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1. Motivation.

In I love when kids stump me, the center of mass of a toroidal segment is desired, and the
simpler problem of a circular ring segment is considered.

Let’s try the solid torus problem for fun using the geometric algebra toolbox. To setup the
problem, it seems reasonable to introduce two angle, plus radius, toroidal parametrization as
shown in figure (1).

Our position vector to a point within the torus is then

r(ρ, θ, φ) = e−jθ/2
(

ρe1eiφ + Re3

)
ejθ/2 (1a)

i = e1e3 (1b)
j = e3e2 (1c)

Here i and j for the bivectors are labels picked at random. They happen to have the quaternion-
ic properties ij = −ji, and i2 = j2 = −1 which can be verified easily.

2. Volume element

Before we can calculate the center of mass, we’ll need the volume element. I don’t recall having
ever seen such a volume element, so let’s calculate it from scratch.

We want

dV = ±e1e2e3

(
∂r
∂ρ
∧ ∂r

∂θ
∧ ∂r

∂φ

)
dρdθdφ, (2)

so the first order of business is calculation of the partials. After some regrouping those are

∂r
∂ρ

= e−jθ/2e1eiφejθ/2 (3a)

∂r
∂θ

= e−jθ/2 (R + ρ sin φ) e2ejθ/2 (3b)

∂r
∂φ

= e−jθ/2ρe3eiφejθ/2. (3c)

For the volume element we want the wedge of each of these, and can instead select the trivector
grades of the products, which conveniently wipes out a number of the interior exponentials
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Figure 1: Toroidal parametrization
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∂r
∂ρ
∧ ∂r

∂θ
∧ ∂r

∂φ
= ρ (R + ρ sin φ)

〈
e−jθ/2e1eiφe2e3eiφejθ/2

〉
3

(4)

Note that e1 commutes with j = e3e2, so also with e−jθ/2. Also e2e3 = −j anticommutes with
i, so we have a conjugate commutation effect eiφ j = je−iφ. Together the trivector grade selection
reduces almost magically to just

∂r
∂ρ
∧ ∂r

∂θ
∧ ∂r

∂φ
= ρ (R + ρ sin φ) e1e2e3 (5)

Thus the volume element, after taking the positive sign, is

dV = ρ (R + ρ sin φ) dρdθdφ. (6)

As a check we should find that we can use this to calculate the volume of the complete torus,
and obtain the expected V = (2πR)(πr2) result. That volume is

V =
∫ r

ρ=0

∫ 2π

θ=0

∫ 2π

φ=0
ρ (R + ρ sin φ) dρdθdφ. (7)

The sine term conveniently vanishes over the 2π interval, leaving just

V =
1
2

r2R(2π)(2π), (8)

as expected.

3. Center of mass.

With the prep done, we are ready to move on to the original problem. Given a toroidal segment
over angle θ ∈ [−∆θ/2, ∆θ/2], then the volume of that segment is

∆V = r2Rπ∆θ. (9)

Our center of mass position vector is then located at

R∆V =
∫ r

ρ=0

∫ ∆θ/2

θ=−∆θ/2

∫ 2π

φ=0
e−jθ/2

(
ρe1eiφ + Re3

)
ejθ/2ρ (R + ρ sin φ) dρdθdφ. (10)

Evaluating the φ integrals we loose the
∫ 2π

0 eiφ and
∫ 2π

0 sin φ terms and are left with
∫ 2π

0 eiφ sin φdφ =

iπ/2 and
∫ 2π

0 dφ = 2π. This leaves us with
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R∆V =
∫ r

ρ=0

∫ ∆θ/2

θ=−∆θ/2

(
e−jθ/2ρ3e3

π

2
ejθ/2 + 2πρR2e3ejθ

)
dρdθ (11)

=
∫ ∆θ/2

θ=−∆θ/2

(
e−jθ/2r4e3

π

8
ejθ/2 + 2π

1
2

r2R2e3ejθ
)

dθ (12)

=
∫ ∆θ/2

θ=−∆θ/2

(
e−jθ/2r4e3

π

8
ejθ/2 + πr2R2e3ejθ

)
dθ. (13)

Since e3 j = −je3, we have a conjugate commutation with the e−jθ/2 for just

R∆V = πr2
(

r2

8
+ R2

)
e3

∫ ∆θ/2

θ=−∆θ/2
ejθdθ (14)

= πr2
(

r2

8
+ R2

)
e32 sin(∆θ/2). (15)

A final reassembly, provides the desired final result for the center of mass vector

R = e3
1
R

(
r2

8
+ R2

)
sin(∆θ/2)

∆θ/2
. (16)

Presuming no algebraic errors have been made, how about a couple of sanity checks to see if
the correctness of this seems plausible.

We are pointing in the z-axis direction as expected by symmetry. Good. For ∆θ = 2π, our
center of mass vector is at the origin. Good, that’s also what we expected. If we let r → 0, and
∆θ → 0, we have R = Re3 as also expected for a tiny segment of “wire” at that position. Also
good.

4. Center of mass for a circular wire segment.

As an additional check for the correctness of the result above, we should be able to compare
with the center of mass of a circular wire segment, and get the same result in the limit r → 0.

For that we have

Z(R∆θ) =
∫ ∆θ/2

θ=−∆θ/2
Rie−iθ Rdθ (17)

So we have

Z =
1

∆θ
Ri

1
−i

(e−i∆θ/2 − ei∆θ/2). (18)

Observe that this is

Z = Ri
sin(∆θ/2)

∆θ/2
, (19)
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which is consistent with the previous calculation for the solid torus when we let that solid
diameter shrink to zero.

In particular, for 3/4 of the torus, we have ∆θ = 2π(3/4) = 3π/2, and

Z = Ri
4 sin(3π/4)

3π
= Ri

2
√

2
3π
≈ 0.3Ri. (20)

We are a little bit up the imaginary axis as expected.
I’d initially somehow thought I’d been off by a factor of two compared to the result by The

Virtuosi, without seeing a mistake in either. But that now appears not to be the case, and I just
screwed up plugging in the numbers. Once again, I should go to my eight year old son when I
have arithmetic problems, and restrict myself to just the calculus and algebra bits.
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