
\end{align*}
$$

We can use a first order Taylor approximation of the form $f(x, \theta)=f\left(x_{0}, \theta_{0}\right)+f_{x}\left(x_{0}, \theta_{0}\right)(\delta x)+$ $f_{\theta}\left(x_{0}, \theta_{0}\right)(\delta \theta)$. So, to first order, our system has the approximation

$$
\begin{align*}
& u^{\prime}=-x_{0} \frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2} R \sin \theta_{0}}{m_{1}}-g+\frac{k_{2} L}{m_{1}}-(\delta x) \frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2} R \cos \theta_{0}}{m_{1}}(\delta \theta) \tag{5a}\\
& v^{\prime}=-\frac{1}{R}\left(\frac{k_{2}}{m_{2}}\left(L+R \sin \theta_{0}-x_{0}\right)+g\right) \cos \theta_{0}+\frac{k_{2} \cos \theta_{0}}{m_{2} R}(\delta x)-\frac{1}{R}\left(\frac{k_{2}}{m_{2}}\left(\left(L-x_{0}\right) \sin \theta_{0}+R\right)+g \sin \theta_{0}\right)
\end{align*}
$$

$$
\begin{align*}
(\delta x)^{\prime} & =u \tag{5c}\\
(\delta \theta)^{\prime} & =v .
\end{align*}
$$

This would be tidier in matrix form with $\mathbf{x}=(u, v, \delta x, \delta \theta)$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{c}
-x_{0} \frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2} R \sin \theta_{0}}{m_{1}}-g+\frac{k_{2} L}{m_{1}} \tag{6}\\
-\frac{1}{R}\left(\frac{k_{2}}{m_{2}}\left(L+R \sin \theta_{0}-x_{0}\right)+g\right) \cos \theta_{0} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cccc}
0 & 0 & -\frac{k_{1}+k_{2}}{m_{1}} & \frac{k_{2} R \cos \theta_{0}}{m_{1}} \\
0 & 0 & \frac{k_{2} \cos \theta_{0}}{m_{2} R} & -\frac{1}{R}\left(\frac{k_{2}}{m_{2}}\left(\left(L-x_{0}\right) \sin \theta_{0}+R\right)+g \sin \theta_{0}\right) \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \mathbf{x} .
$$

This reduces the problem to the solutions of first order equations of the form

$$
\mathbf{x}^{\prime}=\mathbf{a}+\left[\begin{array}{cc}
0 & A \tag{7}\\
I & 0
\end{array}\right] \mathbf{x}=\mathbf{a}+\mathbf{B} \mathbf{x}
$$

where a, and A are constant matrices. Such a matrix equation has the solution

$$
\begin{equation*}
\mathbf{x}=e^{B t} \mathbf{x}_{0}+\left(e^{B t}-I\right) B^{-1} \mathbf{a}, \tag{8}
\end{equation*}
$$

but the zeros in B should allow the exponential and inverse to be calculated with less work. That inverse is readily verified to be

$$
B^{-1}=\left[\begin{array}{cc}
0 & I \tag{9}\\
A^{-1} & 0
\end{array}\right] .
$$

It is also not hard to show that

$$
\begin{gather*}
B^{2 n}=\left[\begin{array}{cc}
A^{n} & 0 \\
0 & A^{n}
\end{array}\right] \tag{10a}\\
B^{2 n+1}=\left[\begin{array}{cc}
0 & A^{n+1} \\
A^{n} & 0
\end{array}\right] . \tag{10b}
\end{gather*}
$$

Together this allows for the power series expansion

$$
e^{B t}=\left[\begin{array}{cc}
\cosh (t \sqrt{A}) & \sinh (t \sqrt{A}) \tag{11}\\
\sinh (t \sqrt{A}) \frac{1}{\sqrt{A}} & \cosh (t \sqrt{A})
\end{array}\right] .
$$

All of the remaining sub matrix expansions should be straightforward to calculate provided the eigenvalues and vectors of A are calculated. Specifically, suppose that we have

$$
A=U\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{12}\\
0 & \lambda_{2}
\end{array}\right] U^{-1}
$$

Then all the perhaps non-obvious functions of matrixes expand to just

$$
\begin{align*}
A^{-1} & =U\left[\begin{array}{cc}
\lambda_{1}^{-1} & 0 \\
0 & \lambda_{2}^{-1}
\end{array}\right] U^{-1} \tag{13a}\\
\sqrt{A} & =U\left[\begin{array}{cc}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right] U^{-1} \tag{13b}\\
\cosh (t \sqrt{A}) & =U\left[\begin{array}{cc}
\cosh \left(t \sqrt{\lambda_{1}}\right) & 0 \\
0 & \cosh \left(t \sqrt{\lambda_{2}}\right)
\end{array}\right] U^{-1} \tag{13c}\\
\sinh (t \sqrt{A}) & =U\left[\begin{array}{cc}
\sinh \left(t \sqrt{\lambda_{1}}\right) & 0 \\
0 & \sinh \left(t \sqrt{\lambda_{2}}\right)
\end{array}\right] U^{-1} \tag{13d}\\
\sinh (t \sqrt{A}) \frac{1}{\sqrt{A}} & =U\left[\begin{array}{cc}
\sinh \left(t \sqrt{\lambda_{1}}\right) / \sqrt{\lambda_{1}} & 0 \\
0 & \sinh \left(t \sqrt{\lambda_{2}}\right) / \sqrt{\lambda_{2}}
\end{array}\right] U^{-1} . \tag{13e}
\end{align*}
$$

An interesting question would be how are the eigenvalues and eigenvectors changed with each small change to the initial position \mathbf{x}_{0} in phase space. Can these be related to each other?

