A problem on spherical harmonics.

Originally appeared at:
http://sites.google.com/site/peeterjoot/math2010/qmIexam2010.pdf
Peeter Joot — peeter.joot@gmail.com
Jan 9, 2011 qmIexam2010.tex

Contents

1 Motivation. 1
1.1 Evolved state. 1
1.2 Probabilities for L_{z} measurement outcomes. 2
1.3 Probabilities for \mathbf{L}^{2} measurement outcomes. 2

1. Motivation.

One of the PHY356 exam questions from the final I recall screwing up on, and figuring it out after the fact on the drive home. The question actually clarified a difficulty I'd had, but unfortunately I hadn't had the good luck to perform such a question, to help figure this out before the exam.

From what I recall the question provided an initial state, with some degeneracy in m, perhaps of the following form

$$
\begin{equation*}
|\phi(0)\rangle=\sqrt{\frac{1}{7}}|12\rangle+\sqrt{\frac{2}{7}}|10\rangle+\sqrt{\frac{4}{7}}|20\rangle, \tag{1}
\end{equation*}
$$

and a Hamiltonian of the form

$$
\begin{equation*}
H=\alpha L_{z} \tag{2}
\end{equation*}
$$

From what I recall of the problem, I am going to reattempt it here now.

1.1. Evolved state.

One part of the question was to calculate the evolved state. Application of the time evolution operator gives us

$$
\begin{equation*}
|\phi(t)\rangle=e^{-i \alpha L_{z} t / \hbar}\left(\sqrt{\frac{1}{7}}|12\rangle+\sqrt{\frac{2}{7}}|10\rangle+\sqrt{\frac{4}{7}}|20\rangle\right) . \tag{3}
\end{equation*}
$$

Now we note that $L_{z}|12\rangle=2 \hbar|12\rangle$, and $L_{z}|10\rangle=0|20\rangle$, so the exponentials reduce this nicely to just

$$
\begin{equation*}
|\phi(t)\rangle=\sqrt{\frac{1}{7}} e^{-2 i \alpha t}|12\rangle+\sqrt{\frac{2}{7}}|10\rangle+\sqrt{\frac{4}{7}}|20\rangle . \tag{4}
\end{equation*}
$$

1.2. Probabilities for L_{z} measurement outcomes.

I believe we were also asked what the probabilities for the outcomes of a measurement of L_{z} at this time would be. Here is one place that I think that I messed up, and it is really a translation error, attempting to get from the english description of the problem to the math description of the same. I'd had trouble with this process a few times in the problems, and managed to blunder through use of language like "measure", and "outcome", but don't think I really understood how these were used properly.

What are the outcomes that we measure? We measure operators, but the result of a measurement is the eigenvalue associated with the operator. What are the eigenvalues of the L_{z} operator? These are the $m \hbar$ values, from the operation $L_{z}|l m\rangle=m \hbar|l m\rangle$. So, given this initial state, there are really two outcomes that are possible, since we have two distinct eigenvalues. These are $2 \hbar$ and 0 for $m=2$, and $m=0$ respectively.

A measurement of the "outcome" $2 \hbar$, will be the probability associated with the amplitude $\langle 12 \mid \phi(t)\rangle$ (ie: the absolute square of this value). That is

$$
\begin{equation*}
|\langle 12 \mid \phi(t)\rangle|^{2}=\frac{1}{7} \tag{5}
\end{equation*}
$$

Now, the only other outcome for a measurement of L_{z} for this state is a measurement of $0 \hbar$, and the probability of this is then just $1-\frac{1}{7}=\frac{6}{7}$. On the exam, I think I listed probabilities for three outcomes, with values $\frac{1}{7}, \frac{2}{7}, \frac{4}{7}$ respectively, but in retrospect that seems blatently wrong.

1.3. Probabilities for \mathbf{L}^{2} measurement outcomes.

What are the probabilities for the outcomes for a measurement of \mathbf{L}^{2} after this? The first question is really what are the outcomes. That's really a question of what are the possible eigenvalues of \mathbf{L}^{2} that can be measured at this point. Recall that we have

$$
\begin{equation*}
\mathbf{L}^{2}|l m\rangle=\hbar^{2} l(l+1)|l m\rangle \tag{6}
\end{equation*}
$$

So for a state that has only $l=1,2$ contributions before the measurement, the eigenvalues that can be observed for the \mathbf{L}^{2} operator are respectively $2 \hbar^{2}$ and $6 \hbar^{2}$ respectively.

For the $l=2$ case, our probability is $4 / 7$, leaving $3 / 7$ as the probability for measurement of the $l=1\left(2 \hbar^{2}\right)$ eigenvalue. We can compute this two ways, and it seems worthwhile to consider both. This first method makes use of the fact that the L_{z} operator leaves the state vector intact, but it also seems like a bit of a cheat. Consider instead two possible results of measurement after the L_{z} observation. When an L_{z} measurement of $0 \hbar$ is performed our state will be left with only the $m=0$ kets. That is

$$
\begin{equation*}
\left|\psi_{a}\right\rangle=\frac{1}{\sqrt{3}}(|10\rangle+\sqrt{2}|20\rangle) \tag{7}
\end{equation*}
$$

whereas, when a $2 \hbar$ measurement of L_{z} is performed our state would then only have the $m=2$ contribution, and would be

$$
\begin{equation*}
\left|\psi_{b}\right\rangle=e^{-2 i \alpha t}|12\rangle . \tag{8}
\end{equation*}
$$

We have two possible ways of measuring the $2 \hbar^{2}$ eigenvalue for \mathbf{L}^{2}. One is when our state was $\left|\psi_{a}\right\rangle$ (, and the resulting state has a $|10\rangle$ component, and the other is after the $m=2$ measurement, where our state is left with a $|12\rangle$ component.

The resulting probability is then a conditional probability result

$$
\begin{equation*}
\frac{6}{7}\left|\left\langle 10 \mid \psi_{a}\right\rangle\right|^{2}+\frac{1}{7}\left|\left\langle 12 \mid \psi_{b}\right\rangle\right|^{2}=\frac{3}{7} \tag{9}
\end{equation*}
$$

The result is the same, as expected, but this is likely a more convicing argument.

