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1. Motivation.

For the hydrogen atom, after some variable substitutions the radial part of the Schrödinger
equation takes the form

d2Rl

dρ2 +
2
ρ

dRl

dρ
+

(
λ

ρ
− l(l + 1)

ρ2 − 1
4

)
Rl = 0 (1)

In [1] it is argued that the functions Rl are of the form

Rl = ρsL(ρ)e−ρ/2 (2)

where L is a polynomial in ρ, specifically Laguerre polynomials. Let’s look at some of those
details a bit more closely.

2. Guts

The first part of the argument comes from considering the ρ → ∞ case, where Schrödinger’s
equation is approximately

d2Rl

dρ2 −
1
4

Rl ≈ 0. (3)

This large ρ approximation has solutions e±ρ/2, and we take the negative sign case as physically
meaningful in order for the wave function to be normalizable.

Next it is argued that polynomial multiples of this will also be approximate solutions. Utilizing
monomial multiple of the decreasing exponential as a trial solution, let’s compute how this fits into
the radial Schrödinger’s equation 1 above. Write

Rl = ρse−ρ/2 (4)

The derivatives are

1



R′l = ρs−1
(

s− ρ

2

)
e−ρ/2

R′′l = ρs−2
(

s(s− 1)− sρ +
1
4

ρ2
)

e−ρ/2

and substitution yields

ρs−2e−ρ/2 ((s− ρ)(s + 1) + λρ− l(l + 1)) (5)

There are two things that this can show. The first is that for ρ→ ∞ this produces a polynomial
with degree s− 2 and s− 1 terms multiplied by the exponential, and we have approximately

ρs−1e−ρ/2(λ− s− 1) (6)

The s− 1 terms will dominate the polynomial, but the exponential dominate all, approaching
zero for ρ → ∞, just as the non-polynomial multiplied e−ρ/2 approximate solution will. This
confirms that in the limit this polynomial multiplied exponential still has the desired behavior in
the large ρ limit. Also observe that in the limit of small ρ we have approximately

ρs−2e−ρ/2 (s(s + 1)− l(l + 1)) (7)

Since ρs−2 → ∞ as ρ → 0, we require either a different trial solution, or s = l to have a
normalizable wavefunction.

Before settling on s = l let’s compute the derivatives for a more general trial function, of the
form 2, and substitute those. After a bit of computation we find

R′l = ρs−1e−ρ/2
((

s− ρ

2

)
L + ρL′

)
(8)

R′′l = ρs−2e−ρ/2
((

s(s− 1)− sρ +
ρ2

4

)
L +

(
2sρ− ρ2) L′ + ρ2L′′

)
(9)

Putting these together and substitution back into 1 yields

0 = ρs−2e−ρ/2 (L ((s− ρ)(s + 1) + ρλ− l(l + 1)) + ρL′ (2(s + 1)− ρ) + ρ2L′′
)

(10)

In the ρ→ 0 limit where the ρs−2 terms dominate 11 becomes

0 ≈ ρs−2L (s(s + 1)− l(l + 1)) (11)

Again, this provides the s = l or s = −(l + 1) possibilities from the text, and we discard
s = −(l + 1) due to non-normalizability. A side question. How does one solve integer equations
like this?

2.1. What remains?

With s = l killing off the ρs−2 terms, what is our differential equation for L?

0 = ρL′′ + L′ (2(l + 1)− ρ) + L (λ− (l + 1)) (12)
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Comparing this to [2] we have something pretty close to the stated differential equation for the
Laguerre polynomial. Ours is of the form

0 = ρL′′ + L′ (m + 1− ρ) + Ln, (13)

where the differential equation in the wikipedia article has m = 0. No change of variables
involving a scalar multiplicative factor for ρ appears to be able to get it into that form, and I am
guessing this is the differential equation for the associated Laguerre polynomial (something not
stated in the wikipedia article).

Let’s derive the recurrence relations for the coefficients, and work out the first few such poly-
nomials to compare. Plugging in a polynomial of the form

L =
r

∑
k=0

akρk, (14)

where ar is assumed to be non-zero. We also assume that this polynomial is not an infinite
series (ruling out the infinite series with convergence arguments is covered nicely in the text).

we have for 13

0 =
r

∑
k=0

ak

(
k(k− 1)ρk−1 + k(m + 1)ρk−1 − kρk + nρk

)
=

r

∑
k′=1

ρk′−1ak′k′
(
k′ − 1 + (m + 1)

)
+

r

∑
k=0

ρkak (−k + n)

=
r−1

∑
k=0

ρkak+1(k + 1) (k + (m + 1)) +
r

∑
k=0

ρkak (−k + n)

=
r−1

∑
k=0

ρk
(

ak+1(k + 1)(k + m + 1) + ak(n− k)
)
+ ar(n− r)ρr

Observe first that since we have assumed ar 6= 0, we must have r = n. Requiring termwise
equality with zero gives us the recurrance relation between the coefficents, for k ∈ [0, n− 1]

ak+1 = ak
k− n

(k + 1)(k + m + 1)
. (15)

Repeated application shows the pattern for these coefficients, and with a0 = 1 we have

a1 = − n− 0
(1)(m + 1)

a2 =
(n− 1)(n− 0)

(2)(1)(m + 2)(m + 1)

a3 = − (n− 2)(n− 1)(n− 0)
(3)(2)(1)(m + 3)(m + 2)(m + 1)

,

With

ak =
(−1)k(n− (k− 1)) · · · (n− 1)(n− 0)

k!(m + k) · · · (m + 2)(m + 1)

=
(−1)kn!m!

k!(m + k)!(n− (k− 1)− 1)!
,
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Or

ak =
(−1)kn!m!

k!(m + k)!(n− k)!
. (16)

Forming the complete series, we can get at the form of the associated Laguerre polynomials in
the wikipedia article without too much trouble

Lm
n (ρ) ∝ 1 +

n

∑
k=1

(−1)k

k!
n!m!

(n− k)!(m + k)!
ρk

∝
(n + m)!

n!m!
+

n

∑
k=1

(−1)k

k!
(n + m)!

(n− k)!(m + k)!
ρk.

Dropping the proportionality, this simplifies to just

Lm
n (ρ) =

n

∑
k=0

(−1)k

k!

(
n + m
m + k

)
ρk (17)

This isn’t neccessarily the form of the polynomials used in the text. To see if that is the case,
we need to check the normalization.

According to the wikipedia article we have for the associated Laguerre polynomials as defined
above ∫ ∞

0
ρme−ρLm

n (ρ)Lm
n′(ρ)dρ =

(n + m)!
n!

δn,n′ (18)

whereas in the text we have∫ ∞

0
ρ2l+2e−ρ

(
L2l+1

n+l (ρ)
)2

dρ =
2n((n + l)!)3

(n− l − 1)!
. (19)

It seems clear that two different notations are being used. In this physical context of wave
functions we want the normalization defined by

1 =
∫ ∞

0
ρ2R2

l (ρ)dρ =
∫ ∞

0
ρ2l+2e−ρL2(ρ)dρ (20)

Using the wikipedia notation, with

L(ρ) = AL2l+1
n , (21)

we want

1 =
∫

ρ2l+2e−ρL2(ρ)dρ

= A2
n

∑
a,b=0

(−1)a+b

a!b!

(
n + 2l + 1
2l + 1 + a

)(
n + 2l + 1
2l + 1 + b

) ∫ ∞

0
dρρ2l+2+a+be−ρ

Since
∫ ∞

0 dρρae−ρ = Γ(a + 1) = a! we have

1 = A2
n

∑
a,b=0

(−1)a+b

a!b!

(
n + m
m + a

)(
n + m
m + b

)
(m + 1 + a + b)! (22)
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It looks like there is probably some way to simplify this, and if so we’d be able to map the
notation used (without definition) used in the text, to the notation used in the wikipedia article. If
we don’t care about that, nor the specifics of the normalization constant then there’s not too much
more to say.

This is an ugly kind of place to leave things, but that’s enough for today.
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