Effect of sinusoid operators

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/liboff319.pdf
Peeter Joot — peeter.joot@gmail.com
May 23, 2010 liboff319.tex

1. Problem 3.19.

[1] problem 3.19 is
What is the effect of operating on an arbitrary function $f(x)$ with the following two operators

$$
\begin{align*}
& \hat{O}_{1} \equiv \partial^{2} / \partial x^{2}-1+\sin ^{2}\left(\partial^{3} / \partial x^{3}\right)+\cos ^{2}\left(\partial^{3} / \partial x^{3}\right) \tag{1a}\\
& \hat{O}_{2} \equiv+\cos (2 \partial / \partial x)+\sin ^{2}(\partial / \partial x)+\int_{a}^{b} d x \tag{1b}
\end{align*}
$$

On the surface with $\sin ^{2} y+\cos ^{2} y=1$ and $\cos 2 y+2 \sin ^{2} y=1$ it appears that we have just

$$
\begin{align*}
& \hat{O}_{1} \equiv \partial^{2} / \partial x^{2} \tag{2a}\\
& \hat{O}_{2} \equiv 1+\int_{a}^{b} d x \tag{2b}
\end{align*}
$$

but it this justified when the sinusoids are functions of operators? Let's look at the first case. For some operator \hat{f} we have

$$
\begin{aligned}
\sin ^{2} \hat{f}+\cos ^{2} \hat{f} & =-\frac{1}{4}\left(e^{i \hat{f}}-e^{-i \hat{f}}\right)\left(e^{i \hat{f}}-e^{-i \hat{f}}\right)+\frac{1}{4}\left(e^{i \hat{f}}+e^{-i \hat{f}}\right)\left(e^{i \hat{f}}+e^{-i \hat{f}}\right) \\
& =\frac{1}{2}\left(e^{i \hat{f}} e^{-i \hat{f}}+e^{-i \hat{f}} e^{i \hat{f}}\right)
\end{aligned}
$$

Can we assume that these cancel for general operators? How about for our specific differential operator $\hat{f}=\partial^{3} / \partial x^{3}$? For that one we have

$$
e^{i \partial^{3} / \partial x^{3}} e^{-i \partial^{3} / \partial x^{3}} g(x)=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{\partial^{3}}{\partial x^{3}}\right)^{k} \sum_{m=0}^{\infty} \frac{1}{m!}\left(\frac{\partial^{3}}{\partial x^{3}}\right)^{m} g(x)
$$

Since the differentials commute, so do the exponentials and we can write the slightly simpler

$$
\sin ^{2} \hat{f}+\cos ^{2} \hat{f}=e^{i \hat{f}} e^{-i \hat{f}}
$$

I'm pretty sure the commutative property of this differential operator would also allow us to say (in this case at least)

$$
\sin ^{2} \hat{f}+\cos ^{2} \hat{f}=1
$$

Will have to look up the combinatoric argument that allows one to write, for numbers,

$$
e^{x} e^{y}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} \sum_{m=0}^{\infty} \frac{1}{m!} y^{m}=\sum_{j=0}^{\infty} \frac{1}{j!}(x+y)^{j}=e^{x+y}
$$

If this only assumes that x and y commute, and not any other numeric properties then we have the supposed result 2 . We also know of algebraic objects where this does not hold. One example is exponentials of non-commuting square matrices, and other is non-commuting bivector exponentials.

References

[1] R. Liboff. Introductory quantum mechanics. 2003. 1

