Hoop and spring oscillator problem.
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1. Motivation.

Nolan was attempting to setup and solve the equations for the following system (1)

Figure 1: Coupled hoop and spring system.

One mass is connected between two springs to a bar. That bar moves up and down as forced
by the motion of the other mass along a immovable hoop. While Nolan didn’t include any grav-
itational force in his potential terms (ie: system lying on a table perhaps) it doesn’t take much
more to include that, and I'll do so. I also include the distance L to the center of the hoop, which I
believe required.

2. Guts

The Lagrangian can be written by inspection. Writing x = x1, and x, = Rsin, we have
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L= Emlxz + EmzRZGZ — Eklxz — EkZ(L + Rsin 6 — x)* — mygx — mpg(L + Rsin#). (1)



Evaluation of the Euler-Lagrange equations gives

miX = —kix + ko(L + Rsin® — x) —myg (2a)
myR*G = —ko(L + Rsin® — x)Rcos 8 — nogR cos, (2b)
or
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Just like any other coupled pendulum system, this one is non-linear. There’s no obvious way
to solve this in closed form, but we could determine a solution in the neighborhood of a point
(x,0) = (x0,60). Let’s switch our dynamical variables to ones that express the deviation from the
initial point éx = x — xp, and 66 = 0 — 6y, with u = (dx)’, and v = (66)’. Our system then takes
the form

r_ _ ki + ko szSin@_ kziL

w=fle6) = —x— =4 = $t (4a)

v/:g(x,a):_<k2 (L+R51n9—x)+g> cos 6 (4b)
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We can use a first order Taylor approximation of the form f(x,6) = f(xo,600) + fx(x0,60)(dx) +
fo(x0,60)(80). So, to first order, our system has the approximation
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This would be tidier in matrix form with x = (1, v, dx, 66)
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This reduces the problem to the solutions of first order equations of the form

x/:a+[(1) I(ﬂx:a—FBx (7)

where a, and A are constant matrices. Such a matrix equation has the solution

x = eBixy + (e — I)Ba, 8)

but the zeros in B should allow the exponential and inverse to be calculated with less work.
That inverse is readily verified to be

_ 0 I
Blz[A_l 0]. 9)
It is also not hard to show that
n
B** = [‘% /?n] (10a)
n+1
B2l = [/(x)" AO ] . (10b)

Together this allows for the power series expansion

S [ cosh(tv/A)  sinh(tVA) . 1)

sinh(tﬂ)ﬁ cosh(t\/A)

All of the remaining sub matrix expansions should be straightforward to calculate provided
the eigenvalues and vectors of A are calculated. Specifically, suppose that we have

A=U [/})1 )?J u-t. (12)
Then all the perhaps non-obvious functions of matrixes expand to just
Al=u :’\(1) 1 Agl] ut (13a)
VA=U \/ng \/OTJ ! (13b)
cosh(tVA) = U :COSh((t)\/)Tl) cosh((z\/)\iz)} u-! (13c)
sinh(tV/7) = U :Si“h%\/@ bt m)] u! (13d)
sinh(t\/Z)\/lZ —u :Si“h(t\/?)/ VA sin( \/%) y \/)Tz] u-t, (13¢)

An interesting question would be how are the eigenvalues and eigenvectors changed with
each small change to the initial position xp in phase space. Can these be related to each other?



