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1. Problem 3.19.

[1] problem 3.19 is
What is the effect of operating on an arbitrary function f (x) with the following two operators

Ô1 ≡ ∂2/∂x2 − 1 + sin2(∂3/∂x3) + cos2(∂3/∂x3) (1a)

Ô2 ≡ +cos(2∂/∂x) + sin2(∂/∂x) +
∫ b

a
dx (1b)

On the surface with sin2 y + cos2 y = 1 and cos 2y + 2 sin2 y = 1 it appears that we have just

Ô1 ≡ ∂2/∂x2 (2a)

Ô2 ≡ 1 +
∫ b

a
dx (2b)

but it this justified when the sinusoids are functions of operators? Let’s look at the first case.
For some operator f̂ we have
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)
Can we assume that these cancel for general operators? How about for our specific differential

operator f̂ = ∂3/∂x3? For that one we have
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Since the differentials commute, so do the exponentials and we can write the slightly simpler

sin2 f̂ + cos2 f̂ = ei f̂ e−i f̂

I’m pretty sure the commutative property of this differential operator would also allow us to
say (in this case at least)

sin2 f̂ + cos2 f̂ = 1

1



Will have to look up the combinatoric argument that allows one to write, for numbers,
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∑
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1
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(x + y)j = ex+y

If this only assumes that x and y commute, and not any other numeric properties then we
have the supposed result 2. We also know of algebraic objects where this does not hold. One
example is exponentials of non-commuting square matrices, and other is non-commuting bivector
exponentials.
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