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1. Motivation.

In [1], Feynman writes the Pauli wave equation for a non-relativistic treatment of a mass in a
scalar and vector potential electrodynamic field. That is

ih̄
∂Ψ
∂t

=
1

2m

(
p− e

c
A
)2

Ψ + eφΨ (1)

Is this amenable to Fourier transform solution like so many other PDEs? Let’s give it a try. It
would also be interesting to attempt to apply such a computation to see if it is possible to calculate
〈x〉, and the first two derivatives of this expectation value. I would guess that this would produce
the Lorentz force equation.

2. Prep

2.1. Fourier Notation.

Our transform pair will be written

Ψ(x, t) =
1

(
√

2π)3

∫
Ψ̂(k, t)eik·xd3k (2a)

Ψ̂(k, t) =
1

(
√

2π)3

∫
Ψ(x, t)e−ik·xd3x (2b)

2.2. Interpretation of the squared momentum operator.

Feynman actually wrote

ih̄
∂Ψ
∂t

=
1

2m

[
σ ·
(

p− e
c

A
)] [

σ ·
(

p− e
c

A
)]

Ψ + eφΨ (3)

That σ· notation I’m not familiar with, and I’ve written this as a plain old vector square. If
p were not an operator, then this would be a scalar, but as written this actually also includes a
bivector term proportional to ∇ ∧A = IB. To see that, lets expand this operator explicitly.

(
p− e

c
A
) (

p− e
c

A
)

Ψ =

(
p2 − e

c
(pA + Ap) +

e2

c2 A2
)

Ψ

=

(
−h̄2∇2 +

ieh̄
c
(∇A + A∇) +

e2

c2 A2
)

Ψ
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This anticommutator of the vector potential and the gradient is only a scalar A has zero di-
vergence. More generally, expanding by chain rules, and using braces to indicate the scope of the
differential operations, we have

(∇A + A∇)Ψ = (∇Ψ)A + A(∇Ψ) + (∇A)Ψ
= 2A · (∇Ψ) + (∇ ·A)Ψ + I(∇×A)Ψ
= 2A · (∇Ψ) + (∇ ·A)Ψ + IBΨ− IA× (∇Ψ)

where I = e1e2e3 is the spatial unit trivector, and B = ∇×A.
This is assuming Ψ should be treated as a complex valued scalar, and not a complex-like geo-

metric object of any sort. Does this bivector term have physical meaning? Should it be discarded
or retained? If we assume discarded, then we really want to write the Pauli equation utilizing an
explicit scalar selection, as in

ih̄
∂Ψ
∂t

=
1

2m

〈(
p− e

c
A
)2
〉

Ψ + eφΨ. (4)

Assuming that to be the case, our squared momentum operator takes the form

〈(
p− e

c
A
)2
〉

Ψ =

(
−h̄2∇2 + 2

ieh̄
c

A ·∇+
ieh̄
c
(∇ ·A) +

e2

c2 A2
)

Ψ. (5)

The Pauli equation, written out explicitly in terms of the gradient is then

ih̄
∂Ψ
∂t

=
1

2m

(
−h̄2∇2 + 2

ieh̄
c

A ·∇+
e2

c2 A2
)

Ψ + e
(

ih̄
2mc

(∇ ·A) + φ

)
Ψ. (6)

2.2.1 Confirmation.

Instead of guessing what Feynman means when he writes Pauli’s equation, it would be better
to just check what Pauli says. In [2] he uses the more straightforward notation

1
2m

3

∑
k=1

(
pk −

e
c

Ak

)2
(7)

for the vector potential dependent part of the Hamiltonian operator. This is just the scalar part
as was guessed.

3. Guts

Using the expansion 6 of the Pauli equation, and writing V = φ + ih̄(∇ · A)/(2mc) for the
effective complex potential we have
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ih̄
∂Ψ
∂t

=
1

2m

(
−h̄2∇2 + 2ih̄

e
c

A ·∇+
e2

c2 A2
)

Ψ + eVΨ. (8)

Let’s now apply each of these derivative operations to our assumed Fourier solution Ψ(x, t)
from 2a. Starting with the Laplacian we have

∇2Ψ(x, t) =
1

(
√

2π)3

∫
Ψ̂(k, t)(ik)2eik·xd3k. (9)

For the A ·∇ operator application we have

A ·∇Ψ(x, t) =
1

(
√

2π)3

∫
Ψ̂(k, t)(iA · k)eik·xd3k. (10)

Putting both together we have

0 =
1

(
√

2π)3

∫ (
−ih̄

∂Ψ̂
∂t

+
1

2m

(
h̄2k2 − 2h̄

e
c

A · k +
e2

c2 A2
)

Ψ̂ + eVΨ̂
)

eik·xd3k. (11)

We can tidy this up slightly by completing the square, yielding

0 =
1

(
√

2π)3

∫ (
−ih̄

∂Ψ̂
∂t

+

(
1

2m

(
h̄k− e

c
A(x, t)

)2
+ eV(x, t)

)
Ψ̂
)

eik·xd3k. (12)

If this is to be zero for all (x, t), it seems clear that we need Ψ̂(k, t) to be the solution of the first
order non-linear PDE

∂Ψ̂
∂t

(k, t) =
1
ih̄

(
1

2m

(
h̄k− e

c
A(x, t)

)2
+ eV(x, t)

)
Ψ̂(k, t) (13)

Somewhere along the way this got a bit confused. Our Fourier transform function is somehow
a function of not just wave number, but position, since Ψ̂ = Ψ̂(x, k, t) by virtue of being a solution
to a differential equation involving A(x, t), and V(x, t)? Can we pretend to not to have noticed
this and continue on anyways? Let’s try the further simplification of the system by imposing a
constraint of constant time potentials (∂A/∂t = ∂V/∂t = 0). That allows for direct integration of
the wave function’s Fourier transform

Ψ̂(k, t) = Ψ̂(k, 0) exp
(

1
ih̄

(
1

2m

(
h̄k− e

c
A
)2

+ eV
)

t
)

. (14)

And inverse transforming this

Ψ(x, t) =
1

(
√

2π)3

∫
Ψ̂(k, 0) exp

(
1
ih̄

(
1

2m

(
h̄k− e

c
A(x)

)2
+ eV(x)

)
t + ik · x

)
d3k. (15)
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By inserting the inverse Fourier transform of Ψ̂(k, 0), we have the time evolution of the wave
function as a convolution integral

Ψ(x, t) =
1

(2π)3

∫
Ψ(x′, 0) exp

(
1
ih̄

(
1

2m

(
h̄k− e

c
A(x)

)2
+ eV(x)

)
t + ik · (x− x′)

)
d3kd3x′.

(16)

Splitting out the convolution kernel, this takes a slightly tidier form

Ψ(x, t) =
∫

Û(x, x′, t)Ψ(x′, 0)d3x′ (17a)

Û(x, x′, t) =
1

(2π)3

∫
exp

(
1
ih̄

(
1

2m

(
h̄k− e

c
A(x)

)2
+ eV(x)

)
t + ik · (x− x′)

)
d3k. (17b)

3.1. Verification attempt.

If we apply the Pauli equation 1 to 17a does it produce the correct answer?
For the LHS we have

ih̄
∂Ψ
∂t

=
∫ ( 1

2m

(
h̄k− e

c
A(x)

)2
+ eV(x)

)
Û(x, x′, t)Ψ(x′, 0)d3x′, (18)

but for the RHS we have

(
1

2m

〈
(p− e

c
A)2

〉
+ eφ

)
Ψ =

∫
d3x′Û(x, x′, t)Ψ(x′, 0) (19)(

1
2m

(
h̄k− e

c
A(x)

)2
+ eV(x) +

t
2mih̄

(
−h̄2∇2 + 2

ieh̄
c

A ·∇
)(

1
2m

(
h̄k− e

c
A(x)

)2
+ eV(x)

))
(20)

So if it were not for the spatial dependence of A and φ, we would have LHS equal to the RHS.
It appears that ignoring the odd x dependence in the Ψ̂ differential equation definitely leads to
trouble, and only works for constant potential distributions, a rather boring special case.
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