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1. Problem 1.

1.1. Statement

A particle of mass m is free to move along the x-direction such that V(X) = 0. The state of the
system is represented by the wavefunction Eq. (4.74)
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with f (k) given by Eq. (4.59).
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Note that I've inserted a 1/+/27 factor above that isn’t in the text, because otherwise ¢ (x, t)
will not be unit normalized (assuming f (k) is normalized in wavenumber space).

e (a) What is the group velocity associated with this state?

e (b) What is the probability for measuring the particle at position x = xo > 0 at time t =ty >
0?

e (c) What is the probability per unit length for measuring the particle at position x = xp > 0
attime t = f5 > 0?

¢ (d) Explain the physical meaning of the above results.

1.2. Solution
1.2.1 (a). group velocity.

To calculate the group velocity we need to know the dependence of w on k.
Let’s step back and consider the time evolution action on 1 (x,0). For the free particle case we
have

Writing N’ = N/+/27 we have
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Each successive application of —iH¢t/h will introduce another power of —itfik?/2m, so once

we sum all the terms of the exponential series U(t) = e~**/" we have
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Comparing with 1 we find
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This completes this section of the problem since we are now able to calculate the group velocity
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1.3. (b). What is the probability for measuring the particle at position x = xo > 0 at time
t=1ty>0?

In order to evaluate the probability, it looks desirable to evaluate the wave function integral 4.
Writing 28 = i/ (« + ith/2m), the exponent of that integral is
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The x? portion of the exponential
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then comes out of the integral. We can also make a change of variables 4 = k — xf3 to evaluate
the remainder of the Gaussian and are left with
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Observe that from 2 we can compute N = (2a/7r)!/4, which could be substituted back into 7
if desired.



Our probability density is
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With a final regrouping of terms, this is
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As a sanity check we observe that this integrates to unity for all ¢ as desired. The probability
that we find the particle at position x > xg is then
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The only simplification we can make is to rewrite this in terms of the complementary error
function
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Writing
B(t) = m (11)

we have
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Sanity checking this result, we note that since erfc(0) = 1 the probability for finding the particle
in the x > O range is 1/2 as expected.

1.4. (c). What is the probability per unit length for measuring the particle at position x = xo > 0
at timet =ty > 0?

This unit length probability is thus
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1.5. (d). Explain the physical meaning of the above results.

To get an idea what the group velocity means, observe that we can write our wavefunction 1
as
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We see that the phase coefficient of the Gaussian f (k) “moves” at the rate of the group velocity
. Also recall that in the text it is noted that the time dependent term 11 can be expressed in terms
of position and momentum uncertainties (Ax)?, and (Ap)? = h*(Ak)?. That is

1 (Ax)? + Mﬂ = (Ax(t))? (15)
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This makes it evident that the probability density flattens and spreads over time with the rate
equal to the uncertainty of the group velocity Ap/m = Av, (since vy = fik/m). It is interesting
that something as simple as this phase change results in a physically measurable phenomena. We
see that a direct result of this linear with time phase change, we are less able to find the particle
localized around it’s original time x = 0 position as more time elapses.

2. Problem 2.

2.1. Statement

A particle with intrinsic angular momentum or spin s = 1/2 is prepared in the spin-up with
respect to the z-direction state | f) = |z+). Determine
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and
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and explain what these relations say about the system.

2.2. Solution: Uncertainty of S, with respect to |z+)
Noting that S.|f) = S;|z+) = 1/2|z+) we have

(fIS:|f) = g (18)

The average outcome for many measurements of the physical quantity associated with the
operator S; when the system has been prepared in the state |f) = |z+) is 71/2.
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We could also compute this from the matrix representations, but it is slightly more work.
Operating once more with S; — (f|S;|f)1 on the zero ket vector still gives us zero, so we have
zero in the root for 16
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What does 20 say about the state of the system? Given many measurements of the physical
quantity associated with the operator V = (S, — (f|S.|f)1)?, where the initial state of the system
is always |f) = |z+), then the average of the measurements of the physical quantity associated
with V is zero. We can think of the operator V1/2 = S, — (f|S,|f)1 as a representation of the
observable, “how different is the measured result from the average (f|S:|f)”.

So, given a system prepared in state |f) = |z+), and performance of repeated measurements
capable of only examining spin-up, we find that the system is never any different than its ini-
tial spin-up state. We have no uncertainty that we will measure any difference from spin-up on
average, when the system is prepared in the spin-up state.

2.3. Solution: Uncertainty of S, with respect to |z+)

For this second part of the problem, we note that we can write

1
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So the expectation value of S, with respect to this state is
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After repeated preparation of the system in state |f), the average measurement of the physical
quantity associated with operator Sy is zero. In terms of the eigenstates for that operator |x+) and
|x—) we have equal probability of measuring either given this particular initial system state.

For the variance calculation, this reduces our problem to the calculation of (f|S2|f), which is

2
1521 = 5 (5) () DG + (-121x)

)

so for 22 we have
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The average of the absolute magnitude of the physical quantity associated with operator Sy is
found to be 71/2 when repeated measurements are performed given a system initially prepared in
state |f) = |z+). We saw that the average value for the measurement of that physical quantity
itself was zero, showing that we have equal probabilities of measuring either £/ /2 for this exper-
iment. A measurement that would show the system was in the x-direction spin-up or spin-down
states would find that these states are equi-probable.

3. Grading comments.

I lost one mark on the group velocity response. Instead of 23 he wanted
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since f (k) peaks at k = 0.

I'll have to go back and think about that a bit, because I'm unsure of the last bits of the reason-
ing there.

I also lost 0.5 and 0.25 (twice) because I didn’t explicitly state that the probability that the
particle is at xo, a specific single point, is zero. I thought that was obvious and didn’t have to be
stated, but it appears expressing this explicitly is what he was looking for.

Curiously, one thing that I didn’t loose marks on was, the wrong answer for the probability
per unit length. What he was actually asking for was the following
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That’s a whole lot more sensible seeming quantity to calculate than what I did, but I don’t
think that I can be faulted too much since the phrase was never used in the text nor in the lectures.



