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1. Problem 1.

1.1. Statement

Is it possible to derive the eigenvalues and eigenvectors presented in Section 8.2 from those in
Section 8.1.2? What does this say about the potential energy operator in these two situations?

For reference 8.1.2 was a finite potential barrier, V(x) = V0, |x| > a, and zero in the interior
of the well. This had trigonometric solutions in the interior, and died off exponentially past the
boundary of the well.

On the other hand, 8.2 was a delta function potential V(x) = −gδ(x), which had the solution
u(x) =

√
βe−β|x|, where β = mg/h̄2.

1.2. Solution

The pair of figures in the text [1] for these potentials doesn’t make it clear that there are possibly
any similarities. The attractive delta function potential isn’t illustrated (although the delta function
is, but with opposite sign), and the scaling and the reference energy levels are different. Let’s
illustrate these using the same reference energy level and sign conventions to make the similarities
more obvious.

The physics isn’t changed by picking a different point for the reference energy level, so let’s
compare the two potentials, and their solutions using V(x) = 0 outside of the well for both cases.
The method used to solve the finite well problem in the text is hard to follow, so re-doing this from
scratch in a slightly tidier way doesn’t hurt.

Schrödinger’s equation for the finite well, in the |x| > a region is

− h̄2

2m
u′′ = Eu = −EBu, (1)

where a positive bound state energy EB = −E > 0 has been introduced.
Writing

β =

√
2mEB

h̄2 , (2)

the wave functions outside of the well are

u(x) =
{

u(−a)eβ(x+a) x < −a
u(a)e−β(x−a) x > a

(3)
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Within the well Schrödinger’s equation is

− h̄2

2m
u′′ −V0u = Eu = −EBu, (4)

or

h̄2

2m
u′′ = −2m

h̄2 (V0 − EB)u, (5)

Noting that the bound state energies are the EB < V0 values, let α2 = 2m(V0 − EB)/h̄2, so that
the solutions are of the form

u(x) = Aeiαx + Be−iαx. (6)

As was done for the wave functions outside of the well, the normalization constants can be
expressed in terms of the values of the wave functions on the boundary. That provides a pair of
equations to solve

[
u(a)

u(−a)

]
=

[
eiαa e−iαa

e−iαa eiαa

] [
A
B

]
. (7)

Inverting this and substitution back into 6 yields

u(x) =
[
eiαx e−iαx] [A

B

]
=
[
eiαx e−iαx] 1

e2iαa − e−2iαa

[
eiαa −e−iαa

−e−iαa eiαa

] [
u(a)

u(−a)

]
=
[

sin(α(a+x))
sin(2αa)

sin(α(a−x))
sin(2αa)

] [ u(a)
u(−a)

]
.

Expanding the last of these matrix products the wave function is close to completely specified.

u(x) =


u(−a)eβ(x+a) x < −a
u(a) sin(α(a+x))

sin(2αa) + u(−a) sin(α(a−x))
sin(2αa) |x| < a

u(a)e−β(x−a) x > a
(8)

There are still two unspecified constants u(±a) and the constraints on EB have not been de-
termined (both α and β are functions of that energy level). It should be possible to eliminate
at least one of the u(±a) by computing the wavefunction normalization, and since the well is
being narrowed the α term will not be relevant. Since only the vanishingly narrow case where
a→ 0, x ∈ [−a, a] is of interest, the wave function in that interval approaches

u(x)→ 1
2
(u(a) + u(−a)) +

x
2
(u(a)− u(−a))→ 1

2
(u(a) + u(−a)). (9)

Since no discontinuity is expected this is just u(a) = u(−a). Let’s write lima→0 u(a) = A for
short, and the limited width well wave function becomes

u(x) =
{

Aeβx x < 0
Ae−βx x > 0

(10)
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This is now the same form as the delta function potential, and normalization also gives A =√
β.
One task remains before the attractive delta function potential can be considered a limiting

case for the finite well, since the relation between a, V0, and g has not been established. To do so
integrate the Schrödinger equation over the infinitesimal range [−a, a]. This was done in the text
for the delta function potential, and that provided the relation

β =
mg
h̄2 (11)

For the finite well this is

∫ a

−a
− h̄2

2m
u′′ −V0

∫ a

−a
u = −EB

∫ a

−a
u (12)

In the limit as a→ 0 this is

h̄2

2m
(u′(a)− u′(−a)) + V02au(0) = 2EBau(0). (13)

Some care is required with the V0a term since a→ 0 as V0 → ∞, but the EB term is unambigu-
ously killed, leaving

h̄2

2m
u(0)(−2βe−βa) = −V02au(0). (14)

The exponential vanishes in the limit and leaves

β =
m(2a)V0

h̄2 (15)

Comparing to 11 from the attractive delta function completes the problem. The conclusion is
that when the finite well is narrowed with a → 0, also letting V0 → ∞ such that the absolute area
of the well g = (2a)V0 is maintained, the finite potential well produces exactly the attractive delta
function wave function and associated bound state energy.

2. Problem 2.

2.1. Statement

For the hydrogen atom, determine 〈nlm|(1/R)|nlm〉 and 1/〈nlm|R|nlm〉 such that (nlm) =
(211) and R is the radial position operator (X2 + Y2 + Z2)1/2. What do these quantities represent
physically and are they the same?

2.2. Solution

Both of the computation tasks for the hydrogen like atom require expansion of a braket of the
following form

〈nlm|A(R)|nlm〉, (16)

where A(R) = R = (X2 + Y2 + Z2)1/2 or A(R) = 1/R.
The spherical representation of the identity resolution is required to convert this braket into

integral form
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1 =
∫

r2 sin θdrdθdφ|rθφ〉〈rθφ|, (17)

where the spherical wave function is given by the braket 〈rθφ|nlm〉 = Rnl(r)Ylm(θ, φ).
Additionally, the radial form of the delta function will be required, which is

δ(x− x′) =
1

r2 sin θ
δ(r− r′)δ(θ − θ′)δ(φ− φ′) (18)

Two applications of the identity operator to the braket yield

〈nlm|A(R)|nlm〉
= 〈nlm|1A(R)1|nlm〉

=
∫

drdθdφdr′dθ′dφ′r2 sin θr′2 sin θ′ 〈nlm|rθφ〉 〈rθφ|A(R)|r′θ′φ′〉
〈
r′θ′φ′|nlm

〉
=
∫

drdθdφdr′dθ′dφ′r2 sin θr′2 sin θ′Rnl(r)Y∗lm(θ, φ)〈rθφ|A(R)|r′θ′φ′〉Rnl(r′)Ylm(θ
′, φ′)

To continue an assumption about the matrix element 〈rθφ|A(R)|r′θ′φ′〉 is required. It seems
reasonable that this would be

〈rθφ|A(R)|r′θ′φ′〉 = δ(x− x′)A(r) =
1

r2 sin θ
δ(r− r′)δ(θ − θ′)δ(φ− φ′)A(r). (19)

The braket can now be written completely in integral form as

〈nlm|A(R)|nlm〉

=
∫

drdθdφdr′dθ′dφ′r2 sin θr′2 sin θ′Rnl(r)Y∗lm(θ, φ)
1

r2 sin θ
δ(r− r′)δ(θ − θ′)δ(φ− φ′)A(r)Rnl(r′)Ylm(θ

′, φ′)

=
∫

drdθdφr′2 sin θ′dr′dθ′dφ′Rnl(r)Y∗lm(θ, φ)δ(r− r′)δ(θ − θ′)δ(φ− φ′)A(r)Rnl(r′)Ylm(θ
′, φ′)

Application of the delta functions then reduces the integral, since the only θ, and φ dependence
is in the (orthonormal) Ylm terms they are found to drop out

〈nlm|A(R)|nlm〉 =
∫

drdθdφr2 sin θRnl(r)Y∗lm(θ, φ)A(r)Rnl(r)Ylm(θ, φ)

=
∫

drr2Rnl(r)A(r)Rnl(r)
∫

sin θdθdφY∗lm(θ, φ)Ylm(θ, φ)︸ ︷︷ ︸
=1

This leaves just the radial wave functions in the integral

〈nlm|A(R)|nlm〉 =
∫

drr2R2
nl(r)A(r) (20)
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As a consistency check, observe that with A(r) = 1, this integral evaluates to 1 according
to equation (8.274) in the text, so we can think of (rRnl(r))2 as the radial probability density for
functions of r.

The problem asks specifically for these expectation values for the |211〉 state. For that state the
radial wavefunction is found in (8.277) as

R21(r) =
(

Z
2a0

)3/2 Zr
a0
√

3
e−Zr/2a0 (21)

The braket can now be written explicitly

〈21m|A(R)|21m〉 = 1
24

(
Z
a0

)5 ∫ ∞

0
drr4e−Zr/a0 A(r) (22)

Now, let’s consider the two functions A(r) separately. First for A(r) = r we have

〈21m|R|21m〉 = 1
24

(
Z
a0

)5 ∫ ∞

0
drr5e−Zr/a0

=
a0

24Z

∫ ∞

0
duu5e−u

The last integral evaluates to 120, leaving

〈21m|R|21m〉 = 5a0

Z
. (23)

The expectation value associated with this |21m〉 state for the radial position is found to be
proportional to the Bohr radius. For the hydrogen atom where Z = 1 this average value for
repeated measurements of the physical quantity associated with the operator R is found to be 5
times the Bohr radius for n = 2, l = 1 states.

Our problem actually asks for the inverse of this expectation value, and for reference this is

1/〈21m|R|21m〉 = Z
5a0

(24)

Performing the same task for A(R) = 1/R

〈21m|1/R|21m〉 = 1
24

(
Z
a0

)5 ∫ ∞

0
drr3e−Zr/a0

=
1

24
Z
a0

∫ ∞

0
duu3e−u.

This last integral has value 6, and we have the second part of the computational task complete

〈21m|1/R|21m〉 = 1
4

Z
a0

(25)

The question of whether or not 24, and 25 are equal is answered. They are not.
Still remaining for this problem is the question of the what these quantities represent physi-

cally.
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The quantity 〈nlm|R|nlm〉 is the expectation value for the radial position of the particle mea-
sured from the center of mass of the system. This is the average outcome for many measurements
of this radial distance when the system is prepared in the state |nlm〉 prior to each measurement.

Interestingly, the physical quantity that we associate with the operator R has a different mea-
surable value than the inverse of the expectation value for the inverted operator 1/R. Regardless,
we have a physical (observable) quantity associated with the operator 1/R, and when the system
is prepared in state |21m〉 prior to each measurement, the average outcome of many measurements
of this physical quantity produces this value 〈21m|1/R|21m〉 = Z/n2a0, a quantity inversely pro-
portional to the Bohr radius.

2.3. ASIDE: Comparing to the general case.

As a confirmation of the results obtained, we can check 24, and 25 against the general form
of the expectation values 〈Rs〉 for various powers s of the radial position operator. These can be
found in locations such as farside.ph.utexas.edu which gives for Z = 1 (without proof), and in [2]
(where these and harder looking ones expectation values are left as an exercise for the reader to
prove). Both of those give:

〈R〉 = a0

2
(3n2 − l(l + 1)) (26)

〈1/R〉 = 1
n2a0

(27)

It is curious to me that the general expectation values noted in 26 we have a l quantum number
dependence for 〈R〉, but only the n quantum number dependence for 〈1/R〉. It is not obvious to
me why this would be the case.

3. Grading notes.

Lost 3/20 marks, all in the first question.
I didn’t show that u(a) = u(−a).
I did not explain why the odd terms disappear in 9.
I also did not get agreement with my statement that “but the EB term is unambiguously killed”,

where I have assumed that it remains finite. Since V0 → ∞, EB could tend to infinity too.

4. Some references.

Here are some references I found to help provide some of the context for WHY to consider the
delta function potential in the first place:

wikipedia Delta potential, ucsd, csbsju, unm, ufl.
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