More problems from Liboff chapter 4

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/liboff43.pdf
Peeter Joot — peeter.joot@gmail.com
June 25, 2010 liboff43.tex

1. Motivation.

Some more problems from [1].

2. Problem 4.11

Some problems on Hermitian adjoints. The starting point is the definition of the adjoint A^{+}of A in terms of the inner product

$$
\left\langle\hat{A}^{\dagger} \phi \mid \psi\right\rangle=\langle\phi \mid \hat{A} \psi\rangle
$$

2.1. $4.11 a$

$$
\begin{aligned}
\langle\phi \mid(a \hat{A}+b \hat{B}) \psi\rangle & =a\langle\phi \mid \hat{A} \psi\rangle+b\langle\phi \mid \hat{B} \psi\rangle \\
& =a\left\langle\hat{A}^{\dagger} \phi \mid \psi\right\rangle+b\left\langle\hat{B}^{\dagger} \phi \mid \psi\right\rangle \\
& =\left\langle a^{*} \hat{A}^{\dagger} \phi \mid \psi\right\rangle+\left\langle b^{*} \hat{B}^{\dagger} \phi \mid \psi\right\rangle \\
& =\left\langle\left(a^{*} \hat{A}^{\dagger}+b^{*} \hat{B}^{\dagger}\right) \phi \mid \psi\right\rangle \\
& \Longrightarrow
\end{aligned}
$$

2.2. $4.11 b$

$$
\begin{aligned}
\langle\phi \mid \hat{A} \hat{B} \psi\rangle & =\left\langle\hat{A}^{\dagger} \phi \mid \hat{B} \psi\right\rangle \\
& =\left\langle\hat{B}^{\dagger} \hat{A}^{\dagger} \phi \mid \psi\right\rangle \\
& \Longrightarrow \\
(\hat{A} \hat{B})^{\dagger} & =\hat{B}^{\dagger} \hat{A}^{\dagger}
\end{aligned}
$$

2.3. $4.11 d$

Hermitian adjoint of D^{2}, where $D=\partial / \partial x$. Here we need the integral form of the inner product

$$
\begin{aligned}
\left\langle\phi \mid D^{2} \psi\right\rangle & =\int \phi^{*} \frac{\partial}{\partial x} \frac{\partial \psi}{\partial x} \\
& =-\int \frac{\partial \phi^{*}}{\partial x} \frac{\partial \psi}{\partial x} \\
& =\int \psi \frac{\partial}{\partial x} \frac{\partial \phi^{*}}{\partial x} \\
& \Longrightarrow \\
\left(D^{2}\right)^{+} & =D^{2}
\end{aligned}
$$

Since the text shows that the square of a Hermitian operator is Hermitian, one perhaps wonders if D is (but we expect not since $\hat{p}=-i \hbar D$ is Hermitian).

Suppose $\hat{A}=a D$, we have

$$
\hat{A}^{+}=-a^{*} D,
$$

so for this to be Hermitian $\left(\hat{A}=\hat{A}^{\dagger}\right)$ we must have $-a^{*}=a$. If $a=r e^{i \theta}$, we have

$$
-1=e^{2 i \theta}
$$

So $\theta=\pi(1 / 2+n)$, and $a= \pm i r$. This fixes the scalar multiples of D that are required to form a Hermitian operator

$$
\hat{A}= \pm i r D
$$

where r is any real positive constant.

2.4. $4.11 e$

$$
(\hat{A} \hat{B}-\hat{B} \hat{A})^{\dagger}=-\left(\hat{A}^{\dagger} \hat{B}^{\dagger}-\hat{B}^{\dagger} \hat{A}^{\dagger}\right)
$$

2.5. $4.11 f$

$$
(\hat{A} \hat{B}+\hat{B} \hat{A})^{\dagger}=\hat{A}^{\dagger} \hat{B}^{\dagger}+\hat{B}^{\dagger} \hat{A}^{\dagger}
$$

2.6. 4.11 g

$$
i(\hat{A} \hat{B}-\hat{B} \hat{A})^{\dagger}=i\left(\hat{A}^{\dagger} \hat{B}^{\dagger}-\hat{B}^{\dagger} \hat{A}^{\dagger}\right)
$$

2.7. $4.11 h$

This one was to calculate $\left(\hat{A}^{\dagger}\right)^{\dagger}$. Intuitively I'd expect that $\left(\hat{A}^{\dagger}\right)^{\dagger}=\hat{A}$. How could one show this?

Trying to show this with Dirac notation, I got all mixed up initially.
Using the more straightforward and old fashioned integral notation (as in [2]), this is more straightforward. We have the Hermitian conjugate defined by

$$
\int \psi_{2}^{*}\left(\hat{A} \psi_{1}\right)=\int\left(\hat{A}^{\dagger} \psi_{2}^{*}\right) \psi_{1}
$$

Or, more symmetrically, using braces to indicate operator direction

$$
\int \psi_{2}^{*}\left(\hat{A} \psi_{1}\right)=\int\left(\psi_{2}^{*} \hat{A}^{\dagger}\right) \psi_{1}
$$

Introduce a couple of variable substuitions for clarity

$$
\begin{aligned}
\phi_{1} & =\psi_{1}^{*} \\
\phi_{2} & =\psi_{2}^{*} \\
\hat{B} & =\hat{A}^{\dagger} .
\end{aligned}
$$

We then have

$$
\begin{aligned}
\int \psi_{2}^{*}\left(\hat{A} \psi_{1}\right) & =\int\left(\psi_{2}^{*} \hat{A}^{\dagger}\right) \psi_{1} \\
& =\int\left(\phi_{2} \hat{B}\right) \phi_{1}^{*} \\
& =\int \phi_{1}^{*}\left(\hat{B} \phi_{2}\right) \\
& =\int\left(\phi_{1}^{*} \hat{B}^{\dagger}\right) \phi_{2} \\
& =\int \phi_{2}\left(\hat{B}^{\dagger} \phi_{1}^{*}\right) \\
& =\int \psi_{2}^{*}\left(\hat{A}^{+\dagger} \psi_{1}\right)
\end{aligned}
$$

Since this is true for all ψ_{k}, we have $\hat{A}=\hat{A}^{\dagger+}$ as expected.
Having figured out the problem in the simpleton way, it's now simple to go back and translate this into the Dirac inner product notation without getting muddled. We have

$$
\begin{aligned}
\left\langle\psi_{2} \mid \hat{A} \psi_{1}\right\rangle & =\left\langle\hat{A}^{\dagger} \psi_{2} \mid \psi_{1}\right\rangle \\
& =\left\langle\hat{B} \phi_{2}^{*} \mid \phi_{1}^{*}\right\rangle \\
& =\left\langle\phi_{1} \mid \hat{B}^{*} \phi_{2}\right\rangle^{*} \\
& =\left\langle\left(\hat{B}^{*}\right)^{\dagger} \phi_{1} \mid \phi_{2}\right\rangle^{*} \\
& =\left\langle\phi_{2}^{*} \mid \hat{B}^{\dagger} \phi_{1}^{*}\right\rangle \\
& =\left\langle\psi_{2} \mid \hat{A}^{\dagger \dagger} \psi_{1}\right\rangle
\end{aligned}
$$

2.8. $4.11 i$

$$
\left(\hat{A} \hat{A}^{\dagger}\right)^{\dagger}=\left(\hat{A}^{\dagger}\right)^{\dagger} \hat{A}^{\dagger}
$$

since $\left(\hat{A}^{\dagger}\right)^{\dagger}=\hat{A}$

$$
\left(\hat{A} \hat{A}^{\dagger}\right)^{\dagger}=\hat{A} \hat{A}^{\dagger} .
$$

3. Problem 4.12 d

If \hat{A} is not Hermitian, is the product $\hat{A}^{\dagger} \hat{A}$ Hermitian? To start we need to verify that $\left\langle\psi \mid \hat{A}^{\dagger} \phi\right\rangle=$ $\langle\hat{A} \psi \mid \phi\rangle$.

$$
\begin{aligned}
\left\langle\psi \mid \hat{A}^{\dagger} \phi\right\rangle & =\left\langle\left(\hat{A}^{\dagger}\right)^{*} \phi^{*} \mid \psi^{*}\right\rangle^{*} \\
& =\left\langle\phi^{*} \mid \hat{A}^{*} \psi^{*}\right\rangle^{*} \\
& =\langle\psi \mid \hat{A} \psi\rangle .
\end{aligned}
$$

With that verified we have

$$
\begin{aligned}
\left\langle\psi \mid \hat{A}^{\dagger} \hat{A} \phi\right\rangle & =\langle\hat{A} \psi \mid \hat{A} \phi\rangle \\
& =\left\langle\hat{A}^{+} \hat{A} \psi \mid \phi\right\rangle,
\end{aligned}
$$

so, the answer is yes. Provided the adjoint exists, that product will be Hermitian.

4. Problem 4.14

Show that $\langle\hat{A}\rangle=\langle\hat{A}\rangle^{*}$ (that it is real), if \hat{A} is Hermitian. This follows by expansion of that conjuagate

$$
\begin{aligned}
\langle\hat{A}\rangle^{*} & =\left(\int \psi^{*} \hat{A} \psi\right)^{*} \\
& =\int \psi \hat{A}^{*} \psi^{*} \\
& =\int(\hat{A} \psi)^{*} \psi \\
& =\langle\hat{A} \psi \mid \psi\rangle \\
& =\left\langle\psi \mid \hat{A}^{\dagger} \psi\right\rangle \\
& =\langle\psi \mid \hat{A} \psi\rangle \\
& =\langle\hat{A}\rangle
\end{aligned}
$$

References

[1] R. Liboff. Introductory quantum mechanics. 2003. 1
[2] D. Bohm. Quantum Theory. Courier Dover Publications, 1989. 2.7

