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1. Problem 1.

1.1. Statement

A particle of mass m is free to move along the x-direction such that V(X) = 0. The state of the
system is represented by the wavefunction Eq. (4.74)

ψ(x, t) =
1√
2π

∫ ∞

−∞
dkeikxe−iωt f (k) (1)

with f (k) given by Eq. (4.59).

f (k) = Ne−αk2
(2)

Note that I’ve inserted a 1/
√

2π factor above that isn’t in the text, because otherwise ψ(x, t)
will not be unit normalized (assuming f (k) is normalized in wavenumber space).

• (a) What is the group velocity associated with this state?

• (b) What is the probability for measuring the particle at position x = x0 > 0 at time t = t0 >
0?

• (c) What is the probability per unit length for measuring the particle at position x = x0 > 0
at time t = t0 > 0?

• (d) Explain the physical meaning of the above results.

1.2. Solution

1.2.1 (a). group velocity.

To calculate the group velocity we need to know the dependence of ω on k.
Let’s step back and consider the time evolution action on ψ(x, 0). For the free particle case we

have

H =
p2

2m
= − h̄2

2m
∂xx. (3)

Writing N′ = N/
√

2π we have
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− it
h̄

Hψ(x, 0) =
ith̄
2m

N′
∫ ∞

−∞
dk(ik)2eikx−αk2

= N′
∫ ∞

−∞
dk
−ith̄k2

2m
eikx−αk2

Each successive application of −iHt/h̄ will introduce another power of −ith̄k2/2m, so once
we sum all the terms of the exponential series U(t) = e−iHt/h̄ we have

ψ(x, t) = N′
∫ ∞

−∞
dk exp

(
−ith̄k2

2m
+ ikx− αk2

)
. (4)

Comparing with 1 we find

ω(k) =
h̄k2

2m
. (5)

This completes this section of the problem since we are now able to calculate the group velocity

vg =
∂ω(k)

∂k
=

h̄k
m

. (6)

1.3. (b). What is the probability for measuring the particle at position x = x0 > 0 at time
t = t0 > 0?

In order to evaluate the probability, it looks desirable to evaluate the wave function integral 4.
Writing 2β = i/(α + ith̄/2m), the exponent of that integral is

−k2
(

α +
ith̄
2m

)
+ ikx = −

(
α +

ith̄
2m

)(
k2 − ikx

α + ith̄
2m

)

= − i
2β

(
(k− xβ)2 − x2β2)

The x2 portion of the exponential

ix2β2

2β
=

ix2β

2
= − x2

4(α + ith̄/2m)

then comes out of the integral. We can also make a change of variables q = k− xβ to evaluate
the remainder of the Gaussian and are left with

ψ(x, t) = N′
√

π

α + ith̄/2m
exp

(
− x2

4(α + ith̄/2m)

)
. (7)

Observe that from 2 we can compute N = (2α/π)1/4, which could be substituted back into 7
if desired.
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Our probability density is

|ψ(x, t)|2 =
1

2π
N2
∣∣∣∣ π

α + ith̄/2m

∣∣∣∣ exp
(
− x2

4

(
1

(α + ith̄/2m)
+

1
(α− ith̄/2m)

))
=

1
2π

√
2α

π

π√
α2 + (th̄/2m)2

exp
(
− x2

4
1

α2 + (th̄/2m)2 (α− ith̄/2m + α + ith̄/2m)

)
=

With a final regrouping of terms, this is

|ψ(x, t)|2 =

√
α

2π(α2 + (th̄/2m)2 ) exp
(
− x2

2
α

α2 + (th̄/2m)2

)
. (8)

As a sanity check we observe that this integrates to unity for all t as desired. The probability
that we find the particle at position x > x0 is then

Px>x0(t) =
√

α

2π(α2 + (th̄/2m)2 )
∫ ∞

x=x0

dx exp
(
− x2

2
α

α2 + (th̄/2m)2

)
(9)

The only simplification we can make is to rewrite this in terms of the complementary error
function

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt. (10)

Writing

β(t) =
α

α2 + (th̄/2m)2 , (11)

we have

Px>x0(t0) =
1
2

erfc
(√

β(t0)/2x0

)
(12)

Sanity checking this result, we note that since erfc(0) = 1 the probability for finding the particle
in the x > 0 range is 1/2 as expected.

1.4. (c). What is the probability per unit length for measuring the particle at position x = x0 > 0
at time t = t0 > 0?

This unit length probability is thus

Px>x0+1/2(t0)− Px>x0−1/2(t0) =
1
2

erfc

(√
β(t0)

2

(
x0 +

1
2

))
− 1

2
erfc

(√
β(t0)

2

(
x0 −

1
2

))
(13)
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1.5. (d). Explain the physical meaning of the above results.

To get an idea what the group velocity means, observe that we can write our wavefunction 1
as

ψ(x, t) =
1√
2π

∫ ∞

−∞
dkeik(x−vgt) f (k) (14)

We see that the phase coefficient of the Gaussian f (k) “moves” at the rate of the group velocity
vg. Also recall that in the text it is noted that the time dependent term 11 can be expressed in terms
of position and momentum uncertainties (∆x)2, and (∆p)2 = h̄2(∆k)2. That is

1
β(t)

= (∆x)2 +
(∆p)2

m2 t2 ≡ (∆x(t))2 (15)

This makes it evident that the probability density flattens and spreads over time with the rate
equal to the uncertainty of the group velocity ∆p/m = ∆vg (since vg = h̄k/m). It is interesting
that something as simple as this phase change results in a physically measurable phenomena. We
see that a direct result of this linear with time phase change, we are less able to find the particle
localized around it’s original time x = 0 position as more time elapses.

2. Problem 2.

2.1. Statement

A particle with intrinsic angular momentum or spin s = 1/2 is prepared in the spin-up with
respect to the z-direction state | f 〉 = |z+〉. Determine

(
〈 f | (Sz − 〈 f |Sz| f 〉1)2 | f 〉

)1/2
(16)

and

(
〈 f | (Sx − 〈 f |Sx| f 〉1)2 | f 〉

)1/2
(17)

and explain what these relations say about the system.

2.2. Solution: Uncertainty of Sz with respect to |z+〉

Noting that Sz| f 〉 = Sz|z+〉 = h̄/2|z+〉 we have

〈 f |Sz| f 〉 =
h̄
2

(18)

The average outcome for many measurements of the physical quantity associated with the
operator Sz when the system has been prepared in the state | f 〉 = |z+〉 is h̄/2.
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(
Sz − 〈 f |Sz| f 〉1

)
| f 〉 = h̄

2
| f 〉 − h̄

2
| f 〉 = 0 (19)

We could also compute this from the matrix representations, but it is slightly more work.
Operating once more with Sz − 〈 f |Sz| f 〉1 on the zero ket vector still gives us zero, so we have

zero in the root for 16 (
〈 f | (Sz − 〈 f |Sz| f 〉1)2 | f 〉

)1/2
= 0 (20)

What does 20 say about the state of the system? Given many measurements of the physical
quantity associated with the operator V = (Sz − 〈 f |Sz| f 〉1)2, where the initial state of the system
is always | f 〉 = |z+〉, then the average of the measurements of the physical quantity associated
with V is zero. We can think of the operator V1/2 = Sz − 〈 f |Sz| f 〉1 as a representation of the
observable, “how different is the measured result from the average 〈 f |Sz| f 〉”.

So, given a system prepared in state | f 〉 = |z+〉, and performance of repeated measurements
capable of only examining spin-up, we find that the system is never any different than its ini-
tial spin-up state. We have no uncertainty that we will measure any difference from spin-up on
average, when the system is prepared in the spin-up state.

2.3. Solution: Uncertainty of Sx with respect to |z+〉

For this second part of the problem, we note that we can write

| f 〉 = |z+〉 = 1√
2
(|x+〉+ |x−〉). (21)

So the expectation value of Sx with respect to this state is

〈 f |Sx| f 〉 =
1
2
(|x+〉+ |x−〉)Sx(|x+〉+ |x−〉)

= h̄(|x+〉+ |x−〉)(|x+〉 − |x−〉)
= h̄(1 + 0 + 0− 1)
= 0

After repeated preparation of the system in state | f 〉, the average measurement of the physical
quantity associated with operator Sx is zero. In terms of the eigenstates for that operator |x+〉 and
|x−〉 we have equal probability of measuring either given this particular initial system state.

For the variance calculation, this reduces our problem to the calculation of 〈 f |S2
x| f 〉, which is

〈 f |S2
x| f 〉 =

1
2

(
h̄
2

)2

(|x+〉+ |x−〉)((+1)2|x+〉+ (−1)2|x−〉)

=

(
h̄
2

)2

,

so for 22 we have
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(
〈 f | (Sx − 〈 f |Sx| f 〉1)2 | f 〉

)1/2
=

h̄
2

(22)

The average of the absolute magnitude of the physical quantity associated with operator Sx is
found to be h̄/2 when repeated measurements are performed given a system initially prepared in
state | f 〉 = |z+〉. We saw that the average value for the measurement of that physical quantity
itself was zero, showing that we have equal probabilities of measuring either ±h̄/2 for this exper-
iment. A measurement that would show the system was in the x-direction spin-up or spin-down
states would find that these states are equi-probable.

3. Grading comments.

I lost one mark on the group velocity response. Instead of 23 he wanted

vg =
∂ω(k)

∂k

∣∣∣∣
k=k0

=
h̄k0

m
= 0 (23)

since f (k) peaks at k = 0.
I’ll have to go back and think about that a bit, because I’m unsure of the last bits of the reason-

ing there.
I also lost 0.5 and 0.25 (twice) because I didn’t explicitly state that the probability that the

particle is at x0, a specific single point, is zero. I thought that was obvious and didn’t have to be
stated, but it appears expressing this explicitly is what he was looking for.

Curiously, one thing that I didn’t loose marks on was, the wrong answer for the probability
per unit length. What he was actually asking for was the following

lim
ε→0

1
ε

∫ x0+ε/2

x0−ε/2
|Ψ(x0, t0)|2dx = |Ψ(x0, t0)|2 (24)

That’s a whole lot more sensible seeming quantity to calculate than what I did, but I don’t
think that I can be faulted too much since the phrase was never used in the text nor in the lectures.
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