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1. Problem 1.

Assume that X and P = —il1d/9dx are the x-direction position and momentum operators. Show
that [X, P] = ih1. Find (x|(XP — PX)|x’) using the above definitions. What is the physical mean-
ing of this expression?

1.1. Avoiding Dirac notation.

We can get a rough idea where we are going by temporarily avoiding the Dirac notation that
complicates things. To do so, consider the commutator action on an arbitrary wave function ¢(x)

(xP — Px)p = xPy + ihaax(xtp)

= xPy + ih <¢+gf>
= xPy + ihp — xPy

= ihy
Since this is true for all (x) we can make the identification
xP — Px =ikl (1)

Having evaluated the commutator, the matrix element is simple to compute. It is

(x|XP — PX|x") = (x]ih1|x")
= ih (x|x").

This braket has a delta function action, so this matrix element reduces to

(x|XP — PX|x") = ihé(x — x"). ()

This could perhaps be considered the end of the problem (barring the physical meaning inter-
pretation requirement to come). However, given that the Dirac notation that is so central to the
lecture notes and course text, it seems like cheating to avoid it. It seems reasonable to follow this
up with the same procedure utilizing the trickier Dirac notation, and this will be done next. If
nothing else, this should provide some experience with what sort of manipulations are allowed.



1.2. Using Dirac notation.

Intuition says that we need to consider the action of the commutator within a matrix element
of the form

(x| XP — PX|p) = /dx’(x|XP — PX|¥') (x']yp) = /dx’(x\XP — PX[x )y (x). 3)
Observe above that with the introduction of an identity operation, such an expression also
includes the matrix element to be evaluated in the second part of this problem. Because of this, if
we can show that (x| XP — PX|¢) = ihip(x), then as a side effect we will also have shown that the
matrix element (x| XP — PX|x") = ihd(x — x"), as well as demonstrated the commutator relation
XP — PX = ihl.
Proceeding with a reduction of the right most integral in 3 above, we have
/dx/<x|XP ~ PX[xVyp(x) = /da/(x\xP — Py p(x)
= /dx’(x\ngb(x’) — Px'gp(x)|x")
/
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The convolution with the delta function leaves us with only functions of x, allowing all the
derivatives to be evaluated. In the manipulations above the wave function ¥ (x") could be brought
into the braket since it is just a (complex) scalar. What was a bit sneaky, is the restriction of the
action of the operator P to y(x'), and x'i(x"), but not to |x’). That was a key step in the reduction
since it allows all the resulting terms to be brought out of the braket, leaving the delta function.

What is a good justification for not allowing P to act on the ket? A pragmatic one is that
the desired result would not have been obtained otherwise. After the fact I also see that this is
consistent with [1], which states (without citation) that —i7#V|¢) is an abuse of notation since the
operator should be viewed as operating on projections (ie: wave functions).

Another point to follow up on later is the justification for the order of operations. If the deriva-
tives had been evaluated first before the evaluation at x = x/, then we’d have nothing left due to
the dx’/dx = 0. Perhaps a good answer for that is that the zero times delta function is not well
behaved. One has to eliminate the delta function first to see if the magnitudes of the zero of that



we would have from a pre-evaluated 0x’/dx is “more zero”, than the infinity of the delta function
at x = x’. This procedure still screams out ad-hoc, and the only real resolution is likely in the
framework of distribution theory.

Anyways, assuming the correctness of all the manipulations above, let’s return to the problem.
We refer back to 3 and see that we now have

(x|XP — PX|p) = itp(x)
= il (x|y)
= (x[inl[y)
—
0 = (x|XP — PX — il1|yp)

Since this is true for all (x|, and |i), we must have XP — PX = ili1 as desired.
Also referring back to 3 we can write

/d%@ﬂXP—PXhﬂwﬁﬁzzmwu)
= /dx’ih&(x — xp(x).

Taking differences we have for all (x”)

/ﬁf«ﬂXP—Pmﬂ>—mﬂx—ﬂ»¢@U:Q

which we utilize to produce the identification

(x|XP — PX|x") = ihé(x — x’) (4)

This completes all the non-interpretation parts of this problem.

1.3. The physical meaning of this expression.

The remaining part of this question ties the mathematics to some reality.

One nice description of a general matrix element can be found in [2], where the author states
“We see that the “matrix element” of an operator with respect to a continuous basis is nothing but
the kernel of the integral transform that represents the action of that operator in the given basis.”

While that characterizes this sort of continuous matrix element nicely, it does not provide any
physical meaning, so we have to look further.

The most immediate observation that we can make of this matrix element is not one that as-
signs physical meaning, but instead points out a non-physical characteristic. Note that in the LHS
when x = x’ this is an expectation value for the commutator. Because this expectation “value” is
purely imaginary (an i scaled delta function, with the delta function presumed to be a positive
real infinity), we are able to note that this position momentum commutator operator cannot itself
represent an observable. It must also be non-Hermitian as a consequence, and that is easy enough



to verify directly. Perhaps it would be more interesting to ask the question what the meaning of
the matrix element of the Hermitian operator —i [X, P] is? That operator (an / scaled identity)
would at least represent an observable.

How about asking the question of what physical meaning we have for a general commuta-
tor, before considering the matrix element of such a commutator. Given two operators A, and
B representing observables, a non-zero commutator [A, B] of these operators means that simul-
taneous precise measurement of the two observables is not possible. This property can also be
thought of as a meaning for the matrix element (x’| [A, B] |x) of such a commutator. For the posi-
tion momentum commutator, this matrix element (x| [X, P] |x’) = ihé(x — x’) would also be zero
if simultaneous measurement of the operators was possible.

Because this matrix element of this commutator is non-zero (despite the fact that the delta
function is zero almost everywhere) we know that a measurement of position will disturb the mo-
mentum of the particle, and conversely, a measurement of momentum will disturb the position.
An illustration of this is in the slit diffraction experiment. Narrowing an initial wide slot to “mea-
sure” the position of the photon or electron passing through the slit slit more accurately, has an
effect of increasing the scattering range of the particle (ie: reducing the uncertainty in the position
measurement imparts momentum in the scattering plane).

2. Problem 2.

The state of a one-dimensional system is given by |xp). Does this system obey the position-
momentum uncertainty relation? Explain your answer.
2.1. Solution.

Yes, the system obeys the position-momentum uncertainty relation. Note that in long form the
uncertainty relation takes the following form:

S/ —mp =1 6)

Each of these expectation values is with respect to some specific state

(X) = (¥[Xly), (6)

so one could write this out in still longer form:

VORI = pIXT9)21) /(I (P — (lPIp) Pl > )

This inequality holds for all states |¢) that the system could be observed in. This includes the
state |xg) of this problem, associated with a specific observation of the system.

3. My grade.

I completely misunderstood problem 2, and got only 0.5/5 on it. What he was looking for
was that if |xp) is a position eigenstate in a continuous vector space, then one cannot form the
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expectation with respect to this state, let alone the variance. For example with respect to this state
we have

(X) = (xolX|x0)
= X0 <x0]x0>

= X()é(xO — XO)

We cannot evaluate this delta function, since it blows up at zero. The implication would be that
we have complete uncertainty of position in the one dimensional continuous vector space with
respect to this state. Despite bombing on the question, it is a nice one, since it points out some
of the implicit assumptions for the uncertainty relation. We can only say that the uncertainty
relation applies with respect to normalizable states. That said, is it a fair question? I think the
original question was fairly vague, and I would not consider the question well posed.
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