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1. Motivation.

Some of the old exam questions that I did for preparation for the exam I liked, and thought I’d
write up some of them for potential future reference.

2. Questions from the Dec 2007 PHY355H1F exam.

2.1. 1b. Parity operator.

Q: If Π is the parity operator, defined by Π|x〉 = |−x〉, where |x〉 is the eigenket of the position
operator X with eigenvalue x), and P is the momentum operator conjugate to X, show (carefully)
that ΠPΠ = −P.

A: Consider the matrix element 〈−x′| [Π, P] |x〉. This is
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〈−x′| [Π, P] |x〉 = 〈−x′|ΠP− PΠ|x〉
= 〈−x′|ΠP|x〉 − 〈−x|PΠ|x〉
= 〈x′|P|x〉 − 〈−x|P|−x〉

= −ih̄

δ(x′ − x)
∂

∂x
− δ(−x− (−x′))︸ ︷︷ ︸

=δ(x′−x)=δ(x−x′)

∂

∂−x


= −2ih̄δ(x′ − x)

∂

∂x
= 2〈x′|P|x〉
= 2〈−x′|ΠP|x〉

We’ve taken advantage of the Hermitian property of P and Π here, and can rearrange for

〈−x′|ΠP− PΠ− 2ΠP|x〉 = 0 (1)

Since this is true for all 〈−x| and |x〉 we have

ΠP + PΠ = 0. (2)

Right multiplication by Π and rearranging we have

ΠPΠ = −PΠΠ = −P. (3)

2.2. 1f. Free particle propagator.

Q: For a free particle moving in one-dimension, the propagator (i.e. the coordinate representa-
tion of the evolution operator),

G(x, x′; t) = 〈x|U(t)|x′〉 (4)

is given by

G(x, x′; t) =
√

m
2πih̄t

eim(x−x′)2/(2h̄t). (5)

A: This problem is actually fairly straightforward, but it is nice to work it having had a similar
problem set question where we were asked about this time evolution operator matrix element
(ie: what it’s physical meaning is). Here we have a concrete example of the form of this matrix
operator.

Proceeding directly, we have
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〈x|U|x′〉 =
∫ 〈

x|p′
〉
〈p′|U|p〉

〈
p|x′

〉
dpdp′

=
∫

up′(x)〈p′|e−iP2t/(2mh̄)|p〉u∗p(x′)dpdp′

=
∫

up′(x)e−ip2t/(2mh̄)δ(p− p′)u∗p(x′)dpdp′

=
∫

up(x)e−ip2t/(2mh̄)u∗p(x′)dp

=
1

(
√

2πh̄)2

∫
eip(x−x′)/h̄e−ip2t/(2mh̄)dp

=
1

2πh̄

∫
eip(x−x′)/h̄e−ip2t/(2mh̄)dp

=
1

2π

∫
eik(x−x′)e−ih̄k2t/(2m)dk

=
1

2π

∫
dke−(k2 ih̄t

2m−ik(x−x′))

=
1

2π

∫
dke−

ih̄t
2m

(
k−i 2m

ih̄t
(x−x′)

2

)2
− i22m(x−x′)2

4ih̄t

=
1

2π

√
π

√
2m
ih̄t

e
im(x−x′)2

2h̄t ,

which is the desired result. Now, let’s look at how this would be used. We can express our
time evolved state using this matrix element by introducing an identity

〈x|ψ(t)〉 = 〈x|U|ψ(0)〉

=
∫

dx′〈x|U|x′〉
〈

x′|ψ(0)
〉

=

√
m

2πih̄t

∫
dx′eim(x−x′)2/(2h̄t) 〈x′|ψ(0)

〉

This gives us

ψ(x, t) =
√

m
2πih̄t

∫
dx′eim(x−x′)2/(2h̄t)ψ(x′, 0) (6)

However, note that our free particle wave function at time zero is

ψ(x, 0) =
eipx/h̄
√

2πh̄
(7)

So the convolution integral 6 does not exist. We likely have to require that the solution be not
a pure state, but instead a superposition of a set of continuous states (a wave packet in position or
momentum space related by Fourier transforms). That is
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ψ(x, 0) =
1√
2πh̄

∫
ψ̂(p, 0)eipx/h̄dp (8)

ψ̂(p, 0) =
1√
2πh̄

∫
ψ(x′′, 0)e−ipx′′/h̄dx′′ (9)

The time evolution of this wave packet is then determined by the propagator, and is

ψ(x, t) =
√

m
2πih̄t

1√
2πh̄

∫
dx′dpeim(x−x′)2/(2h̄t)ψ̂(p, 0)eipx′/h̄, (10)

or in terms of the position space wave packet evaluated at time zero

ψ(x, t) =
√

m
2πih̄t

1
2π

∫
dx′dx′′dkeim(x−x′)2/(2h̄t)eik(x′−x′′)ψ(x′′, 0) (11)

We see that the propagator also ends up with a Fourier transform structure, and we have

ψ(x, t) =
∫

dx′U(x, x′; t)ψ(x′, 0) (12)

U(x, x′; t) =
√

m
2πih̄t

1
2π

∫
dudkeim(x−x′−u)2/(2h̄t)eiku (13)

Does that Fourier transform exist? I’d not be surprised if it ended up with a delta function
representation. I’ll hold off attempting to evaluate and reduce it until another day.

2.3. 4. Hydrogen atom.

This problem deals with the hydrogen atom, with an initial ket

|ψ(0)〉 = 1√
3
|100〉+ 1√

3
|210〉+ 1√

3
|211〉, (14)

where

〈r|100〉 = Φ100(r), (15)

etc.

Q: (a) If no measurement is made until time t = t0,

t0 =
πh̄

3
4 (13.6eV)

=
4πh̄
3EI

, (16)

what is the ket |ψ(t)〉 just before the measurement is made?

4



A: Our time evolved state is

|ψt0〉 =
1√
3

e−iE1t0/h̄|100〉+ 1√
3

e−iE2t0/h̄(|210〉+ |211〉). (17)

Also observe that this initial time was picked to make the exponential values come out nicely,
and we have

Ent0

h̄
= − EIπh̄

3
4 EIn2h̄

= − 4π

3n2 ,

so our time evolved state is just

|ψ(t0)〉 =
1√
3

e−i4π/3|100〉+ 1√
3

e−iπ/3(|210〉+ |211〉). (18)

Q: (b) Suppose that at time t0 an Lz measurement is made, and the outcome 0 is recorded. What
is the appropriate ket ψafter(t0) right after the measurement?

A: A measurement with outcome 0, means that the Lz operator measurement found the state at
that point to be the eigenstate for Lz eigenvalue 0. Recall that if |φ〉 is an eigenstate of Lz we have

Lz|φ〉 = mh̄|φ〉, (19)

so a measurement of Lz with outcome zero means that we have m = 0. Our measurement of
Lz at time t0 therefore filters out all but the m = 0 states and our new state is proportional to the
projection over all m = 0 states as follows

|ψafter(t0)〉 ∝

(
∑
nl
|nl0〉〈nl0|

)
|ψ(t0)〉

∝ (|100〉〈100|+ |210〉〈210|) |ψ(t0)〉

=
1√
3

e−i4π/3|100〉+ 1√
3

e−iπ/3|210〉

A final normalization yields

|ψafter(t0)〉 =
1√
2
(|210〉 − |100〉) (20)

Q: (c) Right after this Lz measurement, what is |ψafter(t0)|2?
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A: Our amplitude is

〈r|ψafter(t0)〉 =
1√
2
(〈r|210〉 − 〈r|100〉)

=
1√

2πa3
0

(
r

4
√

2a0
e−r/2a0 cos θ − e−r/a0

)

=
1√

2πa3
0

e−r/2a0

(
r

4
√

2a0
cos θ − e−r/2a0

)
,

so the probability density is

|〈r|ψafter(t0)〉|2 =
1

2πa3
0

e−r/a0

(
r

4
√

2a0
cos θ − e−r/2a0

)2

(21)

Q: (d) If then a position measurement is made immediately, which if any components of the
expectation value of R will be nonvanishing? Justify your answer.

A: The expectation value of this vector valued operator with respect to a radial state |ψ〉 =

∑nlm anlm|nlm〉 can be expressed as

〈R〉 =
3

∑
i=1

ei ∑
nlm,n′ l′m′

a∗nlman′ l′m′〈nlm|Xi|n′l′m′〉, (22)

where X1 = X = R sin Θ cos Φ, X2 = Y = R sin Θ sin Φ, X3 = Z = R cos Φ.
Consider one of the matrix elements, and expand this by introducing an identity twice

〈nlm|Xi|n′l′m′〉 =
∫

r2 sin θdrdθdφr′2 sin θ′dr′dθ′dφ′ 〈nlm|rθφ〉 〈rθφ|Xi|r′θ′φ′〉
〈
r′θ′φ′|n′l′m′

〉
=
∫

r2 sin θdrdθdφr′2 sin θ′dr′dθ′dφ′Rnl(r)Y∗lm(θ, φ)δ3(x− x′)xiRn′ l′(r′)Yl′m′(θ
′, φ′)

=
∫

r2 sin θdrdθdφr′2 sin θ′dr′dθ′dφ′Rnl(r)Y∗lm(θ, φ)

r′2 sin θ′δ(r− r′)δ(θ − θ′)δ(φ− φ′)xiRn′ l′(r′)Yl′m′(θ
′, φ′)

=
∫

r2 sin θdrdθdφdr′dθ′dφ′Rnl(r)Y∗lm(θ, φ)δ(r− r′)δ(θ − θ′)δ(φ− φ′)xiRn′ l′(r′)Yl′m′(θ
′, φ′)

=
∫

r2 sin θdrdθdφRnl(r)Rn′ l′(r)Y∗lm(θ, φ)Yl′m′(θ, φ)xi

Because our state has only m = 0 contributions, the only φ dependence for the X and Y compo-
nents of R come from those components themselves. For X, we therefore integrate

∫ 2π
0 cos φdφ =

0, and for Y we integrate
∫ 2π

0 sin φdφ = 0, and these terms vanish. Our expectation value for R for
this state, therefore lies completely on the z axis.
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3. Questions from the Dec 2008 PHY355H1F exam.

3.1. 1b. Trace invariance for unitary transformation.

Q: Show that the trace of an operator is invariant under unitary transforms, i.e. if A′ = U† AU,
where U is a unitary operator, prove Tr(A′) = Tr(A).

A: The bulk of this question is really to show that commutation of operators leaves the trace
invariant (unless this is assumed). To show that we start with the definition of the trace

Tr(AB) = ∑
n
〈n|AB|n〉

= ∑
nm
〈n|A|m〉〈m|B|n〉

= ∑
nm
〈m|B|n〉〈n|A|m〉

= ∑
m
〈m|BA|m〉.

Thus we have
Tr(AB) = Tr(BA). (23)

For the unitarily transformed operator we have

Tr(A′) = Tr(U† AU)

= Tr(U†(AU))

= Tr((AU)U†)

= Tr(A(UU†))

= Tr(A) �

3.2. 1d. Determinant of an exponential operator in terms of trace.

Q: If A is an Hermitian operator, show that

det(exp A) = exp(Tr(A)) (24)

where the Determinant (det) of an operator is the product of all its eigenvectors.

A: The eigenvalues clue in the question provides the starting point. We write the exponential in
its series form

eA = 1 +
∞

∑
k=1

1
k!

Ak (25)

Now, suppose that we have the following eigenvalue relationships for A

A|n〉 = λn|n〉. (26)

From this the exponential is
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eA|n〉 = |n〉+
∞

∑
k=1

1
k!

Ak|n〉

= |n〉+
∞

∑
k=1

1
k!
(λn)

k|n〉

= eλn |n〉.

We see that the eigenstates of eA are those of A, with eigenvalues eλn .
By the definition of the determinant given we have

det(eA) = Πneλn

= e∑n λn

= eTr (A) �

3.3. 1e. Eigenvectors of the Harmonic oscillator creation operator.

Q: Prove that the only eigenvector of the Harmonic oscillator creation operator is |null〉.

A: Recall that the creation (raising) operator was given by

a† =

√
mω

2h̄
X− i√

2mωh̄
P =

1
α
√

2
X− iα√

2h̄
P, (27)

where α =
√

h̄/mω. Now assume that a†|φ〉 = λ|φ〉 so that

〈x|a†|φ〉 = 〈x|λ|φ〉. (28)

Write 〈x|φ〉 = φ(x), and expand the LHS using 27 for

λφ(x) = 〈x|a†|φ〉

= 〈x|
(

1
α
√

2
X− iα√

2h̄
P
)
|φ〉

=
xφ(x)
α
√

2
− iα√

2h̄
(−ih̄)

∂

∂x
φ(x)

=
xφ(x)
α
√

2
− α√

2
∂φ(x)

∂x
.

As usual write ξ = x/α, and rearrange. This gives us

∂φ

∂ξ
+
√

2λφ− ξφ = 0. (29)

Observe that this can be viewed as a homogeneous LDE of the form

∂φ

∂ξ
− ξφ = 0, (30)
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augmented by a forcing term
√

2λφ. The homogeneous equation has the solution φ = Aeξ2/2,
so for the complete equation we assume a solution

φ(ξ) = A(ξ)eξ2/2. (31)

Since φ′ = (A′ + Aξ)eξ2/2, we produce a LDE of

0 = (A′ + Aξ − ξA +
√

2λA)eξ2/2

= (A′ +
√

2λA)eξ2/2,

or
0 = A′ +

√
2λA. (32)

This has solution A = Be−
√

2λξ , so our solution for 29 is

φ(ξ) = Beξ2/2−
√

2λξ = B′e(ξ−λ
√

2)2/2. (33)

This wave function is an imaginary Gaussian with minimum at ξ = λ
√

2. It is also unnormal-
izable since we require B′ = 0 for any λ if

∫
|φ|2 < ∞. Since 〈ξ|φ〉 = φ(ξ) = 0, we must also have

|φ〉 = 0, completing the exercise.

3.4. 2. Two level quantum system.

Consider a two-level quantum system, with basis states {|a〉, |b〉}. Suppose that the Hamilto-
nian for this system is given by

H =
h̄∆
2
(|b〉〈b| − |a〉〈a|) + i

h̄Ω
2

(|a〉〈b| − |b〉〈a|) (34)

where ∆ and Ω are real positive constants.

Q: (a) Find the energy eigenvalues and the normalized energy eigenvectors (expressed in terms
of the {|a〉, |b〉} basis). Write the time evolution operator U(t) = e−iHt/h̄ using these eigenvectors.

A: The eigenvalue part of this problem is probably easier to do in matrix form. Let

|a〉 =
[

1
0

]
(35)

|b〉 =
[

0
1

]
. (36)

Our Hamiltonian is then

H =
h̄
2

[
−∆ iΩ
−iΩ ∆

]
. (37)

Computing det H − λI = 0, we get

λ = ± h̄
2

√
∆2 + Ω2. (38)
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Let δ =
√

∆2 + Ω2. Our normalized eigenvectors are found to be

|±〉 = 1√
2δ(δ± ∆)

[
iΩ

∆± δ

]
. (39)

In terms of |a〉 and |b〉, we then have

|±〉 = 1√
2δ(δ± ∆)

(iΩ|a〉+ (∆± δ)|b〉) . (40)

Note that our Hamiltonian has a simple form in this basis. That is

H =
δh̄
2
(|+〉〈+| − |−〉〈−|) (41)

Observe that once we do the diagonalization, we have a Hamiltonian that appears to have the
form of a scaled projector for an open Stern-Gerlach aparatus.

Observe that the diagonalized Hamiltonian operator makes the time evolution operator’s form
also simple, which is, by inspection

U(t) = e−it δ
2 |+〉〈+|+ eit δ

2 |−〉〈−|. (42)

Since we are asked for this in terms of |a〉, and |b〉, the projectors |±〉〈±| are required. These
are

|±〉〈±| = 1
2δ(δ± ∆)

(
iΩ|a〉+ (∆± δ)|b〉

)(
−iΩ〈a|+ (∆± δ)〈b|

)

|±〉〈±| = 1
2δ(δ± ∆)

(
Ω2|a〉〈a|+ (δ± δ)2|b〉〈b|+ iΩ(∆± δ)(|a〉〈b| − |b〉〈a|)

)
(43)

Substitution into 42 and a fair amount of algebra leads to

U(t) = cos(δt/2)
(
|a〉〈a|+ |b〉〈b|

)
+ i

Ω
δ

sin(δt/2)
(
|a〉〈a| − |b〉〈b| − i(|a〉〈b| − |b〉〈a|)

)
. (44)

Note that while a big cumbersome, we can also verify that we can recover the original Hamil-
tonian from 41 and 43.

Q: (b) Suppose that the initial state of the system at time t = 0 is |φ(0)〉 = |b〉. Find an expression
for the state at some later time t > 0, |φ(t)〉.

A: Most of the work is already done. Computation of |φ(t)〉 = U(t)|φ(0)〉 follows from 44

|φ(t)〉 = cos(δt/2)|b〉 − i
Ω
δ

sin(δt/2)
(
|b〉+ i|a〉

)
. (45)
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Q: (c) Suppose that an observable, specified by the operator X = |a〉〈b|+ |b〉〈a|, is measured for
this system. What is the probabilbity that, at time t, the result 1 is obtained? Plot this probabil-
ity as a function of time, showing the maximum and minimum values of the function, and the
corresponding values of t.

A: The language of questions like these attempt to bring some physics into the mathematics. The
phrase “the result 1 is obtained”, is really a statement that the operator X, after measurement is
found to have the eigenstate with numeric value 1.

We can calcuate the eigenvectors for this operator easily enough and find them to be ±1. For
the positive eigenvalue we can also compute the eigenstate to be

|X+〉 = 1√
2

(
|a〉+ |b〉

)
. (46)

The question of what the probability for this measurement is then really a question asking for
the computation of the amplitude ∣∣∣∣ 1√

2
〈(a + b)|φ(t)〉

∣∣∣∣2 (47)

From 45 we find this probability to be

∣∣∣∣ 1√
2
〈(a + b)|φ(t)〉

∣∣∣∣2 =
1
2

((
cos(δt/2) +

Ω
δ

sin(δt/2)
)2

+
Ω2 sin2(δt/2)

δ2

)

=
1
4

(
1 + 3

Ω2

δ2 +
∆2

δ2 cos(δt) + 2
Ω
δ

sin(δt)
)

We have a simple superposition of two sinusuiods out of phase, periodic with period 2π/δ.
I’d attempted a rough sketch of this on paper, but won’t bother scanning it here or describing it
further.

Q: (d) Suppose an experimenter has control over the values of the parameters ∆ and Ω. Explain
how she might prepare the state (|a〉+ |b〉)/

√
2.

A: For this part of the question I wasn’t sure what approach to take. I thought perhaps this
linear combination of states could be made to equal one of the energy eigenstates, and if one
could prepare the system in that state, then for certain values of δ and ∆ one would then have this
desired state.

To get there I note that we can express the states |a〉, and |b〉 in terms of the eigenstates by
inverting [

|+〉
|−〉

]
=

1√
2δ

[
iΩ√
δ+∆

√
δ + ∆

iΩ√
δ−∆

−
√

δ− ∆

] [
|a〉
|b〉

]
. (48)

Skipping all the algebra one finds[
|a〉
|b〉

]
=

[
−i
√

δ− ∆ −i
√

δ + ∆
Ω√
δ−∆

− Ω√
δ+∆

] [
|+〉
|−〉

]
. (49)
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Unfortunately, this doesn’t seem helpful. I find

1√
2
(|a〉+ |b〉) = |+〉√

δ− ∆
(Ω− i(δ− ∆))− |−〉√

δ + ∆
(Ω + i(δ + ∆)) (50)

There’s no obvious way to pick Ω and ∆ to leave just |+〉 or |−〉. When I did this on paper
originally I got a different answer for this sum, but looking at it now, I can’t see how I managed to
get that answer (it had no factors of i in the result as the one above does).

3.5. 3. One dimensional harmonic oscillator.

Consider a one-dimensional harmonic oscillator with the Hamiltonian

H =
1

2m
P2 +

1
2

mω2X2 (51)

Denote the ground state of the system by |0〉, the first excited state by |1〉 and so on.

Q: (a) Evaluate 〈n|X|n〉 and 〈n|X2|n〉 for arbitrary |n〉.

A: Writing X in terms of the raising and lowering operators we have

X =
α√
2
(a† + a), (52)

so 〈X〉 is proportional to

〈n|a† + a|n〉 =
√

n + 1 〈n|n + 1〉+
√

n 〈n|n− 1〉 = 0. (53)

For
〈

X2〉 we have

〈
X2〉 = α2

2
〈n|(a† + a)(a† + a)|n〉

=
α2

2
〈n|(a† + a)

(√
n + 1|n + 1〉+

√
n− 1|n− 1〉

)
=

α2

2
〈n|
(
(n + 1)|n〉+

√
n(n− 1)|n− 2〉+

√
(n + 1)(n + 2)|n + 2〉+ n|n〉

)
.

We are left with just

〈
X2〉 = h̄

2mω
(2n + 1). (54)

Q: (b) Suppose that at t = 0 the system is prepared in the state

|ψ(0)〉 = 1√
2
(|0〉+ i|1〉). (55)

If a measurement of position X were performaed immediately, sketch the propability distribu-
tion P(x) that a particle would be found within dx of x. Justify how you construct the sketch.
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A: The probability that we started in state |ψ(0)〉 and ended up in position x is governed by the
amplitude 〈x|ψ(0)〉, and the probability of being within an interval ∆x, surrounding the point x is
given by ∫ x+∆x/2

x′=x−∆x/2

∣∣〈x′|ψ(0)
〉∣∣2dx′. (56)

In the limit as ∆x → 0, this is just the squared amplitude itself evaluated at the point x, so we
are interested in the quantity

|〈x|ψ(0)〉|2 =
1
2
|〈x|0〉+ i 〈x|1〉|2. (57)

We are given these wave functions in the supplemental formulas. Namely,

〈x|0〉 = ψ0(x) =
e−x2/2α2√

α
√

π
(58)

〈x|1〉 = ψ1(x) =
e−x2/2α2

2x

α
√

2α
√

π
. (59)

Substituting these into 57 we have

|〈x|ψ(0)〉|2 =
1
2

e−x2/α2 1
α
√

π

∣∣∣∣1 + 2ix
α
√

2

∣∣∣∣2 =
e−x2/α2

2α
√

π

(
1 +

2x2

α2

)
. (60)

This is parabolic near the origin and then quickly tapers off.

Q: (c) Now suppose the state given in (b) above were allowed to evolve for a time t, determine
the expecation value of X and ∆X at that time.

A: Our time evolved state is

U(t)|ψ(0)〉 = 1√
2

(
e−ih̄ω(0+ 1

2 )t/h̄|0〉+ ie−ih̄ω(1+ 1
2 )t/h̄|0〉

)
=

1√
2

(
e−iωt/2|0〉+ ie−3iωt/2|1〉

)
. (61)

The position expectation is therefore

〈ψ(t)|X|ψ(t)〉 = α

2
√

2

(
eiωt/2〈0| − ie3iωt/2〈1|

)
(a† + a)

(
e−iωt/2|0〉+ ie−3iωt/2|1〉

)

We have already demonstrated that 〈n|X|n〉 = 0, so we must only expand the cross terms, but
those are just 〈0|a† + a|1〉 = 1. This leaves

〈ψ(t)|X|ψ(t)〉 = α

2
√

2

(
−ieiωt + ie−iωt

)
=

√
h̄

2mω
cos(ωt) (62)

For the squared position expectation
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〈ψ(t)|X2|ψ(t)〉 = α2

4(2)

(
eiωt/2〈0| − ie3iωt/2〈1|

)
(a† + a)2

(
e−iωt/2|0〉+ ie−3iωt/2|1〉

)
=

1
2
(〈0|X2|0〉+ 〈1|X2|1〉) + i

α2

8
(−eiωt〈1|(a† + a)2|0〉+ e−iωt〈0|(a† + a)2|1〉)

Noting that (a† + a)|0〉 = |1〉, and (a† + a)2|0〉 = (a† + a)|1〉 =
√

2|2〉 + |0〉, so we see the
last two terms are zero. The first two we can evaluate using our previous result 54 which was〈

X2〉 = α2

2 (2n + 1). This leaves

〈ψ(t)|X2|ψ(t)〉 = α2 (63)

Since 〈X〉2 = α2 cos2(ωt)/2, we have

(∆X)2 =
〈

X2〉− 〈X〉2 = α2
(

1− 1
2

cos2(ωt)
)

(64)

Q: (d) Now suppose that initially the system were prepared in the ground state |0〉, and then the
resonance frequency is changed abrubtly from ω to ω′ so that the Hamiltonian becomes

H =
1

2m
P2 +

1
2

mω′
2X2. (65)

Immediately, an energy measurement is performed ; what is the probability of obtaining the
result E = h̄ω′(3/2)?

A: This energy measurement E = h̄ω′(3/2) = h̄ω′(1 + 1/2), corresponds to an observation of
state |1′〉, after an initial observation of |0〉. The probability of such a measurement is∣∣〈1′|0〉∣∣2 (66)

Note that

〈
1′|0

〉
=
∫

dx
〈
1′|x

〉
〈x|0〉

=
∫

dxψ∗1′ψ0(x)

The wave functions above are

φ1′(x) =
2xe−x2/2α′2

α′
√

2α′
√

π
(67)

φ0(x) =
e−x2/2α2√

α
√

π
(68)

Putting the pieces together we have
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〈
1′|0

〉
=

2
α′
√

2α′απ

∫
dxxe−

x2
2

(
1

α′2
+ 1

α2

)
(69)

Since this is an odd integral kernel over an even range, this evaluates to zero, and we conclude
that the probability of measuring the specified energy is zero when the system is initially prepared
in the ground state associated with the original Hamiltonian. Intuitively this makes some sense,
if one thinks of the Fourier coefficient problem: one cannot construct an even function from linear
combinations of purely odd functions.
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