Infinite square well wavefunction.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/liboff41.pdf
Peeter Joot — peeter.joot@gmail.com
May 31, 2010 liboff41.tex

1. Motivation.

Work problem 4.1 from [1], calculation of the eigensolution for an infinite square well, with boundaries $[-a / 2, a / 2]$. It's actually a bit tidier seeming to generalize this slightly to boundaries $[a, b]$, which also implicitly solves the problem. This is surely a problem that is done in 700 other QM texts, but I liked the way I did it this time so am writing it down.
2. Guts

Our equation to solve is $i \hbar \Psi_{t}=-\left(\hbar^{2} / 2 m\right) \Psi_{x x}$. Separation of variables $\Psi=T \phi$ gives us

$$
\begin{align*}
T & \propto e^{-i E t / \hbar} \tag{1}\\
\phi^{\prime \prime} & =-\frac{2 m E}{\hbar^{2}} \phi \tag{2}
\end{align*}
$$

With $k^{2}=2 m E / \hbar^{2}$, we have

$$
\begin{equation*}
\phi=A e^{i k x}+B e^{-i k x}, \tag{3}
\end{equation*}
$$

and the usual $\phi(a)=\phi(b)=0$ boundary conditions give us

$$
0=\left[\begin{array}{ll}
e^{i k a} & e^{-i k a} \tag{4}\\
e^{i k b} & e^{-i k b}
\end{array}\right]\left[\begin{array}{c}
A \\
B
\end{array}\right] .
$$

We must have a zero determinant, which gives us the constraints on k immediately

$$
\begin{aligned}
0 & =e^{i k(a-b)}-e^{i k(b-a)} \\
& =2 i \sin (k(a-b))
\end{aligned}
$$

So our constraint on k in terms of integers n, and the corresponding integration constant E

$$
\begin{align*}
k & =\frac{n \pi}{b-a} \tag{5}\\
E & =\frac{\hbar^{2} n^{2} \pi^{2}}{2 m(b-a)^{2}} \tag{6}
\end{align*}
$$

One of the constants A, B can be eliminated directly by picking any one of the two zeros from 4

$$
\begin{aligned}
& A e^{i k a}+B e^{-i k a}=0 \\
& \Longrightarrow \\
& B=-A e^{2 i k a}
\end{aligned}
$$

So we have

$$
\begin{equation*}
\phi=A\left(e^{i k x}-e^{i k(2 a-x)}\right) . \tag{7}
\end{equation*}
$$

Or,

$$
\begin{equation*}
\phi=2 A i e^{i k a} \sin (k(x-a)) \tag{8}
\end{equation*}
$$

Because probability densities, currents and the expectations of any operators will always have paired ϕ and ϕ^{*} factors, any constant phase factors like $i e^{i k a}$ above can be dropped, or absorbed into the constant A, and we can write

$$
\begin{equation*}
\phi=2 A \sin (k(x-a)) \tag{9}
\end{equation*}
$$

The only thing left is to fix A by integrating $|\phi|^{2}$, for which we have

$$
\begin{aligned}
1 & =\int_{a}^{b} \phi \phi^{*} d x \\
& =A^{2} \int_{a}^{b} d x\left(e^{i k x}-e^{i k(2 a-x)}\right)\left(e^{-i k x}-e^{-i k(2 a-x)}\right) \\
& =A^{2} \int_{a}^{b} d x\left(2-e^{i k(2 a-2 x)}-e^{i k(-2 a+2 x)}\right) \\
& =2 A^{2} \int_{a}^{b} d x(1-\cos (2 k(a-x)))
\end{aligned}
$$

This last trig term vanishes over the integration region and we are left with

$$
\begin{equation*}
A=\frac{1}{\sqrt{2(b-a)}} \tag{10}
\end{equation*}
$$

which essentially completes the problem. A final substitution back into 8 allows for a final tidy up

$$
\begin{equation*}
\phi=\sqrt{\frac{2}{b-a}} \sin (k(x-a)) . \tag{11}
\end{equation*}
$$

References

[1] R. Liboff. Introductory quantum mechanics. Cambridge: Addison-Wesley Press, Inc, 2003. 1

